
OUTLINE

 Multicore Challenges
 Why and what are multicores?

 What we are doing in Uppsala: CoDeR-MP

 The timing analysis problem

 Possible Solutions – Partition/Isolation
 Dealing with Shared Caches [EMSOFT 2009]

 Dealing with Bus Interference [RTSS 2010]

 Dealing with Core Sharing [RTAS 2010]

1

Remember, we need to:

 “partition” the shared caches

 “partition” the shared memory bus

2

Now, assume that we have a
“safe WCET bound” for each task

Fixed-Priority Multiprocessor Scheduling
[RTAS 2010]

Joint work with
Nan Guan, Martin Stigge and Yu Ge

Northeastern University, China
Uppsala University, Sweden

Real-time Systems

 N periodic tasks (of different rates/periods)

 How to schedule the jobs to avoid deadline miss?

ri
1 ri

2 ri
3 ri

4

Ti Ti

Ji
1 Ji

2 Ji
3

Ti

Ci C
i

C
i

Utilization/workload:

On Single-processors

 Liu and Layland’s Utilization Bound [1973]

(the 19th most cited paper in computer science)

 Scheduled by RMS (Rate Monotonic Scheduling)

number of
tasks

Rate Monotonic Scheduling

 Priority assignment: shorter period higher prio.

 Run-time schedule: the highest priority first

 How to check whether all deadlines are met?

high priority

mediate priority

low priority

… …

… …

… …

Run-time schedule

Liu and Layland’s Utilization Bound

 Schedulability Analysis

P

100%

Schedulable?

77.9%
Ui 1 2 3

Ui = Ci / Ti

Liu and Layland’s bound:

Liu and Layland’s Utilization Bound

 Schedulability Analysis

CPU

100%

Yes, schedulable!77.9%

Liu and Layland’s bound:

1

2

3

Multiprocessor (multicore) Scheduling

 Significantly more difficult:

 Timing anomalies

 Hard to identify the worst-case scenario

 Bin-packing/NP-hard problems

 Multiple resources e.g. caches, bandwidth

 … …

Open Problem (since 1973)

 Find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound

number of
processors

?

Multiprocessor Scheduling

52

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

cpu 1 cpu 2 cpu 3

2

5

2

1

22

3

6

7

4

2 3

Partitioned Scheduling
Partitioned Scheduling

with Task Splitting

Best Known Results (before 2010)

Best Known Results (before 2010)

Lehoczky et al. CMU
ECRTS 2009

Best Known Results

20

10

30

40

60

50

70

80

Multiprocessor Scheduling

Global Partitioned

Fixed

Priority

Dynamic

Priority

Task Splitting

Fixed

Priority

Dynamic

Priority

Fixed

Priority

Dynamic

Priority

38

%

50

Liu and Layland’s

Utilization Bound

50 50

65 66

[OPODIS’08]

[TPDS’05] [ECRTS’03] [RTSS’04]

[RTCSA’06]

Our New Result
RTAS 2010

RTSS 2010_submitted

69.3

Multiprocessor Scheduling

52

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling
Would fixed-priority scheduling
e.g. “RMS” work?

Multiprocessor Scheduling

52

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling
Would fixed-priority scheduling
e.g. “RMS” work?

Unfortunately “RMS” suffers
from the Dhall’s anomali

Utilization may be “0%”

Dhall’s anomali

1
Task 1

Task 2
2

3

1

2

ε0 1+ ε1

Task 3

Dhall’s anomali

1
CPU1

CPU2
2

1

2

ε0 1+ ε1

3 3

Schedule the 3 tasks on 2 CPUs using “RMS

Deadline miss

Dhall’s anomali

… …

P1 P2 PM

#1 #2 #M… …
#M+1

M*ε + 1/(1+ ε)

ε/1 ε/1 ε/1

1/(ε+1)

0
M

U

(M+1 tasks and M processors)

