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Optimised Embedded Distributed Controller for
Automated Lighting Systems

Alie El-Din Mady, Menouer Boubekeur and Gregory Provan

Abstract—The paper introduces a model-driven
hybrid/multi-agent platform for the design and anal-
ysis of building automation systems. It describes an
optimised parameterizable and predictive distributed
control methodology for automated lighting systems. The
modelling steps and the simulation results for a typical
lighting system scenario are outlined throughout the paper.
Moreover, the performance for the wireless network is
evaluated. The contribution of the proposed lighting
control strategy is highlighted by comparing it with several
control techniques.

Index Terms—Lighting System Control, Hybrid Sys-
tem, PPD-Controller, Charon, Embedded Middleware, Dis-
tributed Control.

I. Introduction

INTELLIGENT (or smart) buildings incorporate a
Building Management System (BMS) to maintain a

comfortable environment in an energy-efficient manner. A
typical BMS would provide a core functionality that keeps
the building’s climate within a specified range, automates
the lighting based on occupancy, and monitors system per-
formance and device failures.

One major source of energy inefficiency in buildings is
lighting, which can account for up to 30% of total energy
waste in some retail and public offices [1]. The aim of our
research is to define a methodology for efficiently model
and integrate building management system services, with
a focus on lighting and Heating, Ventilating, and Air Con-
ditioning (HVAC) systems. In line with the recent focus
on ”energy management through active control” in the en-
ergy and control community, our work provides intelligent
controllers for more energy-efficient buildings.

Given the rapidly growing complexity of modern build-
ing control systems, the centralized control approach faces
numerous challenges in scaling, delays associated with col-
lecting data, inefficient energy consumption, and unsta-
ble control tendencies [2], [3] (i.e., continuously oscillating
around the set points). Further, the different requirements
of different services place many challenges on centralized
control solutions; for example, in lighting control, reaction
times are anticipated within fractions of a second, whereas
in HVAC control, the process dynamics is much slower
and the sampling/actuation time is much larger. Rather
than adopt worst-case timing solutions in a centralized con-
troller when integrating several processes, a distributed ap-
proach may provide an better solution for time-scale chal-
lenges, by ensuring fast response and reducing the depen-
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dency on network communication.
Our ongoing research work consists of developing an in-

tegrated platform for intelligent control of building au-
tomation systems. This platform provides, among other
features, predictability, reconfiguration, distribution and
building energy optimisation. As shown in Fig. 1, the sys-
tem design flow starts by defining relevant scenarios to be
operated within the building. These scenarios are defined
using the Unified Modelling Language (UML) [4]. The
UML models are interpreted using specific models for sim-
ulations and analysis purposes. At this level we allow an
optimisation loop to optimise the model at an early stage of
the development. When the simulation gives satisfactory
results, the models are auto-translated into embeddable
code to be deployed over a distributed sensor/actuator net-
work [5].

The integration process is performed using a model-
/service-based middleware [6] platform, which connects
components and facilitates data exchange. In this ap-
proach, all the different components of the architecture
collaborate with the requirements module to ensure that
the requirements are adhered to.

The main features of our platform will be illustrated
through an example of a lighting system for an office area.
This example illustrates the combination of discrete-event
behaviour (presence detection, light actuation levels) and
hybrid properties for the luminosity control, i.e., where
both discrete and continuous aspects are considered. We
describe a distributed lighting control system, which is em-
bedded in a wireless network, that is both simple and ef-
fective. The lighting system has been modelled using our
hybrid/multi-agent platform; the generated code has been
emulated using the Java Sun-Spot platform [7]. We study
several Quality of Service (QoS) metrics of the underlying
Wireless Sensor/Actuator Network (WSAN) [8] using the
VisualSense tool [9]. These metrics are essential to evalu-
ate the safety, reliability and user comfort (i.e. the differ-
ence between the sensed value and the user preference) of
the overall control application.

