Scheduling issues in mixedcriticality systems

Sanjoy Baruah

The University of North Carolina at Chapel Hill

Scheduling issues in mixedcriticality systems

Integrated environments: Multiple systems on a shared platform Why integrated architectures?

• Can provide a range of functionalities

Separate implementations are inefficient

• Size Weight and Power (SWaP) constraints

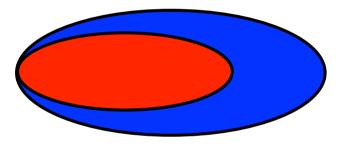
Dealing with mixed criticalities

Some sub-systems are more important than others

- Automotive example: ABS vs car stereo

Different sub-systems have different certification requirements

- Defense avionics example. Flight-critical and mission-critical functionalities



Flight critical: certified by Certification Authorities Mission-critical: validated by design team

Example: Determining worst-case execution time (WCET)

- flight-critical certification: cycle-counting under pessimistic assumptions
- mission-critical validation: extensive experimentation

Current practice: ARINC-653 "space-time partitioning"

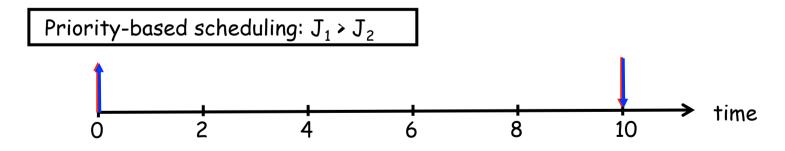
- time partitioning: different time-slots are reserved for the flight-critical and the mission-critical sub-systems

 J_1 is flight-critical; J_2 is mission-critical Both arrive at t=0; have deadlines at t=10 WCET of J_1 is 6; WCET of J_2 is 5

 $6 + 5 > 10 \Rightarrow$ not schedulable

But...

- flight-criticality certification does <u>not</u> need J_2 to meet its deadline
- for mission-critical validation, J_1 's WCET of 6 may be <u>too pessimistic</u>
 - * Suppose J_1 's WCET, obtained by extensive experimentation, is 4



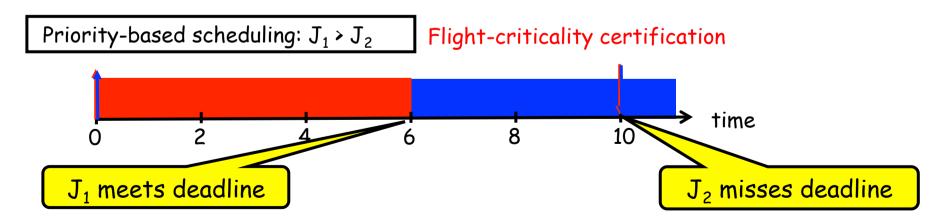
 J_1 is flight-critical; J_2 is mission-critical Both arrive at t=0; have deadlines at t=10 WCET of J_1 is 6 WCET of J_2 is 5

But...

- flight-criticality certification does not need J₂ to meet its deadline

- for mission-critical validation, J_1 's WCET of 6 may be too pessimistic

* Suppose J_1 's WCET, obtained by extensive experimentation, is 4

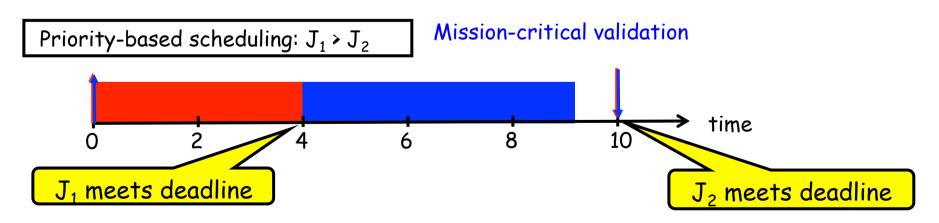


 J_1 is flight-critical; J_2 is mission-critical Both arrive at t=0; have deadlines at t=10 WCET of J_1 is 6; WCET of J_2 is 5

Validated at both criticalities

But...

- flight-criticality certification does not need J_2 to meet its deadline
- for mission-critical validation, J_1 's WCET of 6 may be too pessimistic
 - * Suppose J_1 's WCET, obtained by extensive experimentation, is 4



Mixed criticalities

 J_1 is flight-critical; J_2 is mission-critical Both arrive at t=0; have deadlines at t=10 WCET of J_1 is 6; WCET of J_2 is 5

The same system is being validated, twice

Flight-critical certification	Mission-critical validation			
at a very high level of assurance of only a subset of the system	at a <mark>lower</mark> level of assurance of the <mark>entire</mark> system			
What are the right models, algorithms, and metrics for MC scheduling?				

"Design-time resource reclaiming"

Mixed criticalities

 J_1 is flight-critical; J_2 is mission-critical Both arrive at t=0; have deadlines at t=10 WCET of J_1 is 6; WCET of J_2 is 5

The same system is being validated, twice

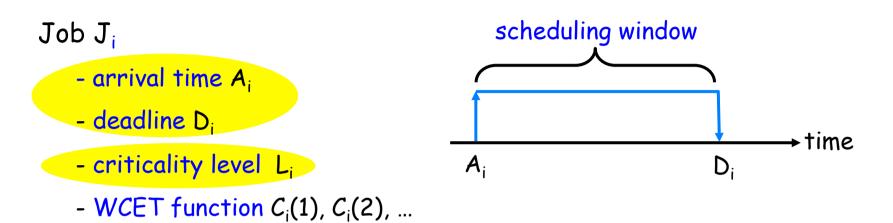
Flight-critical certification	Mission-critical validation			
at a very high level of assurance	at a lower level of assurance			
of only a subset of the system	of the entire system			

What are the right models, algorithms, and metrics for MC scheduling?

OUTLINE

Restricted MC systems: models, algorithms, and metrics Models, algorithms, and metrics for generalizations to the basic model

The mixed-criticality job model



- A positive integer
 - larger values = greater criticality

Defense avionics: 2 (3?) criticalities

safety-critical; mission-critical; non-critical
 Civilian aviation (DO-178B): 5 criticalities

 catastrophic; hazardous; major; minor; no effect

 Automotive systems (ISO 26262): 4 criticalities

The mixed-criticality job model

Job J_i

- arrival time A_i
- deadline D_i
- criticality level L_i
- WCET function C_i(1), C_i(2), ...

