ARTIST Summer School in Europe 2010

Autrans, France September 5-10, 2010

Nanosystems:

Devices, circuits, architectures and applications

Invited Speaker: Giovanni De Micheli EPFL

http://www.artist-embedded.org/

Emerging societal & economic problems

- artist

Main issues on the global agenda

- Ensuring sustainability
 - Smart energy production and distribution
 - Intelligent water management
- Strengthening welfare
 - Better, affordable health care and wellness
 - Dealing with ageing and young population
- Mitigating risks

ortirt

- Preventing catastrophes and pandemics
- Monitoring the environment
- Enhancing security
 - Future of the internet
 - Preventing cyber and physical attacks

The technology

Requirements for integrated systems

- Unprecedented computing and storage capability
- Ubiquitous high-bandwidth communication
- Mobility, reliability, ease of use

- From processors to multi-processors
- How far can standard CMOS support the needs?

alooun pue anant

Nano-systems

Nano

Nanoelectronics:

artirt

- CMOS < 32nm node</p>
- Silicon nanowires
- Carbon nanotubes
- Nano-bio-sensing:
 - Size compatibility
 - Electro-chemistry

Systems

- Tera-scale systems:
 - Heterogeneity
 - Sensing, Processing, Communication, SW Transducers
- Complexity:
 - Design
 - Management

Nano-technology provides us with new devices

• Can they mix and match with standard CMOS technology ?

- What is the added value?
- What are the drawbacks of these technologies?

ortint.

Nano-devices

Devices

Silicon nanowires

Silicon process

artirt

- CMOS compatible
- Top-down design

Carbon nanotubes

- Deposition or growth
- CMOS compatible
- Top-down patterning

Imperfection-Immune Carbon Nanotube Circuits

SEVENTH FRAMEWORK

Double-gate ambipolar CNFET

Silicon Nanowires

- Silicon on Insulator (SoI) wafer
- Deep reactive ion etching (DRIE)
- Gate all around transistors

Ambipolarity

- Device characteristics controlled by backgate voltage
 - Four-terminal devices

- Back gate determines type: p or n
- Applicable to both CNT and SiNW FETs

Memristive effects

- Memristor devices:
 - TiO₂ devices [Williams, HP]
 - SiNW Schottky junctions [EPFL]
- Applications:

ortint.

- Resistive RAMs (RRAMs)
- Digital components
- Neural networks

Nano-circuits

Logic abstraction of ambipolar devices

Online polarity control:

- On-line control: *p* or *n* device
- Expressive power in realizing circuit function
- Fabrication technology: double gate CNT/SiNW FET
- Device symbol and operation:

Previous work with with ambipolar CNTFETs

- Use of ambipolar CNTFET in logic circuits:
 - Pseudo logic XOR gate
 - Dynamic 8-function gate
 - Dynamic GNOR gate: $Y = \overline{A \oplus C_A} + B \oplus C_B$

Static logic family

Alternative logic families

Library characterization

- AMBI vs MOSFET:
 - Larger T count, but lower A
 - Static TP AMBI: equal normalized FO4 to MOS

- AMBI CNTFET families
 - TP pseudo vs TP static: 31% smaller, 33% slower
 - TP pseudo vs. ST pseudo: faster!

		CNT FET Technology										MOS FET Techno.		
	TP Static τ ₁ ~0.6 ps			TP Pseudo $ au_1$ ~0.6 ps			ST Pseudo $ au_1$ ~0.6 ps			Static $\tau_2 \sim 3 \text{ ps}$				
	Т	А	$FO4/\tau_1$	Т	А	$FO4/\tau_1$	Т	А	$FO4/\tau_1$	Т	А	$FO4/\tau_2$		
Avg.	9.1	12.3	9	5.6	8.5	12	3.7	11.5	24.1	4.9	12.7	9		

- T = Average transistor count
- A = Average gate area
- τ = Technology-dependent intrinsic delay

ortirt

Multi-level logic synthesis results

- AMBI implementation needs fewer physical resources:
 - 38% fewer gates
 - 40% less logic levels
- Area saving: 38-65%

