
Sanjoy Baruah

The University of North Carolina at Chapel Hill

Scheduling issues in mixed-
criticality systems

Integrated environments: Multiple systems on a shared platform

Why integrated architectures?

•  Can provide a range of functionalities

Separate implementations are inefficient

•  Size Weight and Power (SWaP) constraints

Dealing with mixed criticalities

Scheduling issues in mixed-
criticality systems

 Different sub-systems have different certification requirements
 - Defense avionics example.

Some sub-systems are more important than others
 - Automotive example: ABS vs car stereo

- flight-critical certification: cycle-counting under pessimistic assumptions
- mission-critical validation: extensive experimentation

Example: Determining worst-case execution time (WCET)

Flight critical: certified by Certification Authorities
Mission-critical: validated by design team

 and mission-critical functionalities Flight-critical

 Mixed criticalities: an example

Current practice: ARINC-653 “space-time partitioning”
 - time partitioning: different time-slots are reserved for the flight-critical and
the mission-critical sub-systems

J1 is flight-critical; J2 is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J1 is 6; WCET of J2 is 5

0 2 4 6 8 10
time

6 + 5 > 10 ⇒ not schedulable

But…
- flight-criticality certification does not need J2 to meet its deadline
- for mission-critical validation, J1’s WCET of 6 may be too pessimistic

 * Suppose J1’s WCET, obtained by extensive experimentation, is 4

 Priority-based scheduling: J1 > J2

 Mixed criticalities: an example

0 2 4 6 8 10
time

 * Suppose J1’s WCET, obtained by extensive experimentation, is 4

 Flight-criticality certification

J2 misses deadline J1 meets deadline

But…
- flight-criticality certification does not need J2 to meet its deadline
- for mission-critical validation, J1’s WCET of 6 may be too pessimistic

J1 is flight-critical; J2 is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J1 is 6; WCET of J2 is 5

 Priority-based scheduling: J1 > J2

 Mixed criticalities: an example

0 2 4 6 8 10
time

But…
- flight-criticality certification does not need J2 to meet its deadline
- for mission-critical validation, J1’s WCET of 6 may be too pessimistic

 * Suppose J1’s WCET, obtained by extensive experimentation, is 4

 Mission-critical validation

J1 meets deadline J2 meets deadline

J1 is flight-critical; J2 is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J1 is 6; WCET of J2 is 5

Validated at both criticalities

 Priority-based scheduling: J1 > J2

 Mixed criticalities: an example

J1 is flight-critical; J2 is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J1 is 6; WCET of J2 is 5

The same system is being validated, twice
Flight-critical certification Mission-critical validation

of only a subset of the system

at a very high level of assurance
of the entire system

at a lower level of assurance

“Design-time resource reclaiming”

 Mixed criticalities

What are the right models, algorithms, and metrics for MC scheduling?

J1 is flight-critical; J2 is mission-critical
Both arrive at t=0; have deadlines at t=10
WCET of J1 is 6; WCET of J2 is 5

The same system is being validated, twice
Flight-critical certification Mission-critical validation

of only a subset of the system

at a very high level of assurance
of the entire system

at a lower level of assurance

 Mixed criticalities

What are the right models, algorithms, and metrics for MC scheduling?

Restricted MC systems: models, algorithms, and metrics
Models, algorithms, and metrics for generalizations to the basic model

OUTLINE

A positive integer
•  larger values = greater criticality

The mixed-criticality job model

Job Ji
 - arrival time Ai

 - deadline Di

 - criticality level Li

 - WCET function Ci(1), Ci(2), …

 Defense avionics: 2 (3?) criticalities
 - safety-critical; mission-critical; non-critical

 Civilian aviation (DO-178B): 5 criticalities
 -catastrophic; hazardous; major; minor; no effect

 Automotive systems (ISO 26262): 4 criticalities

time
Ai Di

scheduling window

The mixed-criticality job model

 Ci(j): The worst-case execution time of job Ji, estimated at a level of
assurance consistent with the jth criticality level

(WCET-estimation tools and techniques are criticality level-specific)

Assume Ci(j) ≤ Ci(j+1) for all j

Job Ji
 - arrival time Ai

 - deadline Di

 - criticality level Li

 - WCET function Ci(1), Ci(2), …

CERTIFICATION CRITERION: Job Ji should meet its deadline when each
job Jk executes for at most Ck(Li), for all Ji.