 $C_i(j)$: The worst-case execution time of job J_i , estimated at a level of assurance consistent with the jth criticality level

(WCET-estimation tools and techniques are criticality level-specific) Assume $C_i(j) \leq C_i(j+1)$ for all j

The mixed-criticality job model

Job J_i

- arrival time A_i
- deadline D_i
- criticality level L_i
- WCET function $C_i(1)$, $C_i(2)$, ...

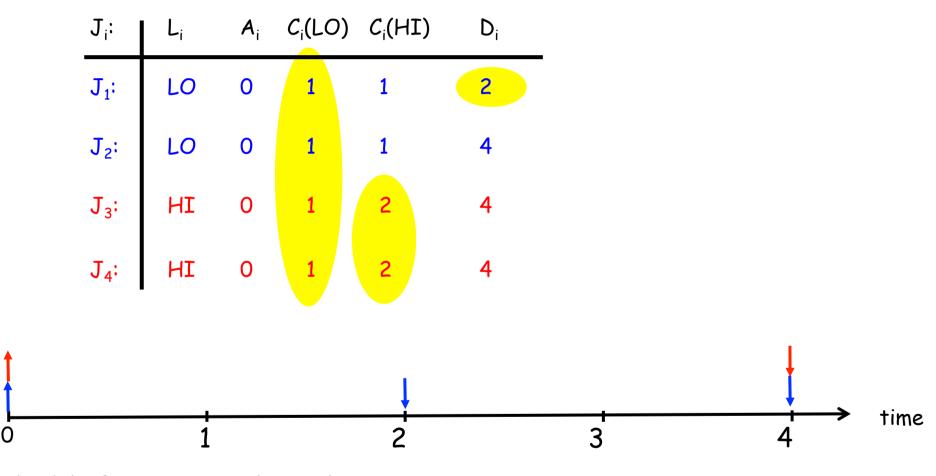
The MIXED-CRIT SCHEDULING PROBLEM: Given an instance $\{J_1, J_2, ..., J_n\}$ of mixed-criticality jobs, determine an appropriate scheduling strategy

CERTIFICATION CRITERION: Job J_i should meet its deadline when each job J_k executes for at most $C_k(L_i)$, for all J_i .

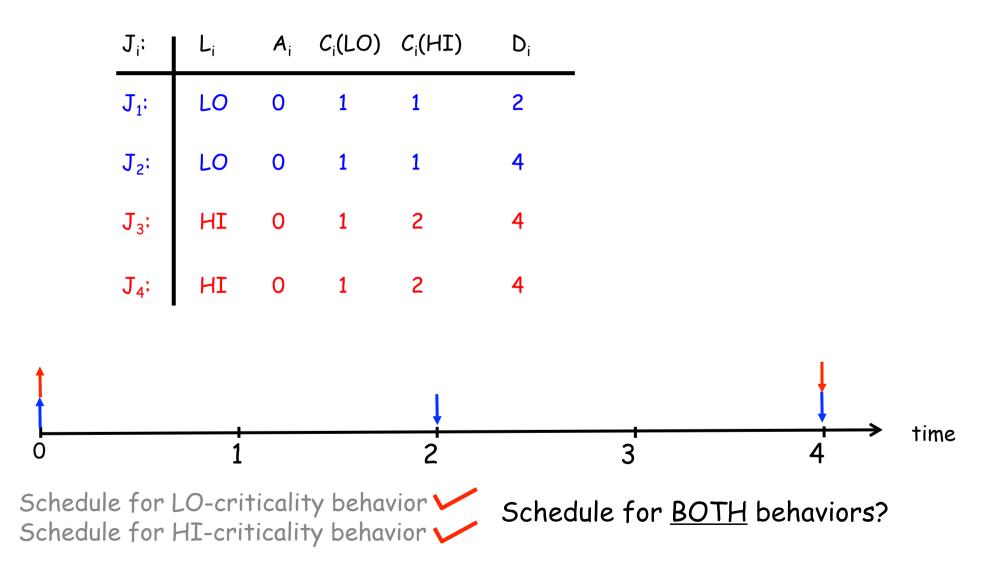
The WCET of J_k , computed at J_i 's criticality level

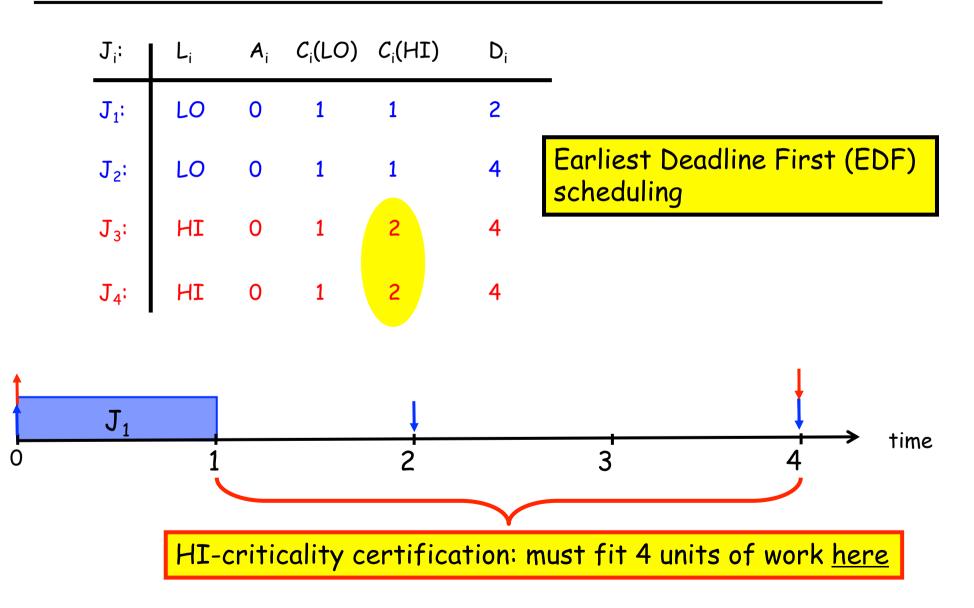
J _i :	L _i	A _i	C _i (1)	C _i (2)	D _i	$\begin{array}{c} 1 \rightarrow LO \\ 2 \rightarrow HI \end{array}$	
J ₁ :	1						
J ₂ :	1						
J ₃ :	2						
J ₁ : J ₂ : J ₃ : J ₄ :	2						