- AMBI's τ is ~5× lower.
- Absolute speed-up:
 - 6.9x for TP static AMBI
 - 5.8x for ST static AMBI

SEVENTH FRAMEWORK

Nano-architectures

Regular fabrics

Manhattan geometries

artirt

Constraints on directions in each layer

Regular fabrics

- Ambipolar cells are very regular
 - Tile arrangement of GNOR and GNAND cells
 - Application to FPGAs
- Ambipolar cells support PLA design
 - Dynamic operation
- Cells themselves are highly regular
 - Hierarchical construction
 - 3-Dimensional construction

Static regular fabrics

SEVENTH FRAMEWORK PROGRAMME

25

New FPGA Design

- An ambipolar cell can be made programmable:
 - By connecting one/more input/s to Vdd or Gnd
 - By bridging two inputs
- Programming can be made after manufacturing
 - Various physical means to achieve programming
- Many derived cells, because of intrinsic expressive richness
 - Mix of unate and binate functions
 - Good for data path and control logic

Number of programmed functions

Name	Function	Ni	N_f			
			Single	Dual	NPN	
F14	$(A \oplus B) + C + D$	4	12	20	6	
F17	$\overline{((A \oplus B) + C) \cdot D}$	4	16	20	6	
F21	$(C + D) \cdot (A \oplus B)$	4	15	24	7	
F30	$(A \oplus B) + (C \oplus D) + E$	5	28	52	10	
F33	$((A \oplus B) + E) \cdot (C \oplus D)$	5	48	84	13	
F42	$(A \oplus B) + (C \oplus D) + (E \oplus F)$	6	47	90	13	
G4	$((A \cdot B) + (C \oplus D)) \cdot (E \oplus F)$	6	105	186	27	
ACT1	Actel ACT1 block	8	702		175	
LUT4	4-input Look-Up Table	4	65536		221	

Example of layout

Dynamic regular fabrics

Nano-array design issues

- Connecting array to meso-wires
- Easing test and self-test
- Support redundancy

Decoder Technologies

(c) Giovanni De Micheli - Artist 2010

 Axial decoder [*DeHon et al. 03*]: differently doped NW regions

 Mask-based [Beckman et al. 05]: low- and hign-k dielectric

 Multi-spacer patterning technique [G. Cerofolini 07]

 Radial decoder [Savage et al. 06]: differently doped NW shells

 Random contact [Williams & Kuekes 01]: random impurities

Gate-All-Around decoder [K. E. Moselund et al. 07]

Physical design

Basic building blocks:

- Bottom-up construction
- Vertical stacking
 - 3D structure

Physical layout

- Symmetric cells
 - Dual gates obtained by mirroring
- No wells

Nanosystems: communication

Coping with increased on-chip parallelism

- Evolution to more bandwidth, more usable bandwidth
- Natural evolutionary trajectory

Interconnection issues today

SEVENTH FRAMEWORK

Why NoCs?

- Next step in on-going evolution
- Advantages as seen in large-area networks:
 - Scalable to many actors
 - Scalable to comparatively long distances
 - Suitable for homogeneous and heterogeneous systems
 - Well-understood theory and implementation
- Key principles:
 - Separate computation and communication concerns
 - Packet-based communication
 - Adjusted to on-chip medium peculiarities (area, power, bandwidth, latency)

artirt

The Birth of the NoC Idea

- Architecture:
 - Dally et al.
 - Parallel computing and wormhole routing
 - Greiner et al.
 - SPIN, the first NoC realization
 - Agarwal et al.
 - RAW architecture
- Design Automation:
 - Benini et al.
 - The NoC Manifesto and the first NoC synthesis tool
 - Carloni et al.
 - Separating computation and communication with latency-insensitive design
 - Goossens et al.
 - Æthereal: Support of QoS in NoCs

