
- 1 -

http://www.artist-embedded.org/

- 2 -

Invasive Computing
Transregional Collaborative

Research Centre 89

www.invasic.de

- 3 -

Outline
●  What is Invasive Computing?

–  Uniquitousness of parallel computers
–  Challenges in the year 2020
–  Vision and Potentials

●  Scientific Work Program
–  Basics: Resource-Aware Programming, Algorithms, Complexity
–  Architectures: Reconfigurability and Decentralized Resource

Management
–  Tools: Compiler, Simulation Support and Run-Time System
–  Applications: Real-Time, Fault-tolerance, Efficiency and Utilization

●  Structure, Chances and Goals
–  Project structure
–  Funded Institutions and Researchers
–  Demonstrator Roadmap
–  Impact and Risks

- 4 -

Ubiquitousness of parallel computers

Nvidia Fermi: 512 Cores Sony Playstation 3,
IBM Cell 9 Cores

Intel Polaris: 80 cores

- 5 -

Source: Hardware/Software Co-Design, Univ. of Erlangen-Nuremberg, Jan 2009. Programmable 5x5 core MPSoC for image
filtering. Technology: CMOS 1.0 V, 9 metal Layers 90nm standard cell design. VLIW memory/PE: 16x128, FUs/PE: 2xAdd, 2xMul,
1xShift, 1xDPU. Registers/PE: 15. Register file/PE: 11 read/ 12 write ports. Configuration Memory: 1024x32 = 4KB. Operating
frequency: 200 MHz. Peak Performance: 24 GOPS. Power consumption: 132,7 mW @ 200 MHz (hybrid clock gating).
Power efficiency: 0,6 mW/MHz.

Ubiquitousness of parallel computers

- 6 -

Abstraction Levels for Parallel Computations
Hw + Sw Control

Multi-
Core

Hw-Ctrl.+ Func.

Processor
Array

Hw-Ctrl. / VLIW

FUs

Hw-Ctrl. / VLIW

SW-
Units

process-level, thread-level

loop-level
 FOR i=0 TO N DO

 FOR j=0 TO M DO

 …

instruction-level
 ADD R1, R2, R3

 MUL R4, R1, $4

 JMP $42

word-level, bit-level
 01010001101010101010

 10101010100011111111

- 7 -

Exercise 1
●  What kind of parallel computing systems and computing devices

(i.e., MPSoCs are you aware of/have you already experience with?

(3 minutes)

Name Target class of
apps./supported
parallelism levels

Individual
Experience (y/n)

Nvidia Tesla
GPU

Computer Graphics
Apps.
Data/Thread

yes

Tilera Tile-GX
100 core

Signal Processing
Fine Grain Parallel

no

Intel SCC … …
… … …

- 8 -

Challenges in the year 2020

Architectures, Programming
and Management of Applications
for 1000s of Processors in 2020?

- 9 -

Challenges in the year 2020
●  Complexity

–  How to map dynamically applications onto 1000 or more processors
while considering memory, communication and computing resource
constraints?

●  Adaptivity

–  How and to what degree shall algorithms and architectures be
adaptable (HW/SW, bit/word/loop/thread/process-level)?

●  Scalability

–  How to specify and/or generate programs that may rund without
(great) modifications on either 1,2,4, or N processors?

●  Physical Constratins

–  Low power, performance exploitation, management overhead
●  Reliability and Fault-Tolerance

–  Necessity for compensation of process variations as well as
temporal and permanent defects

- 10 -

Invasive Computing

●  Definition
[J. Teich. Invasive Algorithms and Architectures.
 Journal it – Information Technology, 50 (2008),
 pp. 300-310, 2008]

Invasive Programming denotes the capability of a program
running on a parallel computer to request and temporarily

claim processing, communication and memory resources in the
neighborhood of its actual computing environment,

to then execute in parallel using these claimed resources, and
to be capable to subsequently release these resources again.

