Scheduling issues in mixed-
criticality systems

Sanjoy Baruah
The University of North Carolina at Chapel Hill

Scheduling issues in mixed-
criticality systems

Integrated environments: Multiple systems on a shared platform
Why integrated architectures?

* Can provide a range of functionalities

Separate implementations are inefficient
- Size Weight and Power (SWaP) constraints

Dealing with mixed criticalities

Mixed criticalities: an example

Some sub-systems are more important than others
- Automotive example: ABS vs car stereo

Different sub-systems have different certification requirements
- Defense avionics example. Flight-critical and mission-critical functionalities

Flight critical: certified by Certification Authorities
Mission-critical: validated by design team

Example: Determining worst-case execution time (WCET)

- flight-critical certification: cycle-counting under pessimistic assumptions
- mission-critical validation: extensive experimentation

Current practice: ARINC-653 "space-time partitioning”

- time partitioning: different time-slots are reserved for the flight-critical and
the mission-critical sub-systems

Mixed criticalities: an example

J is flight-critical; J, is mission-critical
Both arrive at t=0; have deadlines at t=10

WCET of J, is 6; WCET of J, is 5

6 + 5> 10 = not schedulable

Buft...

- flight-criticality certification does not need J, to meet its deadline
- for mission-critical validation, J;'s WCET of 6 may be too pessimistic
* Suppose J;'s WCET, obtained by extensive experimentation, is 4

Priority-based scheduling: J; > J

|

0 2 4 6 8 10

> time

Mixed criticalities: an example

J1 is flight-critical; J, is mission-critical
Both arrive at 1=0; have deadlines at =10
WCET of T, is(6) WCET of J, is(55

Buft...

- flight-criticality certification does not need J, to meet its deadline
- for mission-critical validation, J;'s WCET of 6 may be too pessimistic

* Suppose J;'s WCET, obtained by extensive experimentation, is 4

Priority-based scheduling: J; > J, Flight-criticality certification

J; meets deadline J, misses deadline

Mixed criticalities: an example

J1 is flight-critical; J, is mission-critical

Both arrive at 1=0; have deadli:@a’r +=10 | Validated at both criticalities

WCET of J,is 6; WCET of J, i

Buft...

- flight-criticality certification does not need J, o meet its deadline
- for mission-critical validation, J;'s WCET of 6 may be too pessimistic

* Suppose J;'s WCET, obtained by extensive experimentation, i

Priority-based scheduling: J; > J

J; meets deadline

Mission-critical validation

I |
0 %4 6 8 10 rime

o

J, meets deadline

Mixed criticalities

J1 is flight-critical; J, is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J;is 6; WCET of J, is 5

The same system is being validated, twice

Flight-critical certification Mission-critical validation
at a very high level of assurance at a lower level of assurance
of only a subset of the system of the entire system

What are the right models, algorithms, and metrics for MC scheduling?

"Design-time resource reclaiming”

Mixed criticalities

J1 is flight-critical; J, is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J;is 6; WCET of J, is 5

The same system is being validated, twice

Flight-critical certification Mission-critical validation
at a very high level of assurance at a lower level of assurance
of only a subset of the system of the entire system

What are the right models, algorithms, and metrics for MC scheduling?

OUTLINE
Restricted MC systems: models, algorithms, and metrics
Models, algorithms, and metrics for generalizations to the basic model

The mixed-criticality job model

Job J, scheduling window
A
- arrival tfime A, ' N\
- deadline D, L .
‘ »time
- criticality level L, A, D,

- WCET function C (1), C.(2), ...

A positive integer
larger values = greater criticality

Defense avionics: 2 (3?) criticalities
- safety-critical; mission-critical; non-critical
Civilian aviation (DO-178B): 5 criticalities
-catastrophic; hazardous: major; minor; no effect
Automotive systems (ISO 26262): 4 criticalities

The mixed-criticality job model

Job J,
- arrival time A,
- deadline D,
- criticality level L,
- WCET function C(1), C.(2), ...