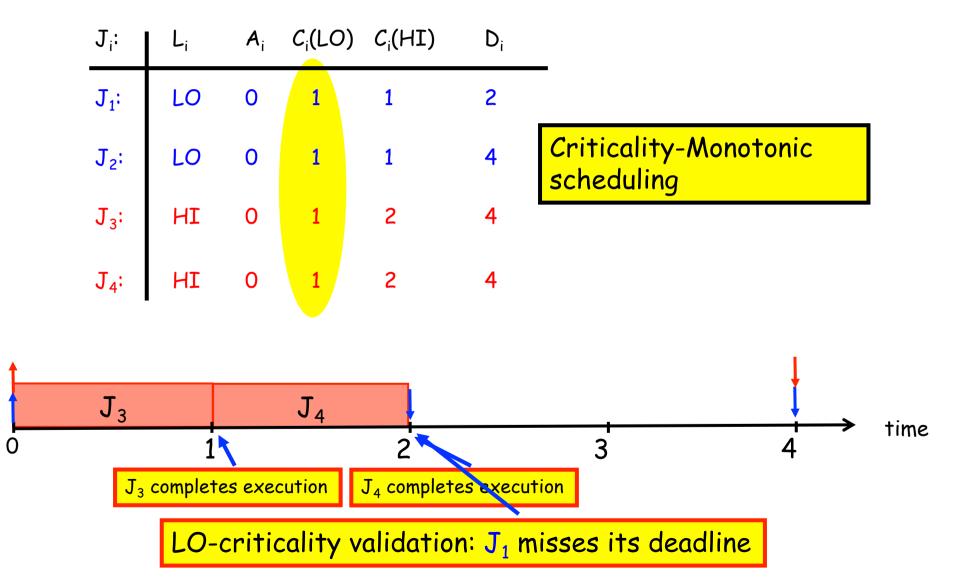
MC scheduling: An example

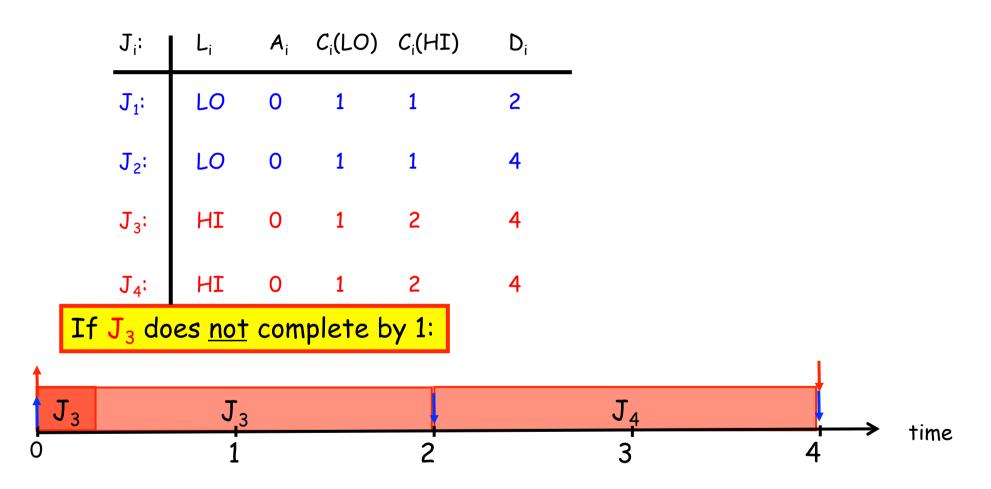


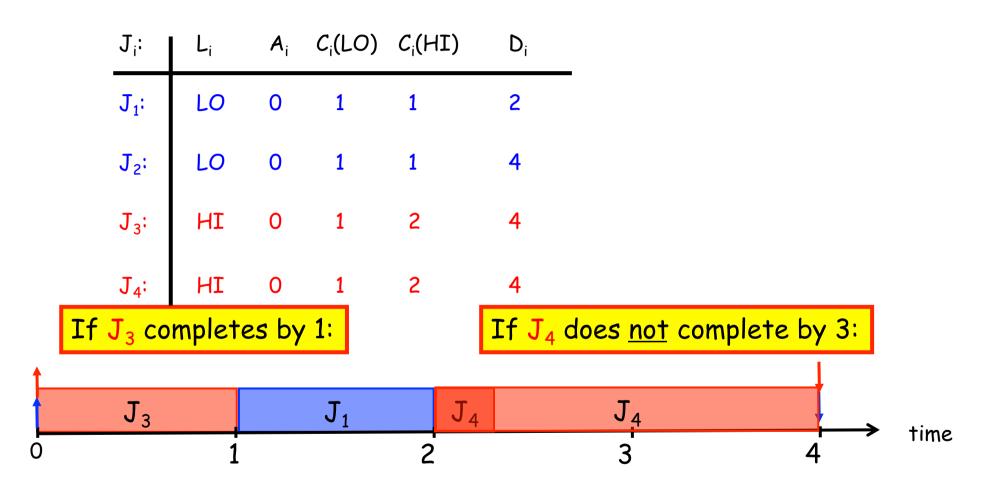
Schedule for LO-criticality behavior - Earliest Deadline First (EDF) Schedule for HI-criticality behavior - Any <u>work-conserving</u> algorithm

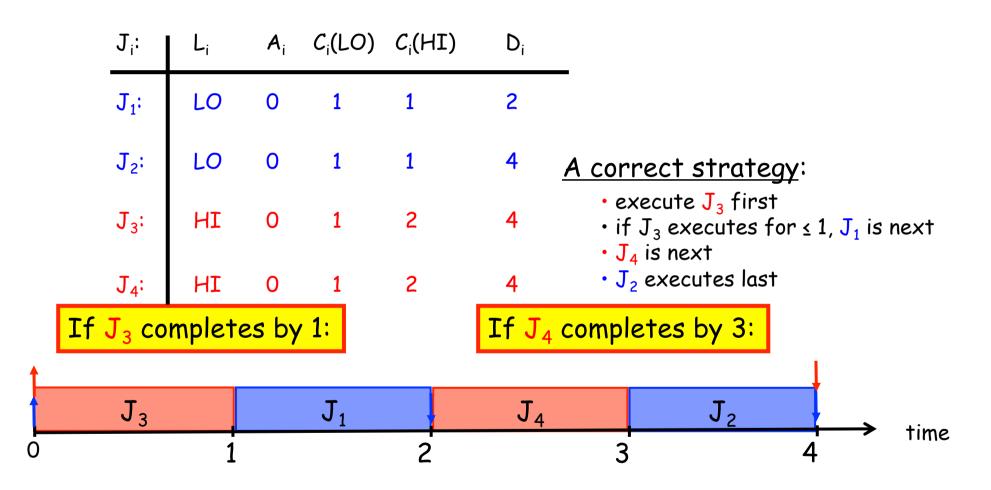












The complexity of MC scheduling

Given an instance of mixed-criticality jobs, determining whether an appropriate scheduling strategy exists for it is NP-hard in the strong sense