- 11 -

Invasion: Example

- 12 -

Vision and Potentials
●  Run-Time Scalability

–  Today´s parallel programs are in general not able to adapt themselves to the
current availablity of resources.

–  Today´s computer architectures do not support any application-controlled
resource reservation.

●  Dynamic Self-Optimization possible through Invasion wrt.

–  Ressource Utilization

–  Power Consumption (Temperature Management)

–  Performance
●  Tolerance of Failures and Defects

–  Today´s parallel programs just would not run (correctly) any more!
●  Robustness

–  Applications tolerate a variable availability of resources

- 13 -

Potential: Resource Utilizations up to 100%

- 14 -

Potential: Power and Temp. Management

- 15 -

Potential: Performance Gain/Tradeoff

- 16 -

Potential: Robustness and Fault-Tolerance

- 17 -

Exercise 2
●  A) Explain the term, respectively main idea of “INVASIVE COMPUTING”

in your own words

●  B) List the major advantages and potentials of “INVASIVE COMPUTING”

●  C) Imagine and name similarities and differences to recent research areas
such as “GRID COMPUTING” and “CLOUD COMPUTING”.

(5 minutes)

- 18 -

Outline
●  What is Invasive Computing?

–  Uniquitousness of parallel computers
–  Challenges in the year 2020
–  Vision and Potentials

●  Scientific Work Program
–  Basics: Resource-Aware Programming, Algorithms, Complexity
–  Architectures: Reconfigurability and Decentralized Resource

Management
–  Tools: Compiler, Simulation Support and Run-Time System
–  Applications: Real-Time, Fault-tolerance, Efficiency and Utilization

●  Structure, Chances and Goals
–  Project structure
–  Funded Institutions and Researchers
–  Demonstrator Roadmap
–  Impact and Risks

- 19 -

Basic Functionality of Invasive
Programs

●  Invade
Construct(s) for request and
reservation of resources
(processors, memory,
interconnect)

●  Infect
Construct(s) for programming,
resp. configuration of resources
(processors, memory,
interconnect) for special services

●  Retreat
Construct(s) for release of
resources (processors, memory,
interconnect)

Concept invade-let (i-let)

- 20 -

Basics of Invasive Programming
i-let

- invade
- infect
- retreat
- …

- permission
- speed
- utilization
- power/
 temp
- fault/error

- 21 -

Exercise 3
●  A) Why should an application be aware of the operating state of the

underlying hardware resources?
Give at least 3 reasons.

●  B) Why can´t or shouldn´t resource-aware programming be provided just
by the middleware/OS and thus be hidden to the application programmer?
What are advantages of resource consideration at the algorithmic or
application-programmer´s level?

●  C) What advantages/disadvantages or risks may resource-aware
programming have or introduce?

(5 minutes)

Advantages Disadvantages
Fault-Tolerance Overheads (HW, SW)
Resource Efficiency Speed?
… …

- 22 -

Invasive Computing on MPSoCs

●  Question:
Is invasive computing already possible on MPSoC platforms available
today?

●  First case study: Cell B.E.

–  Library-based implementation of basic functionality
–  PPE: “Master of Invasion”
–  SPE: Sorting as slave

–  Algorithm: Invasive implementation of well-known bitonic sorter for
exploitation of available SIMD architecture

–  Merging accomplished by PPE

- 23 -

Cell B.E. Architecture
●  8 Synergistic Processing Elements (SPEs)

●  1 Power Processing Element (PPE)

●  Element Interconnect Bus (EIB): ring bus no direct neighbour

- 24 -

Library-Based Approach
●  Link your invasive program with library:

–  ppu-g++ -o … -linvasic …

●  Library invasic provides all basic commands:

–  SPE initialization: init_spus(program)

–  Invade command: spe_struct_t *invade(uint32_t num_spe)