Ci(j): The worst-case execution time of job J;, estimated at a level of
assurance consistent with the j™ criticality level

(WCET-estimation tools and techniques are criticality level-specific)

Assume C(j) < C(j*1) forall j

The mixed-criticality job model

Job J,
- arrival time A,
- deadline D,
- criticality level L,
- WCET function C (1), C.(2), ...

The MIXED-CRIT SCHEDULING PROBLEM: Given an instance {J;, J5, ..., J,} of
mixed-criticality jobs, determine an appropriate scheduling strategy

CERTIFICATION CRITERION: Job J; should meet its deadline when each
job J executes for at most C,(L;), for all J..

1

The WCET of J,, computed at J's criticality level

MC scheduling: An example

T | L A C(1) ¢(2) D, 123 II—IC;:
Jq 1
. | 1
J3! 2
J 4 2

MC scheduling: An example

J: L; A, C(LO) C(HI) D,
Jy LO o) 1 1 2
J» | Lo o 1 1 4
J3! HI o) 1 2 4
J4 HI 0 1 2 2
| | |
0 1 2 3 g

Schedule for LO-criticality behavior - Earliest Deadline First (EDF)
Schedule for HI-criticality behavior - Any work-conserving algorithm

MC scheduling: An example

J; L, A, C(LO) C(HI) D
Jy LO o) 1 1 2
Jy LO O 1 1 4
Jo | HI o 1 2 4
Jo | HT o 1 2 4
|
l 1 21 3: 4- > time

Schedule for LO-criticality behavior vV~ Schedule for BOTH behaviors?
Schedule for HI-criticality behavior " for BOTH ;

MC scheduling: An example

J;: L A, C(LO) C(HI) D;

Jq LO o) 1 1 2

T, LO 0 1 1 4 Earliest Deadline First (EDF)

scheduling

J 3 HI o) 1 2 4

J 4 HI o) 1 2 4
| |
| J; 1 : —> time
0 2 3 4

— _J
~

HI-criticality certification: must fit 4 units of work here |

MC scheduling: An example

Jit Li A G(LO) C(HI) Di
Jq LO o) 1 1 2
| Lo o 1 1 4 | Criticality-Monotonic
scheduling
Jo | HT o 1 2 4
Jo | HI o 1 2 4
| |
1 7, T, | .
4

I J; completes execution ” J4 co

é_| 3

mpletes axecution

|LO-cr'i’rica|i‘ry validation: J; misses its deadline |

time

MC scheduling: An example

Ji L; A, C(LO) C(HI) D;
Jy LO o) 1 1 2
. | Lo o 1 1 4
Jo | HI o 1 2 4
Jo | HIT 0o 1 2 4

|If J 5 does not complete by 1: |

- J:3 l J? !; > time

0 1 2 3

MC scheduling: An example

J; L; A, C(LO) C(HI) D,
Jy LO o) 1 2
NPY LO o) 1 4
J3 HI 0 1 4
J 4 HI o) 1 4

If J; completes by 1: |

ﬂk
2 J'3

time

MC scheduling: An example

Ji L; A, C(LO) C(HI) D;
Jy LO o) 1 1 2
. | Lo o0 1 1 4
Jo | HI o 1 2 4
Jo | HIT 0o 1 2 4

If J; completes by 1: |

A correct strategy:

- execute J; first

- if J; executes for <1, J; is next
- J, is next

- J, executes last

|If J, completes by 3: |

| Js3

[T

1

The complexity of MC scheduling

Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

- For uniprocessors as well as multiprocessors
- Upon both preemptive and non-preemptive processors

- Even if there are only two distinct criticality levels

- And all jobs arrive simultaneously

Coping with intractability

Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

Focus on dual criticality instances:
Each job is either HI-criticality or LO-criticality

Ji- (L, A, C(Lo), C(HT), D))

|

L. € {Lo, H1}

Coping with intractability

Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

Focus on dual criticality instances:
Each job is either HI-criticality or LO-criticality

- For ease of presentation
- Important special case: HI-crit. jobs need certification; LO-crit. jobs do not

- Already intractable

- All techniques & results generalize to more criticality levels

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., T}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)

- recursively find a lowest-priority job

I
Ll: J.
I

1

if T

I
a job that may be assigned lowest priority in T
I' - {Ji}

is not empty then goto L1

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T'

1

J; may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job J| executes for C(L;) time units

1

The WCET of J, computed at J;'s criticality level

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T’

1

J; may be assignhed lowest priority if it meets its deadline as the lowest-
priority job, when each job J, executes for C,(L;) time units

An example:

ST
J: L. A C(LO) C(HI) D, Can J, be lowest priority? - no!