Multiprocessor Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

Partitioned Scheduling

Multiprocessor Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

Partitioned Scheduling

Resource utilization may
be limited to 50%

Partitioned Scheduling

 The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

 Limited Resource Usage, 50% necessary condition to
guarantee schedulability

… …

P1 P2 PM

#1 #2 #M… … #M+1 50%+ ε

Partitioned Scheduling

 The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

 Limited Resource Usage necessary condition to
guarantee schedulability

… …

P1 P2 PM

#1 #2 #M

… … #M+1 50%+ ε

Partitioned Scheduling

 The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

 Limited Resource Usage necessary condition to
guarantee schedulability

… …

P1 P2 PM

#1 #2 #M

… … #M+1,1 50%+ ε

#M+1,2

Partitioned Scheduling

 The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

 Limited Resource Usage necessary condition to
guarantee schedulability

… …

P1 P2 PM

#1 #2 #M

… …

#M+1,1

50%+ ε

#M+1,2

Multiprocessor Scheduling

cpu 1 cpu 2 cpu 3

2

5

2

1

22

3

6

7

4

2 3

Partitioned Scheduling
with Task Splitting

Partitioned Scheduling

 Partitioning

P1

1

P2 P3

1 31 2

4 5 6

7 8 9

Bin-Packing with Item Splitting

 Resource can be “fully” (better) utilized

Bin1 Bin2 Bin3

123

11

2 4
5

7
82

681

Previous Algorithms
[Kato et al. IPDPS’08] [Kato et al. RTAS’09] [Lakshmanan et al. ECRTS’09]

 Sort the tasks in some order e.g. utilization or priority order

 Select a processor, and assign as many tasks as possible

3

4

2

5

1

6

8

7

P1

Lakshmanan’s Algorithm [ECRTS’09]

 Sort all tasks in decreasing order of utilization

3

4

2

5

1

6

8

7

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

3

4

2

5

1

6

8

7

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

6

7

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

6

7

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

62

7

61

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

62

7

61

P2

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

7

61

P2

62

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

1

7

61

P2

5
62

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

3

2

1

7

61

P2

5
62

4

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

2

1

7

61

P2

5
62

4

3

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

1

7

61

P2

5
62

4

3
21

22

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

7

61

P2

5
62

4

3
21

P3

22

1lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

7

61

P2

5
62

4

3
21

P3

1
22

lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

7

61

P2

5
62

4

3
21

P3

1
22

key feature:
“depth-first” partitioning

with decreasing utilization order
lowest util.

highest util.

Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many
tasks as possible

P1

8

7

61

P2

5
62

4

3
21

P3

1
22

Utilization Bound:

65%
lowest util.

highest util.

Our Algorithm
[RTAS10]

“width-first” partitioning

with increasing priority order

Our Algorithm

 Sort all tasks in increasing priority order

7

6

5

4

3

2

1highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

7

6

5

4

3

2

1

P1 P2 P3

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

6

5

4

3

2

1

P1 P2 P3

7

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

5

4

3

2

1

P1 P2 P3

7
6

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

4

3

2

1

P1 P2 P3

7
6 5

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

3

2

1

P1 P2 P3

7
6 5
4

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

2

1

P1 P2 P3

7
6 5
4

3

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

1

P1 P2 P3

7
6 5
4

321

22

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

1

P1 P2 P3

7
6 5
4

321
22

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

P1 P2 P3

7
6 5
4

321

12

11

22

highest priority

lowest priority

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

P1 P2 P3

7
6 5
4

321 1211

22

Our Algorithm

 Select the processor on which the assigned
utilization is the lowest

P1 P2 P3

7
6 5
4

321 1211

22

highest priority

lowest priority

key feature:
“width-first” partitioning
with increasing prio order

Comparison

P1

8

7

61

P2

5
62

4

31

P3

1

2

32

P1 P2

3

P3

11

8

4

2

7 6

5

12

Why is our algorithm better?

& increasing priority order

Ours: width-first Previous: depth-first

& decreasing utilization order

Comparison

P1

8

7

61

P2

5
62

4

31

P3

1

2

32

P1 P2

3

P3

11

8

4

2

7 6

5

12

Why is our algorithm better?

& increasing priority order

Ours: width-first Previous: depth-first

& decreasing utilization order

By our algorithm split tasks generally have higher priorities

Split Task

 Consider an extreme scenario:

 suppose each subtask has the highest priority

 schedulable anyway, we do not need to worry about
their deadlines

 The difficult case is when the tail task is not on the top

 the key point is to ensure the tail task is schedulable

3
8

4
2

7 6

5

12 1113

Split Task

 Subtasks should execute in the correct order

τi

τi
1

τi
2

τi
3

P1

P2

P3

r d

Split Task

 Subtasks get “shorter deadlines”

τi

τi
1

τi
2

τi
3

P1

P2

P3

r d

∆i = Ti - Ri
1 - Ri

2

Ri
1

Ri
2

Split Task

 Subtasks should execute in the correct order

τi

τi
1

τi
2

τi
3

P1

P2

P3

r d

∆i = Ti - Ri
1 - Ri

2

Ri
1

Ri
2

These two are on the top: no problem with schedulability

Split Task

 Subtasks should execute in the correct order

τi

τi
1

τi
2

τi
3

P1

P2

P3

r d

∆i = Ti - Ri
1 - Ri

2

Ri
1

Ri
2

These two are on the top: no problem with schedulability

?