–  Infect command: void infect(spe_struct_t *spes,
workload_struct_t *workloads, uint32_t signal)

–  Retreat command: void retreat(spe_struct_t *spe)

–  SPE cleanup: exit_spus()

●  Planned: Support of distinct programs in each SPE

–  E.g., using code overlay techniques

–  Program will be loaded “on demand”

–  Main program on PPE runs always (Routine main)

- 25 -

Example code: Invasive Sorting
 n = ... /* determine number of SPEs needed for sorting */

 /* invade */

 sort_spes = invade(n);

 if (sort_spes->num_spe == 0) {

 fprintf(stdout, "Couldn't invade any SPE, using serial version ...");

 sort_serial(...);

 } else {

 /* create workloads for each SPE; command not provided by library;

 distributes the work equally between all invaded SPEs;

 sets ea_in, ea_out and size of data */

 workloads = create_workloads(sort_spes, in_data, out_data, size);

 /* infect */

 infect(sort_spes, workloads, SPU_SORT);

 /* wait until all SPUs have finished (retreat) */

 for (i=0; i<sort_spes->num_spe; i++) {

 sort_spes->spes[i]->wait_mbox();

 }

 }

 /* merge data on PPE */

- 26 - Project Area A – Basics

●  Programming and Language Issues:

–  Finding and classification of elementary
(basic) constructs for invasive programs
(the invasive command space) [A1]

–  Definition of an abstract kernel language
(syntax, semantics, type system) [A1]

–  Embedding of command set into programming language(s) [A1]
●  Mathematical Models for Effifiency and Utilization Analysis

of invasive applications [A1]

●  Algorithm Engineering:

–  Complexity and cost invasive algorithms [A1]
–  Scheduling and Load Balancing [A3]

- 27 -

Exercise 4
●  A) What kind of parallel programming languages, language extensions

and/or programming environments such as APIs are you aware of?

(3 minutes)

Name Language/
API

Architecture/
Application
Target Class

Advantages (+)/
Disadvantages (-)

OpenMP API for Fortran
and C

Shared-Mem.
Architectures/
Thread-level

(+) Wide spread
(+) Quasi-standard
(-) Shared-Mem.
 Archs. only

… …
… …

- 28 - Parallel Programming Survey

- 29 -

The X10 Programming Language ●  What is X10?
–  X10 is a new programming language being developed at IBM Research in

collaboration with academic partners.
–  The development started in 2004 within the IBM PERCS project as part of the

DARPA program on High Productivity Computing Systems (HPCS).
–  Designed for parallel programming using the partitioned global address space

(PGAS) model.

●  Features of X10
–  Is more productive than current models
–  Can support high levels of abstraction
–  Can exploit multiple levels of parallelism and non-uniform data access
–  Is suitable for multiple architectures, and multiple workloads.

⇒  Adaptability and resource-awareness
 are already included to some extend in X10

Note: Slides are partly based on material by Christoph von Praun, Vijay Saraswat, and Vivek Sarkar.

The X10 Programming Language

- 30 -

Goals of X10
●  Simple

–  Start with a well-accepted programming model, build on strong technical
foundations, add few core constructs

●  Safe
–  Eliminate the possibility of errors by design, and through static checking

●  Powerful
–  Permit easy expression of high-level idioms
–  And permit expression of high-performance programs

●  Scalable
–  Support high-end computing with millions of concurrent tasks

●  Universal
–  Present one core programming model to abstract from the current plethora of

architectures

Goals of X10

- 31 -

X10 Concepts

Storage classes:
•  Activity-local
•  Place-local
•  Partitioned global
•  Immutable

Locally Synchronous:
Guaranteed coherence for local heap
⇒  sequential consistency

Globally Asynchronous:
No ordering of inter-place activities
⇒  use explicit synchronization for coherence

PGAS:
Replicated Data
Local Heap
Remote Heap

Place = collection of
resident activities and
objects

Ordering Constraints (Memory Model)