Jg: | Lo o 1 2 2

Liofwoo 22 4 %_J_,
: : : 0 2 3 4
J, misses its deadline I/l/

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T’

1

J; may be assignhed lowest priority if it meets its deadline as the lowest-
priority job, when each job J, executes for C,(L;) time units

An example:

ST
J: L. A C(LO) C(HI) D, Can J, be lowest priority? - no!

Can J, be lowest priority? - yes

J: | Lo o 1 2 2

T | HE0 22 4 ﬂ
4>4

: : 0) 1 2
J, meets its deadline I >

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T’

1

J; may be assignhed lowest priority if it meets its deadline as the lowest-
priority job, when each job J, executes for C,(L;) time units

An example: Priority ordering: J;> J,
Ji: L, A; G(LO) G(HI) Db LO-criticality certification:
;o o 1 2 2

el HEo 0 e 2 %_J_,

J; meets i’rsl J, meets its deadline |1/2/'3 2

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T’

1

J; may be assignhed lowest priority if it meets its deadline as the lowest-
priority job, when each job J, executes for C,(L;) time units

An example: Priority ordering: J;> J,
Ji: L, A; G(LO) G(HI) Db HI-criticality certification:
;o o 1 2 2

@l o 2 2 4 ﬂ

J, meets its deadline |2/3/'4

A preemptive uniprocessor scheduling algorithm

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T'

1

J; may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job J, executes for C,(L;) time units

OCBP: Own Criticality-Based Priorities

Dual-criticality instance I = {J;, J,, ..., J,}

Assign priorities by Lawler’s fechnique (Audsley's algorithm)
- recursively find a lowest-priority job

J. := a job that may be assigned lowest priority in T'

1

J; may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job J, executes for C,(L;) time units

PROPERTIES:

* Polynomial runtime
- O(n3log n) naive; O(n?)

*Quantitative performance bound
- assuming some run-time support
- based on system load parameter

Run-time support for mixed criticalities

Does the run-time system police the execution of jobs?

Ci(HI) » C,(LO) for LO-criticality jobs

WCET at HI criticality WCET at LO criticality

If run-time system can enforce execution budgets
assign the LO-criticality job J; a budget of C,(LO)
Ci(HI) = C,(LO) for LO-criticality job J;
- But policing and budgeting overhead costs must be accounted for

- Policing and budget-enforcement functionalities are HI-criticality

The load parameter

For "regular” real-time instances:

demand(T, [t4, t,)) = cumulative execution requirement of jobs of
instance I over the time interval [t t,)

IOGd(I) = max, [TIITZ){demand(Ii[TllTZ))/(TZ-TI) }

RESULT: Any regular (i.e., non-MC) instance I is feasible on a preemptive
uniprocessor if and only if load(T) < 1

Generalization to dual-criticality instances

*load, o(I) - load “expected” by system designer
(all jobs; LO-criticality WCET's)

*load;r(I) - load to be certified
(only HI-criticality jobs; HI-criticality WCET's)

The load parameter: an example

T A GO Y joad,o= max (05, 1.0) = 1.0

g | Lo o 1 1 2

J» | Lo o 1 1 4

Js HI 0 1 2 4

T HI 0 1 1 4

4/(4-0) = 1.0
A
— N
1/(2-0)= 05 |
A
g - l
: > time

0 1 2 3 4

The load parameter: an example

T | L A CGLO) ¢HI) D load, o= max (0.5, 1.0) = 1.0

J:o | Lo o 1 1 a
load; ;= 0.75
I | Lo o 1 1 4
HI O 1 2 4
HI O 1 1 4
(2+1)/(4-0) = 0.75
A
- —