The remainder of the paper is organized as follows:
Section II provides a survey covering the related work
and discusses our contribution comparing to the state of
the art. The proposed Parameterizable/Predictable Dis-
tributed Controller and its specification are discussed in
Section III. Section IV introduces the Charon modelling
of the lighting system and Section V describes the optimi-
sation techniques we have used. In Section VI, we outline
and discuss the simulation results. We end in Section VII
by giving a discussion of our work and outlining future
perspectives.
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Fig. 1. System Architecture

II. Related Work

In the domain of control systems, there has been work
on distributed control, especially of discrete-event systems,
e.g., [10], [11]. However, this work is primarily of a theo-
retical nature, and has not been applied to the domain of
automated energy systems. Recently, some work on dis-
tributed automation of energy systems has been appeared
within the Multi-Agent Systems (MAS) community, e.g.,
[12]. This work focuses on the distribution of agents and
on agent communication, rather than on the issues more
pertinent to control theory, such as liveness, non-blocking,
reachability, etc.

A wide range of research papers have considered the con-
trol of the lighting system using centralized controllers,
where an optimisation engine is used to improve the en-
ergy consumption at the high level. In most cases, these
approaches lack a clear modelling approach, don’t consider
issues such as daylight control, predictability, and recon-
figurability, and use centralized controllers. However, [13]
considers daylight control using an image processing tech-
nique, which is not suitable to be deployed on a limited-
resource micro-controller.

Our contribution is to provide a parameteriz-
able/predictive distributed control strategy that can
improve the energy efficiency of lighting systems while
guaranteeing particular levels of user comfort. We also
aim to enhance the WSAN QoS through the imple-
mentation of a distributed system, thereby avoiding the
previously-mentioned problems of a large-scale WSAN
for the centralized control strategy, e.g., limitations in
scaling and control instability. We use a simulation model
to evaluate the system performance and improve the
flexibility of the control strategy before deployment.

III. Parameterizable/Predictable Distributed
Controller

In order to increase the control reliability, scalability,
resource sharing and concurrency, a distributed control
model [14] has been considered. In this context we have
developed a Parameterizable and Predictable Distributed

controller (called PPD-Controller) for automated lighting
systems. The PPD-Controller is described throughout the
following sections.

A. Lighting Model Specification

The most common lighting controller is the bounce con-
troller, which switches the light on/off depending on the
occupancy and the ambient light levels [15]. When a per-
son is detected in the controlled area and the daylight lumi-
nance is below (above) a certain threshold, the controller
turns the light on (off).

Another type of lighting control is the dimming con-
trol (manual or automatic), where the light luminance is
controlled using DAC/PWM, which provides the control
voltage/duty cycle as discrete values [16].

In our work we have considered an open office area with
a typical architecture, as shown in Fig. 2. It contains
10 controlled zones; each zone contains one artificial light,
one light sensor and one Radio-Frequency Identification
(RFID) receiver. There are 4 windows/bindings on the
right and left borders of the open area, and a fixed number
of predefined occupant positions.

Fig. 2. Model Specification

Our lighting model includes integrated blind and light-
ing controls. In order to enhance the efficiency of the re-
sulting control model, an optimisation technique has been
implemented, as explained in Section V. The optimisation
engine selects the light luminance and blind position de-
pending on the user preferences and the energy consumed
by the artificial light and the blinding actuators.

In brief, the lighting system scenario behaves as follows:
1. The user can switch on/off the automatic lighting sys-

tem for several zones, or for the entire system (through
a technician).

2. The users provide their preferences (light luminance
and blinding position).

3. A person is tracked in each zone using RFID in order
to service his preferences, which are ignored whenever
he leaves his zone.