- For uniprocessors as well as multiprocessors
- Upon both preemptive and non-preemptive processors
- Even if there are only <u>two</u> distinct criticality levels
- And all jobs arrive simultaneously

Given an instance of mixed-criticality jobs, determining whether an appropriate scheduling strategy exists for it is NP-hard in the strong sense

Focus on dual criticality instances:

Each job is either HI-criticality or LO-criticality

$$J_{i=}(L_{i}, A_{i}, C_{i}(LO), C_{i}(HI), D_{i})$$

 $L_{i} \in \{LO, HI\}$

Given an instance of mixed-criticality jobs, determining whether an appropriate scheduling strategy exists for it is NP-hard in the strong sense

Focus on dual criticality instances:

Each job is either HI-criticality or LO-criticality

- For ease of presentation
- Important special case: HI-crit. jobs need certification; LO-crit. jobs do not
- Already intractable
- All techniques & results generalize to more criticality levels

Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

```
I' := I
L1: J_i := a job that may be assigned lowest priority in I'
I' := I' - \{J_i\}
if I' is not empty then goto L1
```

Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

 $J_i := a$ job that may be assigned lowest priority in I'

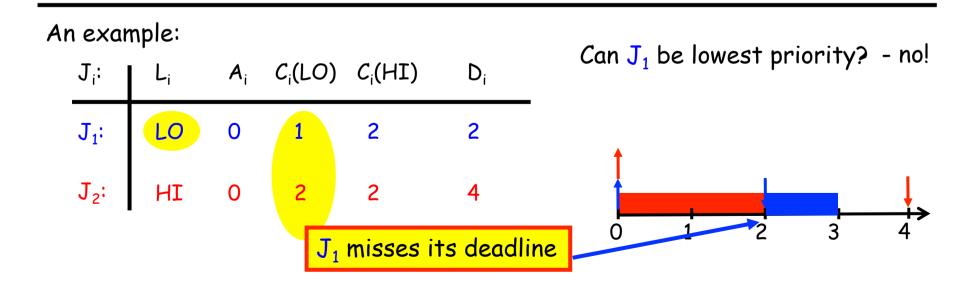
 J_i may be assigned lowest priority if it meets its deadline as the lowestpriority job, when each job J_k executes for $C_k(L_i)$ time units

The WCET of J_k , computed at J_i 's criticality level

Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

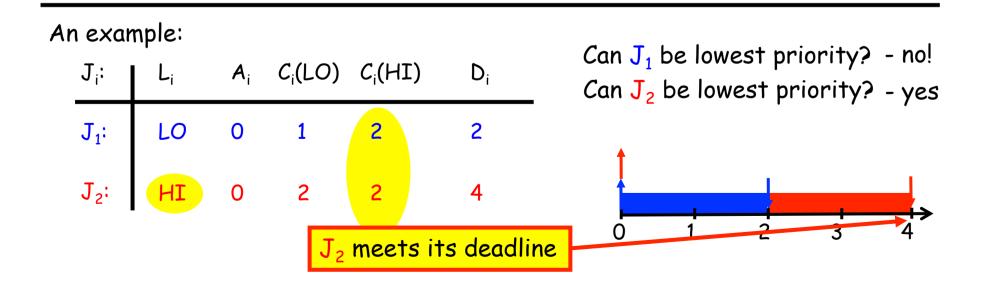
 $\mathbf{J}_{\mathtt{i}}$:= a job that may be assigned lowest priority in \mathbf{I}'



Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

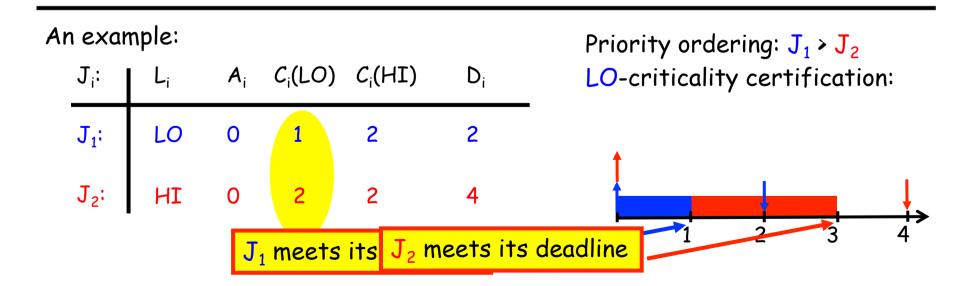
 $\mathbf{J}_{\mathtt{i}}$:= a job that may be assigned lowest priority in \mathbf{I}'



Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

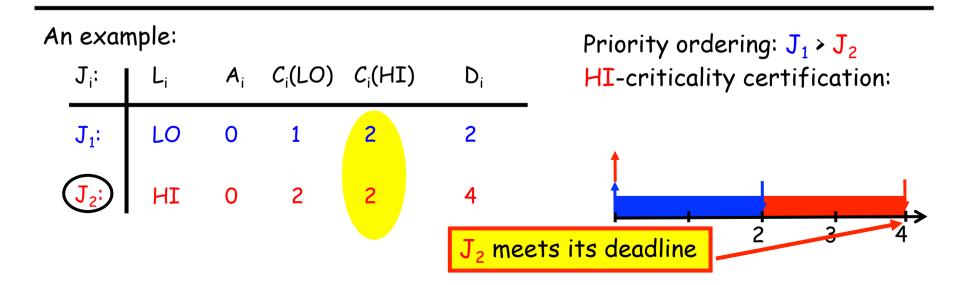
 $\mathbf{J}_{\mathtt{i}}$:= a job that may be assigned lowest priority in \mathbf{I}'



Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

 ${\tt J}_{\tt i}$:= a job that may be assigned lowest priority in I'



Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

 $J_i := a$ job that may be assigned lowest priority in I' J_i may be assigned lowest priority if it meets its deadline as the lowestpriority job, when each job J_k executes for $C_k(L_i)$ time units Dual-criticality instance $I = \{J_1, J_2, ..., J_n\}$

Assign priorities by Lawler's technique (Audsley's algorithm) - recursively find a lowest-priority job

 ${\tt J}_{\tt i}$:= a job that may be assigned lowest priority in I'

 J_i may be assigned lowest priority if it meets its deadline as the lowestpriority job, when each job J_k executes for $C_k(L_i)$ time units

PROPERTIES:

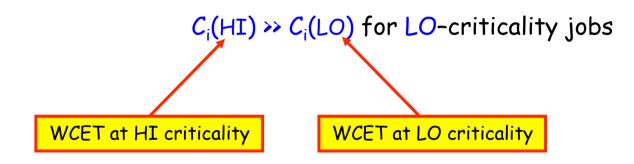
- * Polynomial runtime
 - $O(n^3 \log n)$ naive; $O(n^2)$

*Quantitative performance bound

- assuming some run-time support
- based on system load parameter

Run-time support for mixed criticalities

Does the run-time system police the execution of jobs?