NoC-Based Chip Implementations

KAIST 03-08

From Research to Products

artirt

Intel Polaris

2007, 80-core

8x10 mesh NoC, ~365 GB/s aggr. @ 5.7 GHz

RESEARCH

Intel Single-Chip Cloud Computer

2009, 48-core, x86

6x4 mesh NoC, 256 GB/s bisection

RESEARCH

Intel "Knights Corner"

2011, 50-core, x86

PRODUCT

Industry Traction

- Large semiconductor vendors
 - Intel: multicore x86
 - STMicro: STNoC for SoCs
 - NXP: Æthereal (now w/Virage/Synopsys)
 - Research efforts by many other players
- IP vendors

P artirt

- ARM's AMBA 3 and 4
- Sonics
- Arteris
- Silistix
- NoCs in use today in products by TI, Toshiba, ...
- Specialized product vendors
 - Tilera, Recore, ...

The NoC Framework

Software Services Mapping, QoS, middleware...

Architecture / IP Packetizing, buffering, flow control...

Physical Implementation Synchronization, wires, power... **EDA Tools**

artirt

Design automation for NoCs

- Large design space
 - What topology
 - Which mapping
 - Which routes to use
- Optimize parameters
 - Link width, buffer sizes
- Simulate, verify, test

The vertical dimension

3-Dimensional integration

- Denser computational structures
 - Exploit through silicon vias
 - Shorter connections and access time
- Easier heterogeneous integration
 - Digital, analog, RF
- Strong thermal requirements
 - Heat generation, propagation and remova
- Novel design challenges
 - Routing, signal integrity, power distributio
- Reconfigurability
 - 3D networks on chip

Processor and memory 3D integration

artirt

3D NoCs

- Which topology, switches, layers and floorplan locations?
- Meet application constraints
 - Bandwidth, latency
- Meet 3D technology constraints
 - Maximum available TSV constraints
 - Communication between adjacent layers

SEVENTH FRAMEWORK PROGRAMME

Thermal management

- Large power generation
 - Extract heat
 - Reduce temperature gradients in space and time
- Control *policies* for temperature management
 - Control clock and Vdd heat generation
 - Control cooling flow heat extraction
- Holistic approach to run-time control
 - Temperature, reliability, power dissipation

3D stacked architectures with interlayer cooling

John Thome (EPFL)

- 3D stacks of computer chips allow a huge functionality per uni
- Recent progress in the fabrication of through silicon vias
 - → |

artirt

CMOSAIC

new ways for high density array interconnects between stacked processor & memory chips

nterconnects emory chips dissipates 100-150 W/cm²]

BUT heat needs to be removed ! [each layer dissipates 100-150 W/cm²]

These 3D integrated circuits need novel electro-thermal co-design

Interdisciplinary problem approached at various levels:

- architecture
- microfabrication
- liquid cooling
- two-phase cooling
- nano-fluids

(c) Giovanni De Micheli - Artist 2010

3D nano-devices

Vertical stacking of SiNW

artirt

3D cells with superimposed transistors

- Superposition of 2 CMOS layers [LETI]
 - 3D cells split on two layers

Nano-bio-systems

◆ No need for cleaning. Bio-layer is disposed after each measurement and CMOS layers are used repeatedly.

◆ Increased sensitivity and array density due to vertical interconnections from the bio-layer to the readout electronics.

• Sophisticated algorithms for highly-specific target identification run on-chip DSP and memory.

[C. Guiducci 2010]

SEVENTH FRAMEWORK

(c) Giovanni De Micheli - Artist 2010

Electro-bio-systems

- Electronic processing of biological information
 - Autonomous (no human intervention)
 - Real-time
- Applications
 - Diagnostics
 - Environmental monitoring
- Targets

ortin

DNA, viruses, proteins, non-organic compounds

DNA microarray chips

Purpose:

• artirt

- Parallel detection of presence/absence of specific DNA sequences in a sample
- Different from sequencing
- High-throughput biology
- Various approaches
 - Optical reading
 - Labeled samples
 - Non-labeled samples
- Quantitative parameters
 - Size
 - Sensitivity
 - Specificity