> time

The load parameter: an example

J: L. A C(LO) CG(HI D;
i i [|() I() i |00d|_o: max (05,]_O) = 10
I | Lo o 1 1 2
load; ;= 0.75
o | Lo o 1 1 4
Js HI 0 1 2 4
I, HI O 1 1 4

This instance I has low-criticality load load, 5(T) = 1.00
and high-criticality load load;(T) = 0.75

OCBP: A sufficient schedulability condition

RESULT: Algorithm OCBP schedules any dual-criticality instance I satisfying
|OGdHI(I) + IOGdLo(I)Z = 1
on a preemptive unit-speed processor

A

1

hecessary condition
for viability on a
speed-1 processor

load, o(I)

0 load,£(T) 1

OCBP: A sufficient schedulability condition

RESULT: Any dual-criticality instance I feasible on a unit-speed processor

2
J5-1

is OCBP-schedulable on a speed- = fi;_l (» 1.618) processor

A

hecessary condition
for viability on a
load, 5(I) hecessary;conditionocessor
for viability on a
speed-0.62 processor

0 oada L5-1 2062 1

OCBP: A sufficient schedulability condition

RESULT: Any dual-criticality instance I feasible on a unit-speed processor

2
J5-1

is OCBP-schedulable on a speed- = J5T*1 (» 1.618) processor

The Golden Ratio: positive solution fo x?-x-1=0

Recurrent tasks

Recurring tasks or processes for (; ;) {
- generate jobs
- represent code within an infinite loop

Different tasks are assumed independent

Recurrent tasks: the sporadic tasks model

Task v = (D;, T;, L, [€i(LO), G(HI)])
- D;: relative deadline D,
- T.: minimum inter-arrival separation (“period")
- L, €{LO, HI}
- C(LO), C,(HI): WCET estimates

Jobs

- first job arrives at any time

- consecutive arrivals at least T, time units apart

- each job has criticality L;, and WCET's as specified
- each job has its deadline D; time units after arrival

The dual-criticality scheduling problem for sporadic task systems: Given a
collection { t, 75, ..., T} of dual-criticality sporadic tasks, determine an
1 appropriate scheduling strategy

— v >| e > TItIlY
=1

>T. >T.

Algorithms for scheduling systems of recurrent tasks

A classification of priority-based scheduling algorithms

T
1. Fixed Task Priority (FTP) - e.g., Deadline monotonic (DM) EASIER TO IMPLEMEN

2. Fixed Job Priority (FJP) - eg., EDF
3. Dynamic Priority (DP) - e.g., Least Laxity

MORE GENERAL

Algorithms for scheduling systems of recurrent tasks

A classification of priority-based scheduling algorithms

1. Fixed Task Priority (FTP) - e.g., Deadline monotonic (DM)
2. Fixed Job Priority (FJP) - eg., EDF
3. Dynamic Priority (DP) - e.g., Least Laxity

Optimal FTP for "regular” sporadic task systems

Deadline Monotonic not optimal for mixed-criticality tasks
-S. Vestal (RTSS'07). Preemptive scheduling of multi-criticality systems with
varying degrees of execution tfime assurance

Criticality Optimal Priority Assignment (COPA)
- Application of Lawler's technique to dual-criticality sporadic task systems
- Yields an optimal priority assignment
- Quantitative guarantees, assuming run-time support for budget enforcement

COPA: A sufficient schedulability condition

RESULT: COPA schedules any dual-criticality sporadic task system t satisfying
load, o(t) + load, () - load, o(t) x load,;(z) = %
on a preemptive unit-speed processor

A

1

hecessary condition
for viability on a
load, o(T) speed-1 processor

(N[

|~
—

0 load, z(T)

COPA: A sufficient schedulability condition

RESULT: Any dual-criticality sporadic task system t feasible on a unit-

speed proc. is COPA-schedulable on a speed- /2?1 = 2+J2 (% 3.414) proc

A

hecessary condition
for viability on a
load, o(T) speed-1 processor

hecessary condition

for viability on a
speed-0.29 processor

0 load, z(T) [2-1 507 1
HI 2 0.29

Algorithms for scheduling systems of recurrent tasks

A classification of priority-based scheduling algorithms

1. Fixed Task Priority (FTP) - e.g., Deadline monotonic (DM)
2. Fixed Job Priority (FJP) - eg., EDF
3. Dynamic Priority (DP) - e.g., Least Laxity