If run-time system can enforce execution budgets

assign the LO-criticality job J_i a budget of $C_i(LO)$

 $C_i(HI) = C_i(LO)$ for LO-criticality job J_i

- But policing and budgeting overhead costs must be accounted for
- Policing and budget-enforcement functionalities are HI-criticality

The load parameter

For "regular" real-time instances:

demand(I, $[t_1, t_2)$) = cumulative execution requirement of jobs of instance I over the time interval $[t_1, t_2)$

 $load(I) = max_{all [t1,t2)} demand(I,[t_1,t_2)) / (t_2-t_1)$

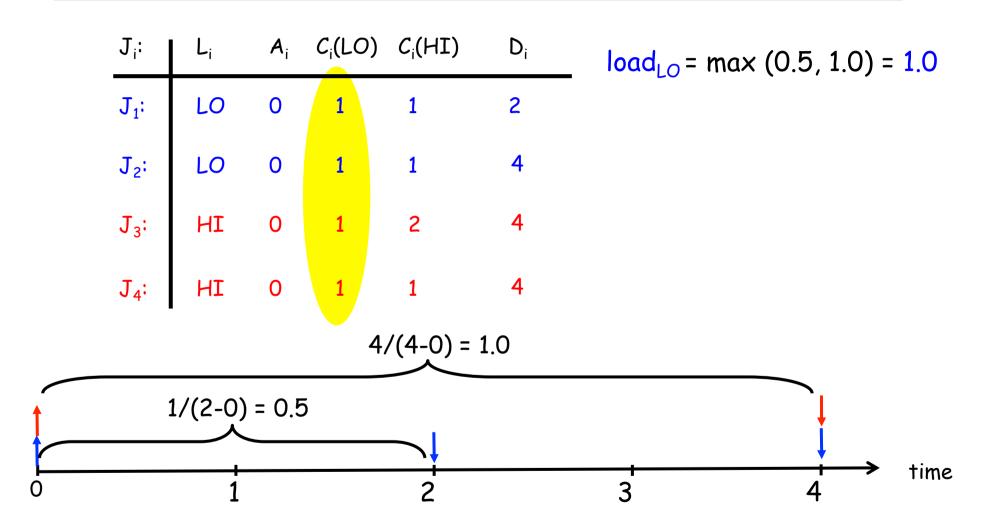
RESULT: Any regular (i.e., non-MC) instance I is feasible on a preemptive uniprocessor if and only if load(I) ≤ 1

Generalization to <u>dual-criticality</u> instances *load_{LO}(I) - load "expected" by system designer (<u>all</u> jobs; LO-criticality WCET's)

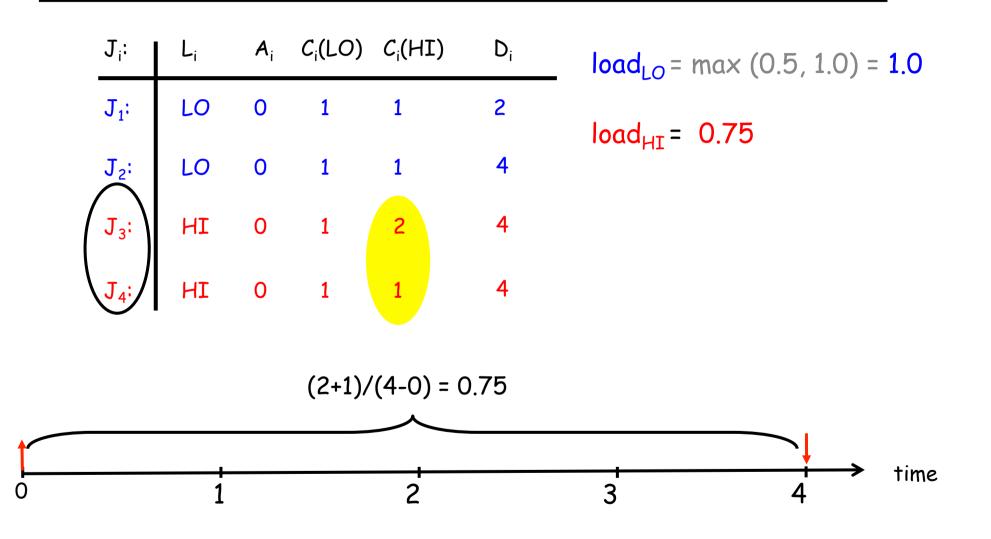
 $*load_{HI}(I) - load$ to be certified

(only HI-criticality jobs; HI-criticality WCET's)