Basic operating principles

Basic operating principles

Principle:

- target strands are labeled with fluorescence marker molecules
- chip is illuminated with light of wavelength λ₁
- entire chip is scanned by a camera system and fluorescence light (λ₂) is detected
- · Most commercially available systems are based on this detection method
- Alternative optical technique: chemiluminescence

Microarray

Provide capability to distinguish

artirt

→ Requirement: high specificity

[R. Thewes]

artirt

Specificity

High specificity is achieved by subsequent measurements under increasingly unfavorable binding conditions, e.g. at increasing temperature.

[R. Thewes]

artirt

SEVENTH FRAMEWORK

Data mining and interpretation

Data interpretation and clustering

- Grouping similar objects together
 - Detecting gene variations consistent with the sample choice
 - Inference of specific conditions
- Bi-clustering on large data sets
 - Simultaneous cluster of subsets of rows and columns
 - Gene and samples

- Problem solved with ZDD technology
 - Fast and complete data interpretation

Advanced integrated sensors

CNT nanostructured sensors

Silicon NanoWire sensors

artirt

 High label-free detection sensitivities in aqueous phase

 Suitability for large-scale high density integration

 Scaling width from 200 nm to 50nm would result in a 20× increased sensitivity

[E.T. Carlen and A. van den Berg, Lab-on-a-chip 2007]

SEVENTH FRAMEWORK

69

Advanced technological platforms for sample pre-treatment

artirt

70

Sample transport

- Cell or sample transport, split and merge
 - On a 2-dimensional array
- Parallel scheduling and routing of multiple samples

artist

Systems

- simple fluidic interface
- PCB-based electrical interface

Nanogen

- fluidic interface with inpackage microfluidics
- electrical interface with in-card electrical interconnects
 - Complexity

Siemens (under development)

- fluidic + electric interface with in-package microfluidics and in-card el. interconnects
- in-card stored bio-chemical compounds

Nano-systems: applications

artirt

Nanosystems applications

Health:

artirt

- High-throughput biology, real-time medical monitoring
- Environmental monitoring:
 - Weather, pollution, seismic analysis
- Security:
 - Cryptography, secure communication
- Computing, communication, control
 - Scientific and consumer applications
- Defense:
 - Design of command and control systems

Nano-Tera.ch

Health:

Partirt

- High-throughput biology, real-time medical monitoring
- Environmental monitoring:
 - Weather, pollution, seismic analysis
- Security:
 - Cryptography, secure communication

PROGRAMME

Electronic health

- Body monitoring
 - Biosensors

artirt

- Body area networks
- Smart textiles
- Clinical support
 - Remote diagnosis
 - Drug delivery
- Prevention
 - Monitoring nutrition
- Challenges:
 - Non-invasiveness
 - Safety and security

sensors

artirt

Example: smart implants

Environment

- Monitoring heat, wind, vibration
 - Earthquake, flood prediction
 - Movement of glaciers
- Controlling pollution
 - Water, air purity
 - Bio-contamination
- Emergency relief control
 - Real time support for reaction
- Challenges:

artirt

- Seamless presence and biodegradability
- Autonomous and adaptive operation

Human enhancement

- Deep interaction of nanosystems with humans
 - Deep brain stimulation
 - Prosthetics, artificial organs
- Correcting deficiencies, extending capabilities
 - Vision, audition, memory
 - Ethical and legal limitations

• artirt

Conclusions

- Nano-systems exploit new technologies and devices:
 - Silicon nanowire and carbon nanotube devices
 - Ambipolarity can be efficiently used in logic design
 - *Memristive* effects can be effectively used for memory design
- New nano-architectures and design styles:
 - Regularity of the fabric is key to robustness
 - 3-Dimensional integration gives an extra degree of freedom
- Hybridization of new technologies opens new frontiers
 - Nano-bio-systems to probe and interact with living matter
 - Profound impact on health, environment and human evolution

Thank you

82