Why the tail task is schedulable?

21 22

X1 X2

Y2

Y2 + U2
2 <= U2

1

That is, the “blocking factor” for the tail task is bounded.

U2
1

U2
2

The typical case: two CPUs
and task 2 is split to two
sub-tasks

As we always select the
CPU with the lowest load
assigned, we know

Y2 <= U2
1 - U2

2

Theorem

For a task set in which each task satisfies

we have

Theorem

For a task set in which each task satisfies

we have

get rid of this constraint

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8 7

6

9

3

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8 7
62

9

3

61

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8 7
62

9

3

61

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8 7
62

9

3

61

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

54

2

1

8 7
62

9

3

61

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

54

2

1

8 7
62

9

361

Problem of Heavy Tasks

P1 P2 P3

highest priority

lowest priority

54

2

1

8 7
62

9

361

Problem of Heavy Tasks

P1 P2 P3

54

21

8 7
62

9

361

Problem of Heavy Tasks

P1 P2 P3

54

21

8 7
62

9

361

the heavy tasks’ tail task
may have too low priority level

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8

7

6

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8
76

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8
76

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

54

2

1

8
76

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

54

2

1

8
76

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

54
2

1

8
76

9

3

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

highest priority

lowest priority

54
2

12

8
76

9

3
11

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

54
2

8
76

9

3
1112

Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3

54
2

8
76

9

3
1112

avoid to split heavy tasks
(that may have low priorities)

Theorem

 By introducing the pre-assignment mechanism,
we have

Liu and Layland’s utilization bound for all task sets!

Overhead

 In both previous algorithms and ours

 The number of task splitting is at most M-1

 task splitting -> extra “migration/preemption”

 Our algorithm on average has less task splitting

P1 P2 P3P1 P2 P3

Ours: width-first depth-first

Implementation

 Easy!

 One timer for each split task

 Implemented as “task migration”

i1

Ci
1

P1

P2

task i

higher prio

tasks

i2

until finished

as being resumed

as being preempted

lower prio

tasks

Further Improvement

P1

100%

Schedulable?
P2 P3

3

2

1

6

5

4

9

8

7

Uisng Liu and Layland’s Utilization Bound

P1 P2 P3

Yes, schedulable
by our algorithm 100%

Utilization Bound is Pessimistic

 The Liu and Layland utilization bound is
sufficient but not necessary

 many task sets are actually schedulable even if
the total utilization is larger than the bound

P

1
0.69

(1, 4)

(2, 12)

(1, 4)

(2, 8)

Exact Analysis

 Exact Analysis: Response Time Analysis [Lehoczky_89]

 pseudo-polynomial

(1, 4)

(2, 12)

(1, 4)

(2, 8)

Rk

task k is schedulable iff
Rk <= Tk

Utilization Bound v.s. Exact Analysis

 On single processors

P

100%

Utilization bound Test
for RMS

P

Exact Analysis
for RMS

[Lehoczky_89]

88%
100%

On Multiprocessors

 Can we do something similar on multiprocessors?

P1 P2 P3

Utilization bound Test
the algorithm introduced above ?

P1 P2 P3

100% 100%

Beyond Layland & Liu’s Bound [RTSS 2010, rejected!]

 Our RTAS10 algorithm:
 Increasing RMS priority order & worst-fit partitioning

 Utilization test to determine the maximal load for each processor

 The maximal load for each processor bounded by 69.3%

 Improved algorithm:
 Employ Response Time Analysis to determine the maximal

workload on each processor

 more flexible behavior (more difficult to prove …)

 Same utilization bound for the worst case, but

 Much better average performance (by simulation)

I believe this is “the best algorithm” one can hope
for “fixed-prioritiy multiprocessor scheduling”

Conclusions

 The (multicore) Timing Problem is challenging

 Difficult to guarantee Real-Time

 and Difficult to analyze/predict

 Solutions: Partition & Isolation

 Shared caches: coloring/partition

 Memory bus/bandwidth: TDMA, ?

 Processor cores: partition-based scheduling

Thanks!