The <u>load</u> parameter: an example



The <u>load</u> parameter: an example

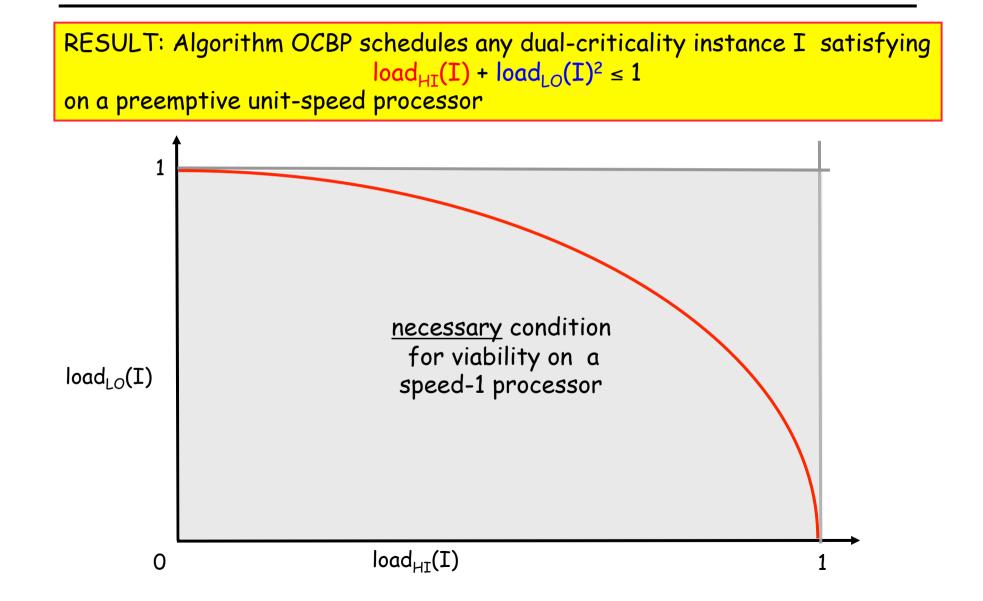


The <u>load</u> parameter: an example

				C _i (HI)		load _{LO} = max (0.5, 1.0) = 1.0
J ₁ :	LO	0	1	1	2	load _{HI} = 0.75
J ₂ :	LO	0	1	1	4	1000HI - 0.70
J ₃ :	HI	0	1	2	4	
J ₄ :	HI	0	1	1 1 2 1	4	

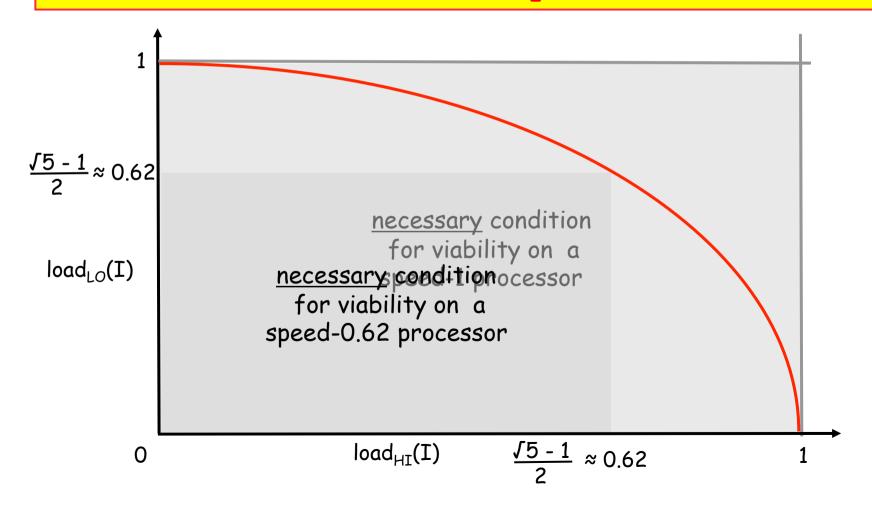
This instance I has low-criticality load $load_{LO}(I) = 1.00$ and high-criticality load $load_{HI}(I) = 0.75$

OCBP: A sufficient schedulability condition



OCBP: A sufficient schedulability condition

RESULT: Any dual-criticality instance I feasible on a unit-speed processor is OCBP-schedulable on a speed- $\frac{2}{\sqrt{5}-1} = \frac{\sqrt{5}+1}{2}$ (\approx 1.618) processor



OCBP: A sufficient schedulability condition

RESULT: Any dual-criticality instance I feasible on a unit-speed processor is OCBP-schedulable on a speed- $\frac{2}{\sqrt{5}-1} = \frac{\sqrt{5}+1}{2}$ (\approx 1.618) processor

The Golden Ratio: positive solution to $x^2 - x - 1 = 0$

Recurrent tasks

Recurring tasks or processes - generate jobs	for(;;){
- represent code within an infinite loop	•
Different tasks are assumed independent	•
	•
	•
	}

Recurrent tasks: the sporadic tasks model

Task $\tau_i = (D_i, T_i, L_i, [C_i(LO), C_i(HI)])$

- D_i: relative deadline D_i
- T_i: minimum inter-arrival separation ("period")
- $L_i \in \{LO, HI\}$
- $C_i(LO)$, $C_i(HI)$: WCET estimates

Jobs

- first job arrives at any time
- consecutive arrivals $\frac{\text{at least}}{\text{T}_i}$ time units apart
- each job has criticality $\boldsymbol{L}_{i},$ and WCET's as specified
- each job has its deadline D_i time units after arrival

<u>The dual-criticality scheduling problem for sporadic task systems</u> : Given a collection { τ_1 , τ_2 ,, τ_n } of dual-criticality sporadic tasks, determine an appropriate scheduling strategy					
≥T _i	≥l _i	≥T _i	•	mic	

A classification of priority-based scheduling algorithms

- 1. Fixed Task Priority (FTP) e.g
- e.g., Deadline monotonic (DM)
- 2. Fixed Job Priority (FJP) e.g., EDF
- 3. Dynamic Priority (DP)
 - e.g., Least Laxity

MORE GENERAL

EASIER TO IMPLEMENT

A classification of priority-based scheduling algorithms

- 1. <mark>Fixed Task Priority (FTP</mark>)
- e.g., Deadline monotonic (DM)
- 2. Fixed Job Priority (FJP) e.g., EDF
- 3. Dynamic Priority (DP) e.g., Least Laxity

Optimal FTP for "regular" sporadic task systems

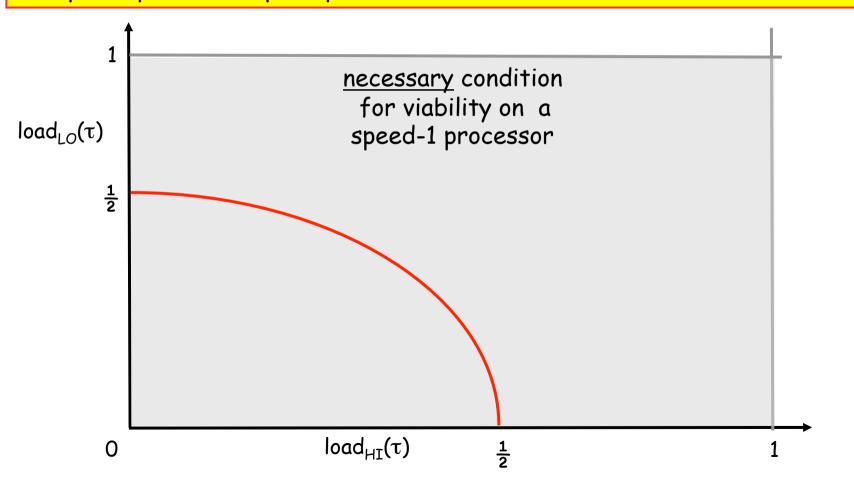
Deadline Monotonic <u>not</u> optimal for mixed-criticality tasks -S. Vestal (RTSS'07). Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance

