Thermal Modeling, Analysis and Management of 2D Multi-Processor System-on-Chip

Prof. David Atienza Alonso

Embedded Systems Laboratory (ESL) Institute of EE, Faculty of Engineering

ARTIST Summer School 2010, Autrans (France)

Outline

- MPSoC thermal modeling and analysis
- HW-based thermal management for MPSoCs
- SW-based thermal management for MPSoCs
- Conclusions

Outline

MPSoC thermal modeling and analysis

- HW-based thermal management for MPSoCs
- SW-based thermal management for MPSoCs
- Conclusions

MPSoC Thermal Modeling Problem

- Continuous heat flow analysis
 - Capture geometrical characteristics of MPSoCs
- Explore different packaging features and heat sink characteristics
- Time-variant heat sources
 - Transistor switching depends on MPSoC run-time activity (software)
 - Dynamic interaction with heat flow analysis

Very complex computational problem!

MPSoC Thermal Modeling State-of-the-Art

- MPSoC Modeling and Exploration
- 1. SW simulation: Transactions, cycle-accurate (~100 KHz) [Synopsys Realview, Mentor Primecell, Madsen et al., Angiolini et al.]

At the desired cycle-accurate level, they are too slow for thermal analysis of real-life applications!

2. HW prototyping: Core dependent (~50-100 MHz) [Cadence Palladium II, ARM Integrator IP, Heron Engineering]

Very expensive and late in design flow, no thermal modeling, only used for functional validation of MPSoC architectures!

- Heat Flow Modeling:
- 1. Software thermal/power models [Skadron et al., Kang et al.]

Too computationally intensive and not able to interact at run-time with inputs from MPSoC components!

MPSoC Thermal Modeling State-of-the-Art

- MPSoC Modeling and Exploration
- 1. SW simulation: Transactions, cycle-accurate (~100 KHz) [Synopsys Realview, Mentor Primecell, Madsen et al., Angiolini et al.]

At the desired cycle-accurate level, they are too slow for thermal analysis of real-life applications!

2.

Combination of cycle-accurate MPSoC behavior and IC heat flow modeling at run-time is unheard of

Very expensive and late in design flow, no thermal modeling, only used for functional validation of MPSoC architectures!

- Heat Flow Modeling:
- 1. Software thermal/power models [Skadron et al., Kang et al.]

Too computationally intensive and not able to interact at run-time with inputs from MPSoC components!

Orthogonalizing MPSoC Thermal Modeling and Analysis

Chip and Package Heat Flow Modeling

Model interface

- Input: power model of MPSoC components, geometrical properties
- Output: temperature of MPSoC components at run-time
- Thermal circuit: 1st order RC circuit
 - Heat flow ~ Electrical current :

SW Thermal Estimation Tool for MPSoCs

 $C \bar{t}_{k} = -G (t_{k})t_{k} + p_{k}; k = 1..m$

Creating linear approximation while retaining variable Si thermal conductivity:

Si thermal conductivity linearly approx. : $G_{i,i}(t_k) = 1 + q t_k$

Numerically integrating in discrete Si thermal conductivity time domain the

 $t_{k+1} = A(t_k)t_k + B$ Heat flow estimation **Complexity scales linearly with** the number of modeled cells (simulated on P4@ 3GHz)

thermal library validated against 3D finite element model (IMEC & Freescale)

Case Study: HW 4-Core MPSoC

MPSoC Philips board design:

- 4 processors, DVFS: 100/500 MHz
- Plastic packaging

Software:

Image watermarking, video rendering

Power values for 90nm:

Element	Max Power (mW) 100 MHz	Max Power (mW) 500 MHz
Processor	2,92 x 10 ²	1,02 x 10 ³
D-Cache	1,42 x 10 ²	7,10 x 10 ²
I-Cache	1,42 x 10 ²	7,10 x 10 ²
Priv Mem	0,61 x 10 ²	2,75 x 10 ²
AMBA	0,31 x 10 ²	0,68 x 10 ²