The WCET of Jk, computed at Ji’s criticality level

The mixed-criticality job model

The MIXED-CRIT SCHEDULING PROBLEM: Given an instance {J1, J2, …, Jn} of
mixed-criticality jobs, determine an appropriate scheduling strategy

Job Ji
 - arrival time Ai

 - deadline Di

 - criticality level Li

 - WCET function Ci(1), Ci(2), …

MC scheduling: An example

1

2

2

1

J4:

Ai Di Ci(2) Ci(1) Li Ji:

J1:

J3:

J2:

1 LO
2 HI

MC scheduling: An example

0
time

0

0

0

0 2 LO

HI

HI

1 1

2 1

2 1

1 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

Schedule for LO-criticality behavior
Schedule for HI-criticality behavior

- Earliest Deadline First (EDF)
- Any work-conserving algorithm

MC scheduling: An example

0
time

0

0

0

0 2 LO

HI

HI

1 1

2 1

2 1

1 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

Schedule for LO-criticality behavior
Schedule for HI-criticality behavior

Schedule for BOTH behaviors?

J1

MC scheduling: An example

0
time

1 2 3 4

HI-criticality certification: must fit 4 units of work here

Earliest Deadline First (EDF)
scheduling

0 HI

1 1

2 1

2 1

1 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J3 J4

MC scheduling: An example

0
time

1 2 3 4

LO-criticality validation: J1 misses its deadline

Criticality-Monotonic
scheduling

0 HI

1 1

2 1

2 1

1 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J3 completes execution J4 completes execution

J3 J4 J3

MC scheduling: An example

0
time

1 2 3 4

If J3 does not complete by 1:
0 HI

1 1

2 1

2 1

1 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J3 J1

MC scheduling: An example

0
time

1 2 3 4

If J3 completes by 1:
0 HI

1 1

2 1

2 1

1 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J4 J4

If J4 does not complete by 3:

J3 J1 J4 J2

MC scheduling: An example

0
time

1 2 3 4

If J3 completes by 1:
0 HI

1 1

2 1

2 1

1 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

•  execute J3 first
•  if J3 executes for ≤ 1, J1 is next
•  J4 is next
•  J2 executes last

A correct strategy:

If J4 completes by 3:

The complexity of MC scheduling

 Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

- Even if there are only two distinct criticality levels

- Upon both preemptive and non-preemptive processors

- And all jobs arrive simultaneously

- For uniprocessors as well as multiprocessors

Coping with intractability

 Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

Each job is either HI-criticality or LO-criticality

Li ∈ {LO, HI}

 Ji = (Li, Ai, Ci(LO), Ci(HI), Di)

Focus on dual criticality instances:

 Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

- Important special case: HI-crit. jobs need certification; LO-crit. jobs do not

- Already intractable

- All techniques & results generalize to more criticality levels

Coping with intractability

Focus on dual criticality instances:
Each job is either HI-criticality or LO-criticality

- For ease of presentation

Dual-criticality instance I = {J1, J2, …, Jn}

Assign priorities by Lawler’s technique (Audsley’s algorithm)

 I’ := I
L1: Ji := a job that may be assigned lowest priority in I’
 I’ := I’ – {Ji}
 if I’ is not empty then goto L1

- recursively find a lowest-priority job

A preemptive uniprocessor scheduling algorithm

The WCET of Jk, computed at Ji’s criticality level

- recursively find a lowest-priority job

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Assign priorities by Lawler’s technique (Audsley’s algorithm)
Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

Can J1 be lowest priority?

J1 misses its deadline

- no!
An example:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

Can J1 be lowest priority?

J2 meets its deadline

- no!
An example:

Can J2 be lowest priority? - yes

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

An example: Priority ordering: J1 > J2
LO-criticality certification:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

J1 meets its deadline J2 meets its deadline

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

An example: Priority ordering: J1 > J2
HI-criticality certification:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

J2 meets its deadline

- recursively find a lowest-priority job
Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

OCBP: Own Criticality-Based Priorities

- recursively find a lowest-priority job

* Polynomial runtime
 - O(n3 log n) naive; O(n2)

*Quantitative performance bound
- assuming some run-time support
- based on system load parameter

PROPERTIES:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

Ci(HI)

Run-time support for mixed criticalities

Does the run-time system police the execution of jobs?

- But policing and budgeting overhead costs must be accounted for

Ci(HI) >> Ci(LO) for LO–criticality jobs

WCET at LO criticality WCET at HI criticality

 If run-time system can enforce execution budgets

Ci(HI) = Ci(LO) for LO–criticality job Ji

- Policing and budget-enforcement functionalities are HI-criticality

assign the LO–criticality job Ji a budget of Ci(LO)

The load parameter

demand(I, [t1, t2)) ≡ cumulative execution requirement of jobs of
instance I over the time interval [t1, t2)

RESULT: Any regular (i.e., non-MC) instance I is feasible on a preemptive
uniprocessor if and only if load(I) ≤ 1

load(I) ≡ maxall [t1,t2) demand(I,[t1,t2)) (t2-t1)