<u>Criticality</u> Optimal Priority Assignment (COPA)

- Application of Lawler's technique to dual-criticality sporadic task systems
- Yields an optimal priority assignment
- Quantitative guarantees, assuming run-time support for budget enforcement

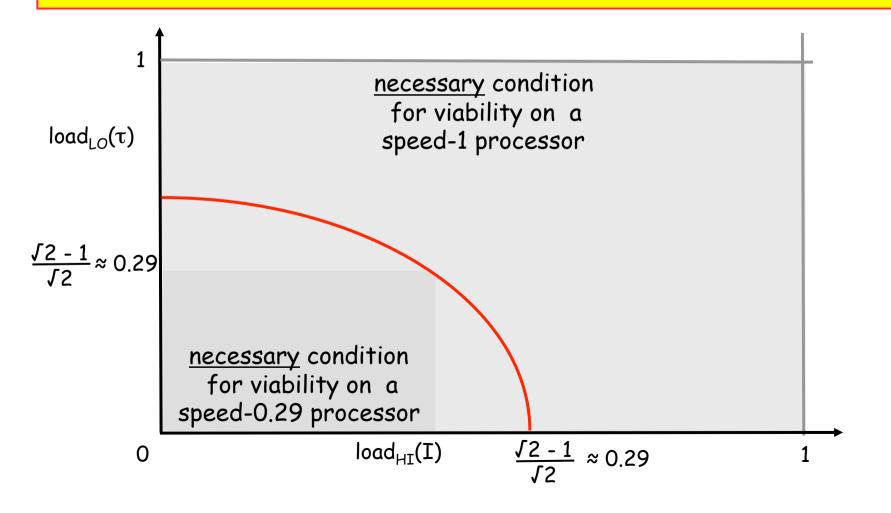
COPA: A sufficient schedulability condition

RESULT: COPA schedules any dual-criticality sporadic task system τ satisfying $load_{LO}(\tau) + load_{HI}(\tau) - load_{LO}(\tau) \times load_{HI}(\tau) \le \frac{1}{2}$ on a preemptive unit-speed processor



COPA: A sufficient schedulability condition

RESULT: Any dual-criticality sporadic task system τ feasible on a unitspeed proc. is COPA-schedulable on a speed- $\frac{\sqrt{2}}{\sqrt{2}-1} = 2 + \sqrt{2}$ (\approx 3.414) proc



A classification of priority-based scheduling algorithms

- 1. Fixed Task Priority (FTP)
- 2. Fixed Job Priority (FJP)
- 3. Dynamic Priority (DP)

- e.g., Deadline monotonic (DM)
- e.g., EDF
- e.g., Least Laxity
- <u>Criticality Optimal Priority Assignment</u> (COPA) is an optimal FTP algorithm for dual-criticality sporadic task systems
- If run-time system enforces execution quotas for jobs

Sufficient schedulability condition: $load_{LO}(\tau) + load_{HI}(\tau) - load_{LO}(\tau) \times load_{HI}(\tau) \le \frac{1}{2}$ Tight processor speedup bound: $(2 + \sqrt{2})$, ≈ 3.414

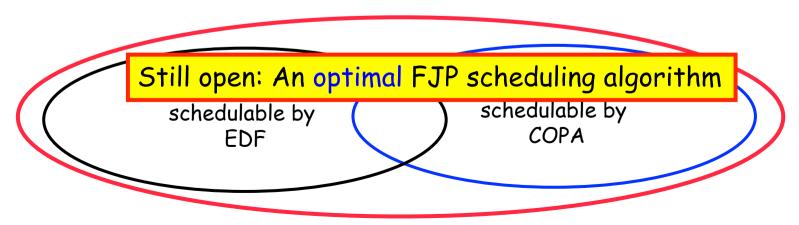
A classification of priority-based scheduling algorithms

- 1. Fixed Task Priority (FTP)
- 2. Fixed Job Priority (FJP)
- 3. Dynamic Priority (DP)

- e.g., Deadline monotonic (DM)
- e.g., EDF
- e.g., Least Laxity

Optimal FJP for "regular" sporadic task systems

- * EDF and COPA are incomparable
 - \Rightarrow EDF is not optimal
- * An FJP algorithm that dominates both EDF and COPA



A classification of priority-based scheduling algorithms EASIER TO IMPLEMENT

- 1. Fixed Task Priority (FTP)
- 2. Fixed Job Priority (FJP)
- 3. Dynamic Priority (DP)

- e.g., Deadline monotonic (DM)
- e.g.,<mark>EDF</mark>
- e.g., Least Laxity

Also optimal DP for "regular" sporadic task systems

- * There are DP-schedulable dual-criticality sporadic task systems that no FJP algorithm can schedule
 - \Rightarrow optimality <u>requires</u> DP-scheduling

Open question: What is the minimum degree of dynamism needed for optimality?

The sporadic task model + shared resources

A dual-criticality sporadic task

- relative deadline
- minimum inter-arrival separation ("period")
- criticality
- worst-case execution requirements

Platform: preemptive uniprocessor

+ additional serially reusable resources

Jobs access shared resources

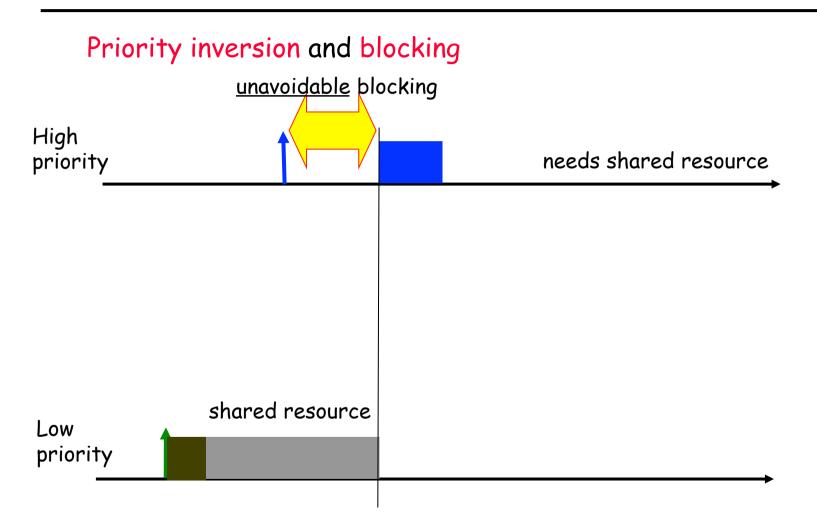
- within critical sections ... which may be nested

