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Abstract—The electricity market is going through a deep
modification as it is moving toward the integration of smart
grids. Future homes will include smarter electric devices that
will be easily managed from the power consumption stand point.
The capability of performing short-term negotiation of energy
purchases, if introduced and if efficiently exploited, will give the
user the ability to reduce energy costs.

In this paper we discuss a scheduling problem for household
tasks that will help users save money spent on their energy
consumption. Our system model relies on electricity price signals,
availability of locally-generated power and flexible tasks with
deadlines. A case study shows that cost savings are possible but
fast and efficient solutions to the scheduling problem are needed
for their real world use.

Index Terms—scheduling; smart grid; smart home;

I. INTRODUCTION

The electricity market is witnessing a transformation from

monopolistic to a deregulated and competitive structure.

Demand-supply mechanisms drive the electricity pricing in the

wholesale electricity market, where the actors are generation

companies, transmission operators and trading companies.

Ordinary users of electricity at home do not have a say in

this market. According to the current practice in some Euro-

pean countries (e.g., Germany and Italy), the users at home

are offered with options to select their preferred electricity

supplier company. However the contracts between a supplier

and consumers span long terms (i.e. months, years). This

incurs inefficiency in two ways. First, when agreed on a flat

rate price, as the cost of producing electricity fluctuates, the

production company gets varying profit margins. This reflects

to the end consumer as higher bills if the company makes

a over prediction and as loss for the company in the case

of under prediction. Secondly, consumers may be bound to a

costly contract even a cheaper supplier emerges at some point

in time. Both the suppliers and consumers would benefit if

it was possible to make short-term contracts that are based

more on the spot price of electricity. Despite the economic

convenience, studies show that customers are not very willing

to take the burden to continuously change their tariffs manually

[1], [2].

The aforementioned pricing mechanism brings inefficiency

in pricing of electricity for consumers at home [3] and calls for

the creation of a healthy retail electricity market that is based

on the demand and supply of electricity. This transformation

should allow for an optimization of electricity usage: from

one side the users should be able to negotiate short-term

(e.g., hourly based) contracts with providers with the goal of

obtaining lowest energy prices; from the other side, energy

providers will be able to change their prices depending on

market conditions, thus optimizing, by induction, the energy

usage of the users. The relation between electricity demand

and electricity prices at each given interval of time will be

exploited: the higher the demand, the higher the prices.

Now that the electricity grid is evolving to accommodate

distributed generation from various sources of energy (e.g.,

wind, solar, CHP) at different scales (e.g., individual owners,

virtual power plants), a transformation of the electricity market

is required to embrace direct user involvement in determining

the retail market price of electricity. Individuals, or consortia

of individuals, will be able to run their own green electricity

generator, thus leveraging on local energy micro-generation.

This new electricity market will change the way in which

electric devices are used: some devices will not be started

immediately on user request; the user, instead, will be able

to set an earliest starting time (that may be the current time)

and a deadline for the operations of these devices; the system,

then, will schedule the programmed task with the goal of both

satisfying the deadline and of optimizing energy costs. Some

other devices, of course, will still need to be started as soon

as the user requests it. For example, the user will be able to

program his washing machine and to specify that the washing

task should be performed at most in 10 hours. The system will

then schedule the washing task to minimize energy costs and

to finish in at most 10 hours. On the opposite, the user will

be able to start an hair drier just by pushing a button as usual.

The short-time negotiation of electricity should be, to some

extent, transparent to the users: they (either directly or with

the help of experts) should set the negotiation policies and

the system should be able to autonomously perform all the

required operations. To enable automatic negotiation each



house should be equipped with a controller. The controller

should be interfaced with the electric devices at home and it

should be able to capture their requests. The controller should

also be able to communicate with energy providers both to

obtain price updates and to negotiate short-time agreements.

This mechanism can be extended to work at building or

neighborhood level by using distributed controllers.