Activity = sequential
computation that runs at
a place

Locality Rule:
Any access to a mutable
datum must be performed by
a local activity
⇒  remote data accesses
can be performed by
creating remote activities

X10 Concepts

- 32 -

X10 Constructs

Fine grained concurrency
•  async S

Atomicity
•  atomic S
•  when (c) S

Global data-structures

• points, regions,
distributions, arrays

Place-shifting operations
•  at (P) S

Ordering
•  finish S
•  clock

Two basic ideas: Places and Asynchrony

X10 Constructs

- 33 -

Example: Invasive Histogram Computation ●  Given: An array of 8 bit numbers
●  Result: Number of observations in the array sorted into 256 bins

●  Small illustrative example (array with 16 elements, 6 bins):

●  Histogram:

Invasive Histogram Computation

- 34 -

Histogram, Parallelization
●  2 cores available:

●  Sub
 histograms

●  Histogram

Histogram, Parallelization

- 35 -

Histogram, X10 Code ●  Helper class for handling sub histograms

 class subHist

 { val sh: Rail[Int] = Rail.make[Int](256, (Int) => 0);

 def this() {}

 def inc(i: Int)

 { sh(i)++;

 }

 def add(i: Int, v: Int)

 { sh(i) += v;

 }

 def get(i: Int): Int

 { return sh(i);

 }

 ...

 }

Generates 256 bins and
initializes them with zero Increments bin i by one

Adds value v to bin i

Returns the value of bin i

Histogram, X10 Code

- 36 -

Histogram, X10 Code
Generate some workload
(random numbers within
the interval [0,255])

Invade:
Are there some additional
cores available?

Create mapping from
region R to set of cores

Infect (Data):
Create at each core a
sub histogram

Distribute workload to
available cores

public class Histogram

{ public static def main(argv:Rail[String]!)

 { val rnd = new Random();

 rnd.setSeed(42);

 val noOfElements: Int = 10000000;

 val R = 0..noOfElements-1; // Region

 val dataSet = new Array[Int](R, ((i):Point) => rnd.nextInt(256));

 val numberOfCores: Int = Invade();

 val D = Dist.makeDistribution(R, numberOfCores);

 val subHists: DistArray[subHist] =

 DistArray.make[subHist](Dist.makeDistribution(numberOfCores),

 ((i):Point) => new subHist());

 val distDataSet: DistArray[Int] =

 DistArray.make[Int](D, ((i):Point) => dataSet(i));

 ...

Histogram, X10 Code

- 37 -

Histogram, X10 Code
 ...

 finish

 { foreach (p in D.places())

 { async at(p)

 { for (i in D.get(p))

 { subHists(p.id()).inc(distDataSet(i));

 }

 }

 }

 }

 // Combine sequentially all sub histograms into a global one

 for (i in 1..numberOfCores-1)

 {

 ...

 }

 ...

 }

Infect (Computation):
Start at each place (core) the
sub histogram computation
asynchronously in parallel

finish {S}
Wait until all threads in S are
finished, synchronization.
Retreat (Compute Resources)

Retreat (Memory Resources)

Histogram, X10 Code

- 38 -

•  The Invade function might have different flavors, e.g.,
 - Give me as much as possible resources
 - Give me a power of 2
 - Give me an even number
 - etc.

