EAST-ADL2 Overview

Henrik Lönn, Volvo Technology AB CPS Week 2010, KTH, Stockholm

The Automotive Challenge

Product Related Challenges

- Functionality increase
- Complexity increase
- Increased Safety-criticality
- Quality concerns
- **Challenges Related to Development Process**
- Supplier-OEM relationship
- Multiple sites & departments
- Product families
- Componentization
- Separation of application from infrastructure
- Safety Requirements, ISO 26262

Response: EAST-ADL2

- A System Modeling Approach/Architectural Framework that
- Is a template for how engineering information is organized and represented
- Provides separation of concerns
- Embrace the de-facto standard representation of automotive software – AUTOSAR

How is an EAST-ADL2 model structured?

An EAST-ADL2 model is organized in several evels of abstraction, where the software and electronics based artifacts are modeled

The abstraction levels are "views" on the model and a complete representation of the system

The contents on an abstraction level forms a complete representation of the vehicle embedded system, with respect to the concerns of that level

The levels are refined top-down

Vehicle Level

- A Vehicle is characterized by a set of Features
- Features are *stakeholder* requested functional or nonfunctional characteristics of a vehicle
- A Feature describes "what", but shall not fix the "how"
- A Feature is specified by requirements and use cases
- From a top-down architecture approach the features are the configuration points to create a vehicle variant

/\TESST

Analysis Level

Analysis Level is the abstract Functional description of the EE system

- Realizes functionality based on the features and requirements
- Captures abstract functional definition while avoiding implementation details
- Defines the system boundary
- Environment model and stakeholders define context
- Basis for safety analysis

Design Level

/\TESST

Design Level captures the concrete functional definition with a close correspondance with the final implementation

- Captures functional definition of application software
- Captures functional abstraction of hardware and middleware
- Captures abstract hardware architecture
- Defines Function-to-hardware allocation

Implementation Level

The Implementation Level represents the software-based implementation of the system

- Software components represent application functionality
- AUTOSAR Basic software represents platform
- ECU specifications and topology represent hardware
- Model is captured in AUTOSAR
- Software component template
- ECU resource template
- System Template

Environment Model

The Environment model captures the plant that the EE system control and interact with

- In-vehicle, near and far environment is covered
- Same Environment Model may be used on all abstraction levels
- Different Environment models may be used depending on validation scenario

Traceability between abstraction levels

Extensions										
LAtonsions			Elements in ex elements in "c		erend	ce				
				4				~		
		System Model								
	Vehicle Level	VehicleLevel						Timing	Dependability	
		TechnicalFea	tureModel							
	Analysis Level	AnalysisLevel			Environment Model	VerificationValidation	Requirement			
		AnalysisArchitecture								
	Design Level	DesignLevel								
		FunctionalDesignArchitecture								
		HardwareDesignArchitecture								
	lmpl. Level	ImplementationLevel								
		AUTOSAR Application S		AUTOSAR HW						

EAST-ADL2 Characteristics

Extended compared to traditional ADL as it covers:

- Variability
- Requirements
- Safety
- Behavior
- Environment Modelling
- Design methodology

EAST-ADL2

- Language Metamodel
- UML2 Profile
- Prototype Toolset

EAST-ADL has been developed in:

- EAST-EAA (ITEA 2000-2004)
- ATESST (EC FP6 2006-2008)
- ATESST2 (EC FP7 2008-2010)
- TIMMO (ITEA 2007-2009)

Alignment/integration: •(SysML, AADL) •UML/MARTE •AUTOSAR •ISO26262

EAST-ADL Contributors 2000-2009

including	Valeo
AUDI	Vector
BMW	Volvo Car Corporation
Carmeq /VW	Volvo Technology
CRF/FIAT	ZF
Daimler	CEA-LIST
ETAS	INRIA
Mecel	LORIA
Mentor Graphics	Paderborn Univerisity-C-LAB
OPEL	Technical University of Darmstadt
PSA	Technische Universität Berlin
Renault	The Royal Institute of Technology
Robert Bosch	The University of Hull
Siemens, Continental	

Relation to other modeling languages and approaches?

Why Not UML?

• EAST-ADL2 is domain-specific but its UML2 profile gives access to UML2 tools.

Why not SysML?

 EAST-ADL takes up applicable SysML concepts but provides additional domain-specific support

Why not AUTOSAR?

• EAST-ADL complements AUTOSAR with respect to feature content, functional structure, safety properties, etc.

Why not AADL

 AADL represent the software implementation of a system while EAST-ADL2 starts on a more abstract level.

Why not proprietary tools (Simulink, Statemate, Dymola, ASCET, ...)?

 EAST-ADL2 provides an information structure for the engineering data and integrates external tools

EAST-ADL2 Complements AUTOSAR

EAST-ADL2 is an information structure including aspects beyond the Software Architecture

Requirements, traceability, feature and function content, variability, etc.

Provides means to define what the software does

An AUTOSAR specification defines the software architecture and information required for SW integration - but is neutral to its functionality

Provides means to model strategic properties

Key vehicle aspects is captured independently of the software architecture

Supports modelling of error behavior and the representation of safetyrelated information and requirements

EAST-ADL2 Tooling

UML-based Tooling

- Based on CEA Papyrus
- Integrated Eclipse application with 5 ATESST plugins

AUTOSAR-based Tooling

MentorGraphics VSA

DSL Tooling

MetaEdit+

Conclusion

EAST-ADL2 provides an information structure for design of automotive embedded systems

• Architecture Description Language and Architectural Framework

Use of abstraction levels is a fundamental concept

• entities on lower levels *realize* entities on higher levels

EAST-ADL2 is a fully aligned complement to AUTOSAR

- AUTOSAR is the SW architecture definition enabling SW component integration on ECU
- EAST-ADL2 supports the successful integration of AUTOSAR components
- EAST-ADL2 Supports additional engineering steps including feature definition, requirements engineering, V&V, safety analysis, functional modeling/integration, product line engineering