The aforementioned controller should be able to compute

the best scheduling for the programmed tasks with the goal of

minimizing costs while meeting all the deadlines. In this paper

we discuss this scheduling problem and we show how using

the task scheduler can improve usage of energy and lower costs

for the users. This approach only targets savings on what we

call as flexible household tasks. These tasks amount to at most

11% of total energy consumption by end user in EU residential

buildings [4].

Eßer et al discuss in [5] the scheduling problem for home

appliances. They schedule home appliances a day-ahead as-

suming the correct knowledge of the price signal. In our work

the scheduling is performed on finer grained periods of time

and is done at shorter terms. Furthermore, our scheduling

problem also takes into account local micro-generation of

energy.

In [6], authors address the problem of scheduling hard real-

time tasks in wireless sensor nodes that harvest energy and

propose an optimal algorithm called lazy scheduling algorithm.

The problem of scheduling tasks in a harvested power-aware

way is similar to the one of scheduling tasks in presence of

locally-generated power; however, in that case the problem is

related to single-machine scheduling and it is not applicable

to our system model.

More in general, the one of scheduling tasks on limited

resources is a well known problem in many areas of computer

science and of other fields. An area in which scheduling is es-

pecially important is the one of operating systems. Scheduling

problems in real time operating systems are especially similar

to our problem. Though, the problem of scheduling tasks of

home appliances have some peculiarities that cannot be seen

in any other scheduling problem.

II. SYSTEM MODEL

We consider a set P of price signals, pi, from different

transmission system operators (TSOs). Each price signal is

a plot of the unit price of electricity per time. The price of

electricity may be changed at the beginning of every hour.

Having the ability to make a contract with a different TSO,

the user may be subject to the minimum price signal, pmin,

that is given by

pmin(t) = min{pi(t)}

An example of a minimum price signal, pmin, is shown in

Figure 1a.

Each task Ji is specified by

• its earliest starting time (that is the current time unless

specified by the user otherwise), ai;

• its deadline, di;

• a boolean value, pri, representing whether the task is

preemptable or not;

• a load power profile, Li that is is a task-specific curve

that shows the power spent by the task during its non-

preempted execution.

The load power profile is necessary for characterizing the

tasks by representing the power drawn by each involved device

for running the considered task. Figure 2a shows some tasks

with their parameters. The load power profile for a washing

machine depends on the set program, its duration and the

water temperature chosen by the user. Limiting the energy

characterization of the task to its average or total required

energy would not be realistic in this domain.

We assume that there exists a set of local power micro-

generators such as photovoltaics and wind mills. Due to the

nature of these resources, the power generated by them varies

with time; we assume that the energy taken from these sources

is not billed to the users. We denote the total locally-generated

power as PG(t) as shown in Figure 1b.

We define our problem according to the system model

described above: given a task set J , a price signal set P , a

locally-generated power PG, and maximum allowed consum-

able power at any instant as Pmax, the system must determine

a schedule of the tasks such that the total cost for their

execution is minimized. This problem needs to be solved every

time a new task arrives (i.e., the user wants to start a new

tasks). The scheduling is re-computed on the tasks not yet

executed and on the remaining part of preemptable tasks. Non

preemptable tasks that are being executed when the scheduler

is run are considered as fixed; the available power is changed

accordingly.

III. THE SCHEDULING PROBLEM

Although the problem looks similar to a real-time operating

systems scheduling problem with energy constraints, there are

some differences. First of all, there is no shared device. Any

task can be run in parallel as long as the total power drawn

by the tasks does not exceed the electrical current capacity

of the transmission cables. Moreover, scheduling theory from

operating systems and operations research does not consider

a mix of preemptable and non-preemptable tasks. In our case,

for example, the washing machine task is non preemptable, but

charging an electrical car is. In classical scheduling problems

are tasks are either all preemptable or all non-preemptable.