B. Control Strategy

In our PPD-Controller, the control functionality is dis-
tributed over 10 zones, where each zone contains one ar-
tificial light source and one light sensor. Depending on
the sensor reading, the local controller modifies the arti-
ficial light source to achieve the “optimal” ambient light.
It has been implemented as a closed loop controller, used
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to predict the next sample actuation value. The system is
constructed in a modular way, for example the controllers
of the zones that contain windows incorporate a separate
module for blinding actuation.

In order to increase the flexibility of the control system,
we have designed the controller so that a range of global
parameters can be assigned and/or reassigned by users at
any time. For example, the use can assign a priority pa-
rameter to specify that the occupants of a given zone have a
high priority; therefore they can exert full manual control.
The parameterization can also be used for setting different
parameters for the distributed local controllers (i.e. con-
sidering the blinding, switching on/off the local controller,
...). This can also help with the distributed optimisation
process, as will be explained later.

C. Control Model Description

In this section, we describe the overall control model.
Fig. 3 shows the model of a local controller and its inter-
actions with the environment models. The local controller
modifies the light intensity inside its zone as follows:

1. The preference solver receives the user preferences
for each zone, sends the optimal light luminance and
blinding position back to the local optimisation en-
gine.

2. The optimisation engine calculates the optimal actu-
ation settings (artificial light level, blinding position)
and sends them to the PI-Controller.

3. The controller actuates the artificial light and the
blinding position accordingly, then go to 2 only if
the preference has been changed otherwise the PI-
Controller actuates only the artificial light relying on
the external light and the light interference. The
controller ignores blind updates triggered by minor
changes in ambient light, since it leads to discomfort
for the users.

The PI-Controller, as shown in Fig. 3, is used to predict
the next actuation setting for the lighting level in a closed-
loop fashion [17] using Eq. 1. The light-level refinement is
one level, as the optimisation engine is used to recommend
the initial setting for the controller. The PI-Controller has
two main statuses: (a) the first is unstable when the dif-
ference between the sensed light intensity and the optimal
one is greater than 70 Lux (one light actuation level), and
(b) the second is stable, if the difference is less than or
equal to 70 Lux.

A Light/Blinding Occlusion Preference Solver agent is
used to provide the intermediate solution between several
luminance/glare preferences in the same controlled zone.

A(t+ 1) =A(t) + θ (1)
U(t) =A(t) +E(t) + I(t)

θ =


γ− β

ρ
, ∀ U(t)−S(t)> ε

β

ρ
− γ, ∀ S(t)−U(t)> ε

0, ∀ |S(t)−U(t)| ≤ ε

where: A(t) is the actuation setting for light/blinding
actuators, E(t) is the daylight intensity (Lux), I(t) is the
interference light intensity (Lux), U(t) is the sensed light
intensity (Lux), S(t) is the optimal preference settings, ε is
the luminance level produced from a single dimming level
(70 Lux), β is the maximum light intensity error (700 Lux),
γ is the minimal light intensity error (0 Lux) and ρ is the
total number of dimming levels (10 levels).

Fig. 3. Control Model

D. WSAN Deployment

We embed each PPD-Controller within a wireless node
in a WSAN. Each local controller communicates with a
light sensor, actuators (light, blinding), an RFID detector,
and also with the neighbouring local-controllers as shown
in Fig. 2. Each RFID device has been modelled as an
event-driven agent fired whenever a person comes/leaves
to/from the controlled zone, and then sends the occupancy
status to the local controller as a binary-encoded variable.
Therefore the wireless communication traffic is decreased
and the RFID receiver is in a sleep mode unless an event
occurred. This will induce savings in the consumed energy
by RFID device which leads to increase the battery life
time.

The neighbouring local-controllers communicate
through message-passing their own actuation values in
order for each controller to consider the expected light
interference. To avoid heavy communication traffic, the
communication is modelled as an event-driven that relies
on the actuation update.