 - The type of the returned resource, (x86 multi-core, graphics device, ...)
 (CUDA devices are already supported to some extend in X10)

•  According to the resource type, the program might select also different
parallelization strategies, e.g.
 - Thread-level parallelism in case of a standard multi-core
 - Data-level parallelism in case of a graphics device

Notes

- 39 - Project Area B – Architectures

●  Invasive Computer Architectures:

–  Invasion Control Architectures for networks of
ASIP- (iCore [B1]), RISC- (CPU [B3]) and Tightly-
Toupled Processor Arrays (TCPA [B2])

–  Microarchitecture:
●  Segmentable and reconfigurable

memory, processor, instruction sets and
interconnect [B1, B2, B4]

●  „Instruction set“ - definition for
basic functionality [B1,B2]

●  Hardware-supported invasion
(Invasion-Controller) [B2]

–  Macroarchitecture:
●  Hardware-supported Invasion

(CIC [B3])
●  Invasive Communication Networks (iNoC [B5])

–  Monitoring and Design Optimization [B4]

- 40 - Project Area C – Tools

●  Run-Time System [C1]

–  Methods, principles and abstractions for
extendable, (re-)configurable and adaptable
OS structures for invasive computing systems

–  Agent technology for Scalable Resource Management
–  Techniques for Virtual Power Management
–  iRTSS: (de-centralized) Services of Operating Systems for Invasive

Architectures
●  Simulation and Compiler [C2, C3]

–  Simulation (Speed, HW/SW, Heterogeneity) [C2]
–  Compiler

●  Symbolic Parallelization: Loop Invader [C3]
●  Machine Markup Languages [C3]
●  Backend Design (X10 -> Sparc, X10 -> TCPA) [C3]
●  Invasification [C3]

- 41 -

Project Area C – Simulation

Demo Invasion Strategies

- 42 -

●  Given a mesh-connected 2D invasive TCPA with NxN processor elements
(PEs). Let the invasion of one single PE take one single clock cycle (time
for one PE issueing an invasion request)

●  CASE A:
Let each PE be able to invade only one nearest neighbour PE after being
invaded itself.

–  A) How many PEs may be invaded in n clock cycles?

–  B) Place an initial single PE seed program starting the invasion
(Master of Invasion) such that a LINEAR INVASION (invasion in a
single direction) yields the biggest CLAIM (number of invaded PEs).

–  C) How long does it take (minimally) to invade the whole NXN array
assuming multi-D invasion is allowed?
Specify a single invasion strategy.

●  CASE B:
Let each PE be able to once issue a simultaneous invade request to ALL
its nearest neighbors in one clock cycle. Answer A),B),C) alike.
(6 minutes)

Exercise 5

- 43 - Project Area D – Applications

●  Application Areas:

–  Robotics [D1]
- Real-Time
- Fault-Tolerance
- Performance

–  Scientific Computing [D3]
- Invasive Computing on HPC-Systems
- Ressource utilization
- Performance

- 44 -

Subtask Sample algorithm HW resources

Build 3D model of environment, use
cameras from other robots

Stereo vision, disparity map, block
matching, combine multiple camera
views

video input, network I/O,
TCPA, RISC

(Listen for “help” shouts, analyze audio input)

Find regions of interest (ROI): persons,
explosives

Color segmentation,
region growing

TCPA

Check hypothesis for each ROI Shape segmentation,
shape matching

Multiple RISCs
(one per ROI)

Motion planning Shortest path calculation 1 RISC

Walk into hazardous area Motion control 1 RISC hard real-time

Check for any interleaving objects Optical flow TCPA
Multiple RISCs (e.g. 2)

Update 3D model Disparity map update, combine multiple
views

video input, network I/O,
TCPA, RISC

Invasive Computing Scenario in
Robot Vision

- 45 -

Stereo
Vision
Color

Segment.

Shape Segmentation

Motion
Plang.
Motion

ctrl.

WPPA
Reconfig

Combin
e

multiple
views

Com
bine
multi
ple

view
s

Optical
Flow

Optical
Flow

Optical Flow

Optical
Flow

Update
3D

model

Update 3D
model

Update
3D model

Scenario Robot Vision

- 46 -

1 2

0

3 4

9 10

15 16

5 8

11 14

17 18

19 22

23 32

33 34

35 36

Scenario Multigrid Methods

- 47 -

Exercise VI
●  A) Name applications and application areas where “INVASIVE

COMPUTING” might beat conventional programming practice.
In which aspects?