We assume that minimum price signal, locally-generated

power, and device power profile functions are piecewise

constant with interval T . This assumption makes it pos-

sible to express them as a sequence of values. The time

interval we are interested in for the scheduling problem is

[min(ai),max(di)]. Therefore pmin[n] and PG[n] will be

considered in this interval as a number sequence of length

N , where N can be computed as follows:

N =
(max(di) − min(ai))

T



Similarly, Li[n] is a sequence of length NL that can be

computed as follows:

NLi
=

length(Li)

T

The schedule for task Ji can be represented as si[n], a

sequence of 0s and 1s, where 1 specifies that the task is to be

run in the corresponding interval and 0 for otherwise. Such

a formulation will allow us to express the scheduling as an

optimization problem.

Power consumed by Ji according to a schedule si can be

obtained by

Pi[j] =

{

Li[
∑j

k=1
si[k]] if si[j] = 1

0 otherwise

For a given schedule, the total power consumption profile

for all task can then be obtained by adding individual power

consumption profiles:

Ptot =
∑

i

Pi

By subtracting the power demand from the locally-generated

power gives the power to be billed:

Pbilled = P − PG

We assume that the unused locally-generated power is not sold

to the grid or stored. Therefore negative values in Pbilled are

replaced with the value 0.
For a given price signal, the cost of the energy can be

obtained with the scalar product:

C = Pbilled · pmin · T

where pmin and T should be expressed in the same time unit

(e.g. T is in hours if pmin is in e/kWh).

We identify C as the objective function to be minimized.

This minimization is subject to the following constraints:

• Tasks are scheduled to start after their earliest starting

time:

∀Ji : ai ≤ T · min{k : si[k] = 1}

• Tasks are scheduled to finish before their deadlines:

∀Ji : di − T ≥ T · max{k : si[k] = 1}

• Task Ji is scheduled as many times as the length of its

load power profile:

N
∑

k=1

si[k] = NLi

• If task Ji is not preemptable, then it should be scheduled

to run all at once:

pri = 0 ⇒ si(l) = 1
for l ∈ [min{k : si(k) = 1},max{k : si(k) = 1}]

• At no time, the total power withdrawn by all tasks

exceeds the allowed maximum, Pmax.

Ptot[k] ≤ Pmax for all k

IV. USE CASES

The aforementioned system model and the scheduling prob-

lem can suit different scenarios. In particular, it can be used

both to schedule tasks at individual home and at community

level.

A. Home level

In a private home, the controller schedules the household

tasks with respect to the price signals and a local micro-

generator (e.g., photovoltaic panels installed on the roof). The

controller will keep all the information on tasks to be run

locally and it will plan task execution for the householder.

B. Community level

In a network of private homes, the controller schedules all

the household tasks of the community with respect to the

community-owned local generators such as wind mills and

photovoltaic plants. This solution provides different advan-

tages over the private home scheduling of tasks:

• better trading power;

• less communication/computation requirements on the in-

frastructure;

• less cost of the ICT infrastructure per home due to

sharing;

• more predictable consumption at the community level;

• ability to impose peak demand response and balancing

power policies at the community level.

Of course this solution is also subject to a number of

disadvantages:

• privacy concerns due to making household tasks trans-

parent to a shared controller;

• a community-level scheduling might provide less optimal

results than home-level scheduling from the stand point

of single users.

Proper solutions should be developed to overcome the

aforementioned disadvantages and to exploit the advantages

of this approach.

V. CASE STUDY

In this section we present a case study and we analyze the

results obtained by applying our scheduler to the tasks with

the goal of obtaining a cost saving by optimizing power con-

sumption. The purpose of analyzing a case study is twofold:

on one side we want to show how the electrical system would

behave if the method proposed in this paper is adopted; on

the other side we would like to show that, by scheduling the

tasks correctly we could obtain a cost saving.