Results: Thermal Validation 4-core Philips MPSoC

- MPARM: Cycle-accurate SW architectural simulator
 - Complete power/thermal models tuned to Philips/IMEC figures
 - Simulations too slow: 2 days for 0.18 real sec (12 cells)
- HW thermal emulation able to validate policies at run-times of
 - Dynamic Voltage and Frequency Scaling (DVFS) masation?thresholds

Outline

MPSoC thermal modeling and analysis

- HW-based thermal management for MPSoCs
- SW-based thermal management for MPSoCs
- Conclusions

Temperature Management is Power Control under Thermal Constraints

- Power consumption of cores determines thermal behavior
 - Power consumption depends on frequency and voltage
 - Setting frequencies/voltages can control power and temperature
- Optimization problem: frequency/voltage assignment in MPSoCs under thermal constraints
 - Meet processing requirements
 - Respect thermal constraint at all times
 - Minimize power consumption

HW-Based Thermal Management State-of-the-Art

- Static approach: thermal-aware placement to try to even out worst-case thermal profile [Sapatnekar, Wong et al.]
 - Computationally difficult problem (NP-complete)

Not able to predict all working conditions, and leakage changing dynamically, it is not useful in real systems

No formalization of the thermal optimization problem

Dynamic approach: HW-based dynamic thermal management

- Clock gating based on time-out [Xie et al., Brooks et al.]
- DVFS based on thresholds [Chaparro et al, Mukherjee et al,]
- Heuristics for component shut down, limited history [Donald et al]

Techniques to minimize power, they only achieve thermal management as a by-product

Formalization of Thermal Management Problem in MPSoCs

Control theory problem

- Optimal frequency assignment module, 2-phase approach:
 - **1) Design-time phase:** Find optimal sets of frequencies
 - for the cores for different working conditions

Cont 2) Run-time phase: Apply one of the predefined sets
 T found in phase 1 for the required system performance

Pro-Active HW-Based Thermal Control: Phase 1 – Design-Time

Predictive model of thermal behavior given a set of frequency assignments

Making Power and Thermal Constraints Convex

Power constraint adaptation

Solve convex problem and get table of optimal frequencies for different working conditions in polynomial time (number of processors)

Pro-Active HW-Based Thermal Control: Phase 2 - Run-Time, Putting It All Together

Use table of frequencies assignments and index by actual conditions at regular run-time intervals

Current temperature of cores

Phase

Run-time optimal DVFS assignment HW module

2) Compare to current assignment to cores and

generate required signaling to modify DVFS values

1) Index table output of phase 1 with current working conditions

Targeted operating

frequency of cores

tarting Temperatures 35 °C = 100 MHz 20 80 80 12 150 MHz 1000 MHz

Run-time DVFS output changes for processors

Method inputs

Case Study: 8-Core Sun MPSoC

- MPSoC Sun Niagara architecture
 - 8 processing cores SPARC T1
- Max. frequency each core: 1 GHz
 10 DVFS values, applied every 100ms
- Max. power per core: 4 W
- Execution characteristics of workloads [Sun Microsystems]:
 - Mixes of 10 different benchmarks, from web-accessing to multimedia
 - 60,000 iterations of basic benchmarks, tens of seconds of actual system execution

Sun's Niagara MPSoC

Results: Thermal Constraints Respected

Proposed method achieves better throughput than standard DVFS while satisfying thermal constraints

Outline

MPSoC thermal modeling and analysis
HW-based thermal management for MPSoCs
SW-based thermal management for MPSoCs
Conclusions

MPSoC System-Level Architecture: HW and SW Layers

SW layers introduced to better exploit the HW of MPSoCs

- Applications divided in <u>tasks</u>: blocks of operations to be executed
- Multi-processor Operating System (MPOS) distributes the tasks
 - Load balancing: equal distribution of work between processors