●  B) For which applications/domains do you believe “INVASIVE
COMPUTING” will be most beneficial? For which not. Explain.

(4 minutes)

App domain Why?
Apps. with dynamic/time-
variant degree of
parallelism (DOP)?

…

Apps. with static
parallelism?

…

Apps. with high/low number
of threads?

…

Real-time apps.? …

- 48 -

Outline
●  What is Invasive Computing?

–  Uniquitousness of parallel computers
–  Challenges in the year 2020
–  Vision and Potentials

●  Scientific Work Program
–  Basics: Resource-Aware Programming, Algorithms, Complexity
–  Architectures: Reconfigurability and Decentralized Resource

Management
–  Tools: Compiler, Simulation Support and Run-Time System
–  Applications: Real-Time, Fault-tolerance, Efficiency and Utilization

●  Structure, Chances and Goals
–  Project structure
–  Funded Institutions and Researchers
–  Demonstrator Roadmap
–  Impact and Risks

- 49 -

TRR 89 – Project Structure

- 50 - TRR 89 – Projects & Researchers
Project Area A:
Fundamentals,
Language and Algorithm
Research

Project Area B:
Architectural Research

Project Area C:
Compiler, Simulation,
and Run-Time Support

Project Area D:
Applications

A1: Basics of Invasive
Computing

B1: Adaptive Application-Specific
Invasive Micro-Architectures

C1: Invasive Run-Time
Support System (iRTSS)

D1: Invasive Software-
Hardware Architectures
for Robotics

Teich/Snelting Henkel/Hübner/Bauer Schröder-Preikschat/
Lohmann/Henkel/Bauer

Dillmann/Asfour/
Stechele

A2: Algorithms and
Complexity of Invasion

B2: Invasive Tightly-Coupled
Processor Arrays

C2: Simulation of Invasive
Applications and Invasive
Architectures

D2: Invasive
Ray Tracing

Wanka Teich Hannig/Gerndt/Herkersdorf Stamminger

A3: Scheduling and Load
Balancing

B3: Invasive Loosely-Coupled
MPSoC

C3: Compilation and Code
Generation for Invasive
Programs

D3: Multilevel
Approaches and
Adaptivity in Scientific
Computing

Sanders Herkersdorf/Henkel Snelting/Teich Bungartz/Gerndt

B4: Hardware Monitoring
System and Design Optimization
for Invasive Architectures

Schmitt-Landsiedel/Schlichtmann

B5: Invasive NoCs

Becker/Herkersdorf/Teich

- 51 -

TRR 89 – Existing Cooperations

●  Successful cooperations exist with
famous Chip and System Design
Houses, e.g.,

–  Infineon, Munich
–  Alcatel-Lucent, Neremberg
–  IBM, Böblingen &

Poughkeepsie
–  Cadence, Munich
–  Forte Design Systems, San

Jose
–  Intel GmbH, Germany

- 52 -

TRR 89 – International Initiatives &
Contacts

Memberships in European Networks of Excellence:

- 53 -

TRR 89 – Validation & Demonstrator Roadmap

●  2-level validation concept:

–  Phase I:
Early Concept Validation
Demonstrator (FPGA-
based)

–  Phase II:
InvasIC ASIC
Demonstrator

●  InvasIC Lab (TP Z2)

–  Each location one
lab

–  1 technician per site
–  Established milestone

roadmap

- 54 -

Impact and Risks

●  Introduction of a new paradigm of resource-aware programming
as well as new architectural support by reconfigurable MPSoC-
Architectures: InvasICs

●  Expected impact on:

–  Future advanced processor development for MPSoCs
–  Future programming environments for Many Core Systems
–  Development of parallel algorithms

●  Potential Risks:

–  Acceptance of resource-aware programming

–  Cost of Invasion (Hardware/Software, Timing)

- 55 -

Questions?

Questions?