The case study that we considered is a normal house in

a time span of 7 hours. In this time period we suppose that

three activities are planned by the user. The first activity is

a recharge of the batteries of an electric vehicle; the second

activity is washing dishes by using a dishwasher; the third

activity is using a washing machine. Table I summarizes the

earliest starting times, the characteristics, and the deadlines for

the different tasks. Tasks power profiles are shown in Figure
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Fig. 2: (a) Load power profile for each task (b) Load profile with optimal scheduling

2a. Data related to the considered case studies are realistic:

vehicle recharge data have been taken from the data of the

Tesla car [7]; data for the washing machine correspond to the

“cotton 95” program described in [8]; the dish washer power

profile has been derived by the “cotton 60” profile of the same

document. Total power consumption of the last two devices is

in line with the power consumptions described in [9].

The vehicle recharging has been considered to be a pre-

emptable task (i.e., it does not need to happen in subsequent

instants of time); dish and clothes washing, on the opposite,

have been considered to be non-preemptable tasks.

By considering the previous tasks and maximum allowed

power consumption to be 15 kW, the optimal schedule has

been computed by using combinatorial search. The search

space was composed by 38,798,760 valid schedules. As can be

noticed the search space is huge, even with a limited number

TABLE I: Earliest starting times, deadlines and characteristics

of tasks.
Task earliest start deadline total duration

Clothes washing 0:00 6:40 2h

Car recharge 0:00 7:00 4h

Dish washing 0:00 6:00 1h20’

of tasks and a limited time span. Our implementation of the

exhaustive search executed in 35 minutes on Pentium Dual

Core 1.8 GHz computer with 2 GB of RAM. This is the main

problem associated with combinatorial search. A discussion

on this topic is provided in Section VI.

Figure 2b shows the optimal schedule that has been ob-

tained. The graph shows how the tasks have been scheduled

to respect maximum power constraints and to provide the

minimum possible cost for the user while respecting the
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imposed deadlines. The car charging task is separated into two

parts, one at the beginning and one after the completion of the

other two non-preemptable tasks. The tasks are scheduled to

use as much as possible locally-generated power, thus reducing

costs for the user.

By scheduling the tasks optimally, in this case, we were

able to reduce the cost about 23%: approximately e6.5 are

necessary when tasks are scheduled as soon as the earliest

starting time specified by the user arrives; e5.0 are necessary

when tasks are scheduled optimally. Figure 3 shows the energy

usage profiles obtained in the two cases. The graph shows how

the optimal schedule better utilizes locally generated power

and better exploits the flexibility of tasks for providing a cost

saving.

VI. DISCUSSION

The problem that we describe in this paper is very complex

and it has implications on how the electricity distribution sys-

tem is organized; in this section we discuss some open topics;

the discussion spans from the complexity of the scheduling

algorithm to the management of locally-generated energy,

passing by the requirements for new appliances and the home

power supply network.

A. Scheduling Algorithm

The problem of scheduling tasks in the home network is

very complex as previously shown. In fact the worst case

complexity of the combinatorial search is O(2MN ) where M

is the number of tasks and N is the number of time slots.

Thus, solution time grows exponentially with the number of

combinations considered. Solving this problem in a reasonable

amount of time is already very difficult even on a powerful

machine; it would be impossible on an embedded system.

Therefore, some heuristics need to be developed to determine

sub-optimal schedules in reasonable amounts of time. The

heuristics considered need to be targeted to the computational

power of the system considered and to the granularity of the

schedule.

A further problem is given by the fact that energy available

to each user is limited in each considered period of time.

This, along with the deadlines set by the user, might lead

to schedulability problems: the system might not be able

to schedule one or more tasks in such a way that all the

constraints (maximum power, deadlines) are satisfied. Though,

the only constraint that can be physically violated is the

deadline imposed by the user. Proper policies, customizable

by users, should be defined for the case in which some tasks

cannot be scheduled. Furthermore, an admittance test (i.e.,

a test that allows the system to quickly notify the user if a

task cannot be accepted) should be developed. Currently we

employ a weak schedulability test by comparing the maximum

energy that can be drawn from the grid in the total duration

of tasks to the total energy required to complete all tasks.