Task Migration for Load vs. Thermal Balancing

Plain load balancing

Task Migration for Load vs. Thermal Balancing

Heat&Run: Load balancing with local knowledge of temperature in MPSoC components

Task Migration for Load vs. Thermal Balancing

Heat&Run: Load balancing with local knowledge of temperature in MPSoC components

Helping with hot-spots, but no thermal balancing

Existing approaches do not consider global thermal dynamics for task migration

LOAD

TACK MICDATION

Task Migration for Load vs Thermal Balancing

- Contribution: Migration strategy for thermal balancing
 - Global knowledge of temperature at MPOS level
 - Adjusted to particular thermal dynamics of each platform
- Formalization
 - Dynamic number of tasks, no control theory formalization possible
 - Knapsack problem, move N largest tasks between cores: estimated increase in temperature and minimizing performance penalty

Reduces hot-spots and reaches thermal balancing

Case Study: Freescale MPSoC Board

Hardware

- 3 RISC processor cores
- 16KB caches, 32KB shared mem.
- AMBA bus, 2GB ext. mem
- Software
 - uCLinux-based MPOS
 - Multimedia applications: audio and video
- Two packaging options
 - Mobile embedded SoCs (slow temperature variations)
 - High performance SoCs (fast temperature variations)

Results and Comparisons

Good thermal balancing

- Average: 40.5°C, variations of < 3°C
- Small performance overhead
 (2 migrat/s)

threshold average + 3 - threshold average

Good performance and uniform temperature adjusting globally to thermal dynamics with MPOS

inefficient (>7°C diffs)

- Heat&Run inefficient or causes many deadline misses (40% below performance requirements)
- Contribution: <u>performance requirements met</u> <u>for both types of packaging</u>

Adapt2D-MIGRA: Combination of HW and SW-Based Pro-Active Thermal Management

Initial: Large gradients

New: Thermal balancing

- HW-based management: Convex-based dynamic voltage and frequency scaling (DVFS) exploration
- SW-based management: Proactive task scheduling and migration
 - Support of multi-processor operating system: Solaris Multi-Core

Good thermal control in commercial MPSoCs in 90nm, what about 3D integration?

Outline

MPSoC thermal modeling and analysis

- HW-based thermal management for MPSoCs
- SW-based thermal management for MPSoCs
- Conclusions

Conclusions

Progress in semiconductor technologies enables new MPSoCs

- Thermal/reliability issues must be addressed for safe human interaction
- Thermal monitoring and control are key
- Clear benefits of thermal-aware design methods for MPSoCs
 - Novel, fast and low-cost thermal modeling approach at system-level
 - Formalization of HW-based thermal management problem as convex, and solved in polynomial time
 - New SW-based thermal balancing method with very limited overhead
- Validation on commercial 2D- MPSoCs (Sun, Freescale, Philips)
 - Fast exploration of thermal behavior of complex MPSoCs
 - Effective HW- and SW-based pro-active thermal management

Key References and Bibliography

- Thermal modeling and FPGA-based emulation
 - "HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs", D. Atienza, et al. ACM TODAES, Vol. 12, Nr. 3, pp. 1–26, August 2007.
- Thermal management for 2D MPSoCs
 - "Thermal Balancing Policy for Multiprocessor Stream Computing Platforms", F. Mulas, et al., IEEE T-CAD, Vol. 28, Nr. 12, pp. 1870-1882, December 2009.
 - "Processor Speed Control with Thermal Constraints", A. Mutapcic, S. Boyd, et al. *IEEE TCAS-I*, Vol. 56, Nr. 9, pp. 1994-2008, Sept 2009.
 - "Inducing Thermal-Awareness in Multi-Processor Systems-on-Chip Using Networks-on-Chip", E. Martinez, et al., Proc. ISVLSI 2009.
 - "Temperature Control of High-Performance Multi-core Platforms Using Convex Optimization", S.Murali, et al., Proc. DATE, 2008.

QUESTIONS?

Swiss National Science Foundation

Acknowledgements:

JCSD / Sun Microsystems

BM Zürich

semiconductors³³