For “regular” real-time instances:

Generalization to dual-criticality instances
 *loadLO(I)

*loadHI(I)

- load “expected” by system designer

- load to be certified

(all jobs; LO-criticality WCET’s)

(only HI-criticality jobs; HI-criticality WCET’s)

2

0
time

0

0

0

0 LO

HI

HI

1 1

1 1

2 1

1 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

The load parameter: an example

loadLO

 1/(2-0) = 0.5

 4/(4-0) = 1.0

= max (0.5, 1.0) = 1.0

2

0
time

0

0

0

0 LO

HI

HI

1 1

1 1

2 1

1 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

The load parameter: an example

loadHI

 (2+1)/(4-0) = 0.75

= 0.75

loadLO = max (0.5, 1.0) = 1.0

2

0

0

0

0 LO

HI

HI

1 1

1 1

2 1

1 1 LO

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

The load parameter: an example

loadHI = 0.75

loadLO = max (0.5, 1.0) = 1.0

This instance I has low-criticality load loadLO(I) = 1.00

and high-criticality load loadHI(I) = 0.75

loadHI(I) 0 1

RESULT: Algorithm OCBP schedules any dual-criticality instance I satisfying
 loadHI(I) + loadLO(I)2 ≤ 1
on a preemptive unit-speed processor

OCBP: A sufficient schedulability condition

necessary condition
 for viability on a
speed-1 processor loadLO(I)

1

necessary condition
 for viability on a
speed-1 processor necessary condition

 for viability on a
speed-0.62 processor

loadHI(I)

loadLO(I)

0 1

RESULT: Any dual-criticality instance I feasible on a unit-speed processor

is OCBP-schedulable on a speed- = (≈ 1.618) processor

≈ 0.62

≈ 0.62

√5 - 1
2

OCBP: A sufficient schedulability condition

2
√5 - 1

√5 + 1
2

√5 - 1
2

1

RESULT: Any dual-criticality instance I feasible on a unit-speed processor

is OCBP-schedulable on a speed- = (≈ 1.618) processor

OCBP: A sufficient schedulability condition

2
√5 - 1

√5 + 1
2

The Golden Ratio: positive solution to x2 – x – 1 = 0

.

.

.

.

.

for(;;){

}

Recurrent tasks

Recurring tasks or processes
- generate jobs
- represent code within an infinite loop

Different tasks are assumed independent

Recurrent tasks: the sporadic tasks model

Task τi = (Di, Ti, Li, [Ci(LO), Ci(HI)])
- Di: relative deadline Di
-  Ti: minimum inter-arrival separation (“period”)
-  Li ∈ {LO, HI}
-  Ci(LO), Ci(HI): WCET estimates

Jobs
- first job arrives at any time
- consecutive arrivals at least Ti time units apart
- each job has criticality Li, and WCET’s as specified
- each job has its deadline Di time units after arrival

=Di =Di =Di

≥Ti
≥Ti ≥Ti

time

The dual-criticality scheduling problem for sporadic task systems: Given a
collection { τ1, τ2, …, τn} of dual-criticality sporadic tasks, determine an
appropriate scheduling strategy

Algorithms for scheduling systems of recurrent tasks

1. Fixed Task Priority (FTP)

3. Dynamic Priority (DP)

- e.g., Deadline monotonic (DM)

- e.g., Least Laxity
2. Fixed Job Priority (FJP) - e.g., EDF

A classification of priority-based scheduling algorithms

MORE GENERAL

EASIER TO IMPLEMENT

1. Fixed Task Priority (FTP)

3. Dynamic Priority (DP)
2. Fixed Job Priority (FJP)

Optimal FTP for “regular” sporadic task systems

Deadline Monotonic not optimal for mixed-criticality tasks
 -S. Vestal (RTSS’07). Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance

A classification of priority-based scheduling algorithms

Algorithms for scheduling systems of recurrent tasks

- e.g., Deadline monotonic (DM)

- e.g., Least Laxity
- e.g., EDF

Criticality Optimal Priority Assignment (COPA)
- Application of Lawler’s technique to dual-criticality sporadic task systems
- Yields an optimal priority assignment
- Quantitative guarantees, assuming run-time support for budget enforcement

1

loadHI(τ) 0 1

RESULT: COPA schedules any dual-criticality sporadic task system τ satisfying
 loadLO(τ) + loadHI(τ) - loadLO(τ) × loadHI(τ) ≤ ½
on a preemptive unit-speed processor

COPA: A sufficient schedulability condition

necessary condition
 for viability on a
speed-1 processor loadLO(τ)