Among the wireless devices, the light sensor appears to
be the most critical power-consumption device. This is due
to the fact that it should send frequent updates to the lo-
cal controller about the light luminance. Considering that
the transmitting/receiving sampling rate is adaptable, de-
pending on the local controller status, we modelled a mech-
anism to save power for light sensors. When the controller
is in a stable state, it sends a request to the sensor for a
decrease in its sampling rate, and when the controller goes
to an unstable state, it requests increasing of the sampling
rate in order to reach the stabilized phase more quickly. In
case the sensor is using the stable sampling rate and the
controller detects an unstable state, the controller will use
the last received sample until the current sampling period
is finished, and the sensor sampling rate is updated. Then,
the controller can then receive the new sample.
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IV. Charon Modelling of the Lighting System

In order to simulate the system and evaluate its perfor-
mances, the lighting system and its environment have been
modelled using the Charon toolset. In this section, the hy-
brid models for the PPD-Controller and the environments
are explained.

A. Charon Modelling of the Controller

In the Charon modelling, one agent is used for the global
controller, 2 other agents have been used to model the en-
vironments (external light and presence). For each zone,
4 agents are used: RFID, light sensor, blinding controller
and light controller (local controller). As mentioned ear-
lier, the global controller sets the configuration parameters
for the local controllers, e.g. activate/deactivate some con-
trollers (i.e. blinding controller) or some functions inside a
controller (i.e. considering or not the blinding). The local
controller contains 2 subagents, one is used to receive and
calculate the light interferences coming from the adjacent
zones, whereas the other one is used to send the actuation
values and trigger the optimisation engine. Each agent
contains a hierarchy of modes describing the correspond-
ing behaviour, for example the local controller mode shown
in Fig. 4, describes the behaviour of a local controller.

Fig. 4. Linear Hybrid Automata for the Local-Controller

B. Modelling of the Environment

There are two main environments for the lighting sys-
tem, the daylight and the person movement environments.
In order to verify the behaviour of the PPD-Controller,
both environments have been modelled using hybrid sys-
tems, as the daylight model has continuous behaviour while
the presence model has discrete behaviour.

In the daylight model shown in Fig. 5, five periods have
been modeled as a first order differential equation with a
constant slope (using linear hybrid automata [18]). Dur-
ing the first and last four hours of the day, the daylight

slope and luminance are equal to zero, while during the
second four hours the slope is equal to 100, which means
that the maximum intensity in the day is 4000 Lux. In the
next eight hours the slope is equal to zero and then goes
to -100 in the following four hours, in order to reach zero
luminance again at the end of the day. The light intensity
that comes to the controlled zone is a percentage of the
daylight intensity, this percentage relies on the dimensions
of the window. In this model, 8% of the daylight is consid-
ered as the external light coming into the controlled zone
[17].

The model for persons movement in the controlled zone
follows a deterministic distribution with respect to the day
time. In the first and last seven hours of the day, no one
is in the zone, from 7:00 to 10:00 AM people arrive succes-
sively, then during the next seven hours enter or exit with
a 50% probability, and finally, the next two hours people
leave individually.

Fig. 5. Linear Hybrid Automata for the Daylight Environment

V. Distributed Optimisation Process

The control platform provides an optimisation mecha-
nism that calculates the optimal artificial luminance level
and blinding position. Each local controller includes an op-
timisation engine, which receives the Optimal Light (OL)
and the Blinding Preference position (BF) provided by the
preference solver, and sends back to the controller the op-
timal settings. We have chosen to use the Genetic Al-
gorithm/Simulated Annealing (GASA) optimisation tech-
nique [19]. The stabilization of the overall optimisation
process is guaranteed through a certain number of tech-
niques including (1) linear interference predication, and
(2) a scheduler for the global controller that synchronies
local controllers.

A. GASA Optimisation Technique

Fig. 6 shows the GASA optimisation technique used to
evaluate the artificial light luminance and blinding posi-
tion in order to reach an intermediate optimal point be-
tween the user satisfaction and the energy consumption as
follows:

1. Select randomly a predefined percentage (for example
10%) from the search population.

2. Calculate the cost function for each solution point.
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3. Evaluate the Pareto points [20] and select the best
two point which have the lowest cost function.