- Criticality Optimal Priority Assignment (COPA) is an optimal FTP algorithm for
dual-criticality sporadic task systems

- If run-time system enforces execution quotas for jobs

Sufficient schedulability condition: load, o(t) + load,;;(t) - load, o(t) x load,(t) = %

Tight processor speedup bound: (2 +/2), »3.414

Algorithms for scheduling systems of recurrent tasks

A classification of priority-based scheduling algorithms

1. Fixed Task Priority (FTP) - e.g., Deadline monotonic (DM)
2. Fixed Job Priority (FJP) - eg., EDF
3. Dynamic Priority (DP) - e.g., Least Laxity

Optimal FJP for "regular” sporadic task systems

* EDF and COPA are incomparable
= EDF is not optimal
* An FJP algorithm that dominates both EDF and COPA

T —

Still open: An optimal FJP scheduling algorithm

schedulable by schedulable by
EDF COPA

Algorithms for scheduling systems of recurrent tasks

A classification of priority-based scheduling algorithms
EASIER TO IMPLEMENT

1. Fixed Task Priority (FTP) - e.g., Deadline monotonic (DM)
2. Fixed Job Priority (FJP) - eg., EDF
3. Dynamic Priority (DP) - e.g., Least Laxity

Also optimal DP for "regular” sporadic task systems

* There are DP-schedulable dual-criticality sporadic task systems that no
FJP algorithm can schedule
= optimality requires DP-scheduling

Open question: What is the minimum degree of dynamism
needed for optimality?

The sporadic task model + shared resources
A dual-criticality sporadic task

- relative deadline for (;;) {
- minimum inter-arrival separation (“period”) - lock (R)
- criticality
- worst-case execution requirements - lock (R3)
Pla’rfor'r.n:' preemptive uniprocessor - unlock (Rs)
+ additional serially reusable resources
Jobs access shared resources - unlock (R,)
- within critical sections..which may be nested
Y - lock (R,)

Priority inversion)

A lower-priority job executes instead of a higher-priority one

Serially reusable shared resources

Priority inversion and blocking

unavoidable blocking

High
priority 1 heeds shared resource

»

shared resource

Low
priority .

v

Serially reusable shared resources

Priority inversion and blocking

avoidable blocking
priority 1 heeds shared resource

[
»

Medium

priority does not need shared resource

»
»

shared resource

Low
priority

v

Serially reusable shared resources

Priority inversion and blocking

High 1

priority heeds shared resource

[
»

avoidable blockin

Medium
priority 1 does not need shared resource

»
»

shared resource

Low
priority .

v

Serially reusable shared resources

Ted Baker. Stack-based scheduling of real-time processes. Real- Time
Systems: The International Journal of Time-Critical Computing 3(1). 1991.

The STACK RESOURCE POLICY (SRP) is optimal for resource-
sharing "reqgular” sporadic task systems: if any task system is
uniproc. feasible, then EDF + SRP guarantees to schedule it to meet

all deadlines

Serially reusable shared resources

Mixed criticality scheduling without shared resources

High Executes for > C,(LO) = can abort all low-criticality jobs
criticality

A 4

Low

v

Serially reusable shared resources

Mixed criticality scheduling with shared resources

Problem: Design an efficient, certifiable strategy for
arbitrating access to shared resources for mixed-
criticality sporadic task systems

High Executes for > C,(LO) = may be unsafe to abort the lower-criticality job

criticality

shared resource
Low

criticality

Context and conclusions

Platform-sharing is here to stay

Different certification criteria for different systems
- must be validated to different levels of assurance

Current practice: space-time partitioning
is inefficient
- in resource usage: Size, Weight, and Power (SWaP)
- in certification effort

Needed: Certifiably correct techniques for implementing mixed-
criticality systems

- A formal model for mixed-criticality workloads

- generated by recurrent tasks

- that share non-preemptable resources