Pmax · N ≥
∑

i

∑

j

Li[j]

B. Home Appliances and Power Supply Network

As previously mentioned, the power supply network has

been undergoing a revision in the last years. The network

will require some further adjustments to allow customers to

perform short term negotiation of energy purchases: the energy

sellers will need to implement finer grained mechanisms for

energy pricing and, at the same time, they will need to provide

price signals to customers. On the other side, customers will

need to install suitable controllers in their buildings. These

controllers should be able to read the price signals and to

compute appropriate schedules for the tasks to be performed.

To be able to use controllers in an effective way, home

appliances will need to implement some new functionalities

that will allow them to communicate with the controller and

to expose the new capabilities to the users. Furthermore, the

controllers will require the capability to communicate with the

house metering device.

The development of interoperable embedded systems in

order to enable above scenarios calls for the definition of

communication standards: one for the communication between

controllers and energy providers and another one for the

communication among controllers, home appliances and the

metering device. The definition of standards will allow mul-

tiple device and home appliance producers to design and sell

compatible devices and, thus, it will boost the adoption of this

technology.

C. Management of Locally-produced Energy

Locally-produced energy can, in some periods of time, be

in excess with respect to the user demand. In the model of the

system presented in Section II we did not consider any specific

option for this excess of energy. In the reality different options

are available:

• store the energy in excess: energy might be stored, but

this has a cost and it leads to some inefficiencies. In

this case the impact on the model of the system that we



are considering will be limited to the formula used to

compute the price.

• Sell the energy in excess: by installing additional appara-

tus and by making suitable agreements with other parties,

energy in excess can be sold. Also in this case, this will

influence the price computation.

• Consume the energy in excess: energy can be used to

perform tasks not directly requested by the user. For

example, energy in excess could be used as an alternate

way to heat water or to heat the house. Energy could also

be used for useless tasks (i.e., wasted). If energy is used

for alternate tasks, the price formula might be modified

by considering the savings obtained by using the energy

in excess. If the energy in excess, instead, is wasted, the

formula used for computing the price does not require

any modification.

D. Distributed Management

As discussed in Section IV, task scheduling might be

implemented both at single house level or in a distributed

way. If each house has its own independent controller and

all controllers follow the same policies, there might be cases

in which all the houses (or a large part of them) schedule tasks

in the same way. Thus, there might be undesired peaks in the

total energy consumption. This side effect might be controlled

both by using coordination and by using an appropriate

pricing policy by the sellers. Some sort of coordination among

distributed controllers can be used to influence task scheduling

in such a way that not all houses schedule tasks in the same

way. The pricing policy can be designed such that prices are

dynamically dependent on the energy requests received for

each period of time. In this way additional users might be

discouraged in scheduling tasks for these periods and a strong

peak demand might be avoided.

VII. CONCLUSION & FUTURE WORK

In this paper we propose a scheduling problem for house-

hold tasks that will help users in saving money spent for

energy and that will allow energy producers to optimize their

production processes. Our system model is based on the

current and future trends for the electricity markets, smart grids

and smart homes.

An important challenge is to create efficient scheduling

algorithms that can be run on embedded systems. These

algorithms must be efficient enough to be able to calculate the

optimal schedule even for a large number of tasks and long

time spans. As shown in this work, by using an exhaustive

search, this is impossible even on a powerful machine such as

a modern personal computer. We may resort to advanced opti-

mization techniques such as constraint programming in order

to obtain optimal results and better compare the performance

of our heuristics.

Future work will focus on extending the system model to

cover more of the real world cases. We assume price signals

to be independently determined by the supplying companies.

We may involve a negotiation phase where we can gain extra

savings by extending the scheduler in such a way that it adjusts

the load in order to increase its bargaining power. Similarly,

we can extend the model with the ability to store and sell the

energy when it is in excess.
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