½

½

necessary condition
 for viability on a
speed-1 processor

necessary condition
 for viability on a

speed-0.29 processor
loadHI(I) 0 1

RESULT: Any dual-criticality sporadic task system τ feasible on a unit-

speed proc. is COPA-schedulable on a speed- = 2 + √2 (≈ 3.414) proc

≈ 0.29

≈ 0.29

√2 - 1
√2

COPA: A sufficient schedulability condition

√2 - 1
√2

loadLO(τ)

1

√2
√2-1

1. Fixed Task Priority (FTP)

3. Dynamic Priority (DP) - e.g., Least Laxity
2. Fixed Job Priority (FJP) - e.g., EDF

 - Criticality Optimal Priority Assignment (COPA) is an optimal FTP algorithm for
dual-criticality sporadic task systems

 - If run-time system enforces execution quotas for jobs

A classification of priority-based scheduling algorithms

Algorithms for scheduling systems of recurrent tasks

- e.g., Deadline monotonic (DM)

 Sufficient schedulability condition

 Tight processor speedup bound
: loadLO(τ) + loadHI(τ) - loadLO(τ) × loadHI(τ) ≤ ½

: (2 + √2), ≈ 3.414

1. Fixed Task Priority (FTP)

3. Dynamic Priority (DP) - e.g., Least Laxity
2. Fixed Job Priority (FJP) - e.g., EDF

Optimal FJP for “regular” sporadic task systems

* EDF and COPA are incomparable
 ⇒ EDF is not optimal
* An FJP algorithm that dominates both EDF and COPA

Systems
schedulable by

COPA

Systems
schedulable by

EDF

A classification of priority-based scheduling algorithms

Algorithms for scheduling systems of recurrent tasks

Still open: An optimal FJP scheduling algorithm

- e.g., Deadline monotonic (DM)

1. Fixed Task Priority (FTP)

3. Dynamic Priority (DP) - e.g., Least Laxity
2. Fixed Job Priority (FJP) - e.g., EDF

Also optimal DP for “regular” sporadic task systems

* There are DP-schedulable dual-criticality sporadic task systems that no
FJP algorithm can schedule

 ⇒ optimality requires DP-scheduling

A classification of priority-based scheduling algorithms

Algorithms for scheduling systems of recurrent tasks

Open question: What is the minimum degree of dynamism
needed for optimality?

- e.g., Deadline monotonic (DM)
EASIER TO IMPLEMENT

for(;;){

}

A dual-criticality sporadic task
- relative deadline
- minimum inter-arrival separation (“period”)
- criticality
- worst-case execution requirements

The sporadic task model

Jobs access shared resources
- within critical sections …which may be nested

- lock (R1)

- unlock (R1)

- lock (R2)

- unlock (R2)

- lock (R3)

- unlock (R3) + additional serially reusable resources
Platform: preemptive uniprocessor

Priority inversion

+ shared resources

A lower-priority job executes instead of a higher-priority one

Serially reusable shared resources

shared resource

needs shared resource

unavoidable blocking
Priority inversion and blocking

High
priority

Low
priority

Serially reusable shared resources

shared resource

needs shared resource

does not need shared resource

avoidable blocking

Priority inversion and blocking

High
priority

Low
priority

Medium
priority

Serially reusable shared resources

shared resource

needs shared resource

does not need shared resource

avoidable blocking

Priority inversion and blocking

High
priority

Low
priority

Medium
priority

 is optimal for resource-
sharing “regular” sporadic task systems: if any task system is
uniproc. feasible, then EDF + SRP guarantees to schedule it to meet
all deadlines

The STACK RESOURCE POLICY (SRP)

Serially reusable shared resources

Ted Baker. Stack-based scheduling of real-time processes. Real-Time
Systems: The International Journal ofTime-Critical Computing 3(1). 1991.

Ci(LO) Executes for > Ci(LO)

Serially reusable shared resources

Low
criticality

High
criticality

⇒ can abort all low-criticality jobs

Mixed criticality scheduling Mixed criticality scheduling without shared resources

Executes for > Ci(LO)

Serially reusable shared resources

Low
criticality

High
criticality

⇒ may be unsafe to abort the lower-criticality job

shared resource

Mixed criticality scheduling without shared resources with

Problem: Design an efficient, certifiable strategy for
arbitrating access to shared resources for mixed-
criticality sporadic task systems

Context and conclusions

Platform-sharing is here to stay

Different certification criteria for different systems
- must be validated to different levels of assurance

Current practice: space-time partitioning
 is inefficient

- in resource usage: Size, Weight, and Power (SWaP)
- in certification effort

Needed: Certifiably correct techniques for implementing mixed-
criticality systems

- A formal model for mixed-criticality workloads
- generated by recurrent tasks
- that share non-preemptable resources