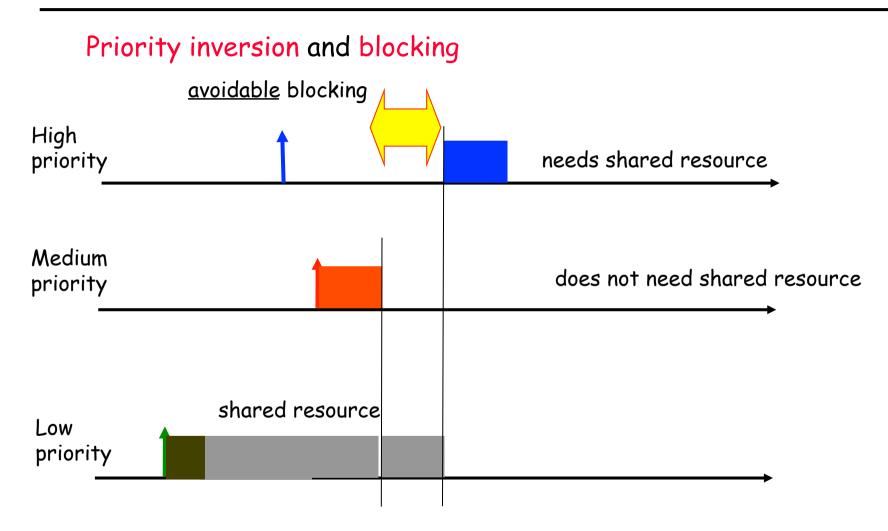
Priority inversion

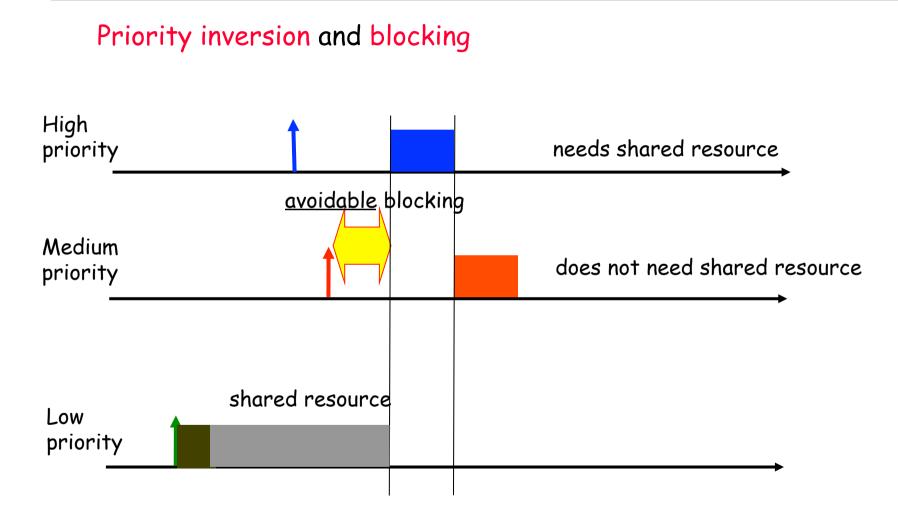
for(;;){

- lock (R₁)
 - lock (R₃)
 - unlock (R_3)
- unlock (R₁)
- lock (R_2)
- unlock (R₂)

A lower-priority job executes instead of a higher-priority one



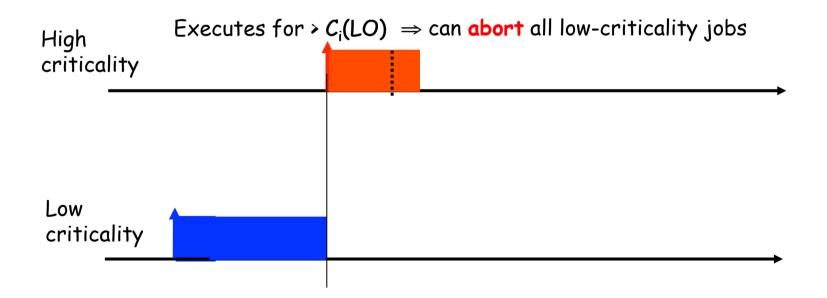




Ted Baker. Stack-based scheduling of real-time processes. Real-Time Systems: The International Journal of Time-Critical Computing 3(1). 1991.

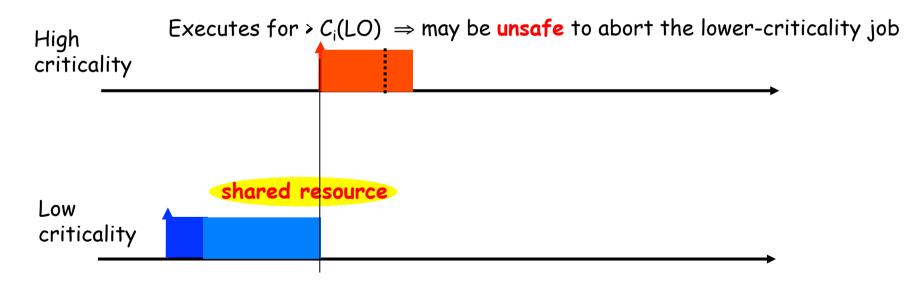
The STACK RESOURCE POLICY (SRP) is optimal for resourcesharing "regular" sporadic task systems: if any task system is uniproc. feasible, then EDF + SRP guarantees to schedule it to meet all deadlines

Mixed criticality scheduling without shared resources



Mixed criticality scheduling with shared resources

<u>Problem</u>: Design an efficient, certifiable strategy for arbitrating access to shared resources for mixedcriticality sporadic task systems



Platform-sharing is here to stay

Different certification criteria for different systems - must be validated to different levels of assurance

Current practice: space-time partitioning

is inefficient

- in resource usage: <u>Size</u>, <u>W</u>eight, <u>and</u> <u>P</u>ower (SWaP)
- in certification effort

Needed: Certifiably correct techniques for implementing mixedcriticality systems

- A formal model for mixed-criticality workloads
- generated by recurrent tasks
- that share non-preemptable resources