Hardware Description Languages

SystemC and TLM overview

Sandro Penolazzi
Dept. of Electronic Systems, School of ICT, KTH
E-mail: sandrop@kth.se

CPSWEEK 2010 - Stockholm 12 April 2010

U W

° SystemC

° Summary

@ CPSWEEK 2010 - Stockholm

Outline

¢ Introduction to System—on—Chip concept
® Problems of classic approach to hardware design

e Solution: increasing abstraction level

® Transaction-Level Modeling

12 April 2010 /

The System-on-Chip concept

* Integration of individual components on a single chip to form an entire

system

® Possible thanks to great manufacturing / technology advances

* Based on usage of fundamental building blocks, i.e. Intellectual Properties (IPs)

® Oriented to hardware reutilization (templates)--> reduce design time

\\e CPSWEEK 2010 - Stockholm 12 April 2010 /

Classic design flow for SoC

System Specification

Hardware N Software
Development € - O === Development
P Communication P
[Y
Prototype
Hardware Software
Re-design ;

' Re-design

. System Integration
{ System Validation)}~

‘ Chip Fabrication |

Source: F. Ghenassia. Transaction-Level Modeling with SystemC, 2005

@ CPSWEEK 2010 - Stockholm

12 April 2010 j

Classic design flow bottlenecks

Classic design flow becomes unsuitable because of 3 main reasons:

1. Explosive complexity
® In hardware: more and more complex components

® In software: more and more complex applications
2. Time-to-market pressure

® Classic design flow takes too long, as one has to wait until a prototype is ready
3. Increasing cost

* Larger workforce

° Technological fabrication process becomes more costly

e EDA tools become also more costly

\\e CPSWEEK 2010 - Stockholm 12 April 2010 /

Looking for new solutions

New solutions should be oriented to:

I. Maintaining and promoting the IP reuse concept, yet consider drawbacks

2. Raising design abstraction above Register—Transfer Level -->
System—Level Design

® shorter time to market
° good potential to perform architecture analysis and functional verification

® Find the right trade-oft between speed (pure algorithmic model) and

accuracy (Register-Transfer Level)

@ CPSWEEK 2010 - Stockholm 12 April 2010 /

From RTL to TLM

* In 1999, Coware and Synopsys propose standardization of a C++ set of

classes for hardware modeling --> it is the beginning of SystemC

® The first SystemC version was basically targeting an RTL implementation,

then it became more abstract
® Channels are introduced

® For system-level synchronization, events have slowly replaced clocks

® Some features of SystemC are enhanced, especially those related to

implementing the communication aspects -->TLM becomes also a standard

@ CPSWEEK 2010 - Stockholm 12 April 2010 /

Levels of abstraction

cadence

Algorithmic Level (AL) Functional
Foundation: No Implementation Aspects

|

Smaller, . -
faster, Programmer's View (PV) Bus generic
less Masters/Slaves
accurate
Programmer's View + Timing (PVT) Bus architecture
Timing approx.
Larger,
slower, Cycle Accurate Level (CA) Word transfers
more Cycle-accurate
accurate
RT Level (RT) Signal/Pin/Bit
l Foundation: Registers, logic Cycle-accurate

Model at a few levels that target the “pain” and risk in your D&V flow

& CaopyTight 2005 Cadenca Deslgn SysiEme, Inc.

@ CPSWEEK 2010 - Stockholm 12 April 2010 j

SystemC Language Architecture

Application

Written by the end user

SystemC

Methodology- and technology-specific libraries

SystemC verification library, bus models| TLM interfaces| | LM SystemC

Core language

Modules
Ports
Exports
Processes
Interfaces
Channels
Events

Predefined channels Utilities
Signal, clock, FIFO, Report handling,
mutex, semaphore tracing

Data types

4-valued logic type
4-valued logic vectors
Bit vectors

Finite-precision integers

Limited-precision integers

Fixed-point types

Programming language C++

\\° CPSWEEK 2010 - Stockholm

12 April 2010 /

Transaction-Level Modeling (TLM)

® Transaction: the data transter (i.e. communication) or synchronization

between two modules at an instant (i.e. SoC event)
® Founded on high—level programming languages such as SystemC

e TLM highlights the concept of separating communication from computation

within a system

e TLM allows early software development and early architecture analysis thanks

to an adequate trade-off between speed and accuracy

\\@ CPSWEEK 2010 - Stockholm 12 April 2010 /

Transaction-Level Modeling (TLM)

* Components are modeled as modules

® Modules contain processes representing their behavior

® Modules exchange communication in form of transactions through channels
® Channels implement TLM interfaces

® Processes access these interfaces through modules ports

® Interfaces are the ones that allow the actual separation between

communication and computation within aTLM system

* TLM defines a standard and a set of rules, relying on SystemC, that
formalize how communication should be implemented

\\e CPSWEEK 2010 - Stockholm 12 April 2010 /

@ CPSWEEK 2010 - Stockholm

The new SoC design flow

Customer Specification

v

Paper Specification

v
HW/SW Partitioning

v
TLM

Concurrent
Hardware HW/SW Software

Development Engineering Development
\’ Based on TLM
Test Chip

System Integration
& Validation

Chip Fabrication

Source: F. Ghenassia. Transaction-Level Modeling with SystemC, 2005

12 April 2010 j

Speed: RTL - CA - TLM

1500 ¢ 12
‘_f.t <1 10
1000+ /"" 48
P g »
5004 o 44
o _.---""'-_f‘ 4 2
0 = —— 0
RTL CA TLM
[Simulation speed-up vs
ally peed-up 1 100 1000
—+— Modeling speed-up vs 1 3 10
RTL

Source: F. Ghenassia. Transaction-Level Modeling with SystemC, 2005

@ CPSWEEK 2010 - Stockholm 12 April 2010 j

Summary

e (lassic SoC design flow based on RTL has limitations

® SystemC/TLM is suitable for solving such limitations
* Early software development
® Architecture analysis
¢ Functional verification

° Consistency between work done in different teams

@ CPSWEEK 2010 - Stockholm

12 April 2010 /

-

® F. Ghenassia. Transaction-Level Modeling with SystemC, 2005
* D. C. Black and J. Donovan. SystemC: From The Ground Up, 2004

\\e CPSWEEK 2010 - Stockholm

Further reading

Thank you!

12 April 2010 /