4. Apply the Genetic Algorithm (GA) on the two points
selected previously to create a new solution point.

5. Apply the Simulated Annealing (SA) algorithm to the
new population.

6. Evaluate the optimal point.
7. The algorithms stops when the calculated optimal

point matches the stopping criteria, otherwise the cal-
culated optimal point is attached to the new search
population and the algorithm is repeated for another
cycle.

The optimisation engine defines the User Discomfort
(UD) as a function of the Blind Position Discomfort
(BPD) and the Luminance Discomfort (LD). Whereas
the Energy Consumption (EC) is defined as a function
of the BLL and Energy Cost Factor (ECF) of the blind
actuator. Blinding actuator’s energy has been considered
in the optimisation engine to avoid the frequent movement
of the blinding which leads to user uncomforting. The
corresponding metrics and equations are described below:

BPD =BF −BP
LD =OL− External Luminance (EL)−BLL
UD =BPD+LD
EL = Estimated Total EL (ETEL)− (ETEL ∗BP )
ETEL = CurrentEL ∗ (100%−CurrentBP )
EC =BLL+ECF ∗ (CurrentBP −BP )

The cost function is the sum of the optimisation metrics:
CostFunction(CF ) = UD+EC (2)

The search space population contains all the possible
values of the variables included in the system. Bulb Lumi-
nance Level (BLL) = {0%, 10%,.̇.,100%}, where 0% means
that there is no light intensity and 100% is the maximum
light intensity that comes from the bulb. Blinding Posi-
tion (BP) = {0%, 10%,.̇.,100%}, where 0% means that the
blinding is completely open and 100% is completely closed.

For the solution space, the optimisation engine consid-
ers all the visible solutions. Therefore, the Solution Space
Population = 10 for the lighting × 10 for the blinding =
100 possible solutions.

Each solution point is a combination of two parts; each
one is represented in binary format by 4 bits. The first
part presents the 10 BLL possibilities and the second part
is used for the 10 BP possibilities. In order to apply the
GA to the best two points, the first point exchanges its
BP (Blind1) part with the BLL (Lux2) part in the second
point. Therefore, the improvement has been applied only
on the BP in the first point and hence, the SA algorithm is
applied on the BLL (Lux1) part of the best point (lowest
cost function). In the SA algorithm, we consider 100%
refuse for the generated point if it’s cost higher than the
ex-optimal one.

B. Distributed Optimisation Techniques

When considering distributed controllers with local op-
timisation engines, the problem of instability occurs since

Fig. 6. GASA Optimisation Process

the decisions of the controllers are cyclical dependent. In
order to avoid the control instability due to cyclic effect
of interferences or at least reach a faster stable state, the
following features have been used in our model:

Luminance Boundaries: In order to distribute the
energy consumption over all the controlled zones, lumi-
nance boundaries have been set to limit the user’s prefer-
ences of exceeding 700 Lux. This will also limit the inter-
ferences between zones.

Tuning Process: As explained earlier, the optimisa-
tion engine uses a random initial population to select the
optimal setting. In order to improve the optimisation per-
formance, the last optimal settings are added into the next
search population. In this case, the optimal settings are
tuned to obtain faster more accurate values. The con-
troller is sensitive to 70 Lux margin corresponding to one
dimming artificial light level. If the sensed value is more
than 70 Lux different than the optimal one, the actuated
light is decreased by one dimming level (70 Lux) instead
of the exact Lux difference. This will diminish the inter-
ferences and then make faster the stabilization process.

Scheduling: The scheduling technique implemented in
the global controller allows further improvement to over-
come the instability due to the interferences. It follows
the pseudo-code depicted in Fig. 7. It basically defines
two sets of zones (S1, S2) where the zones of each set are
interference-independent from the zones of the other set.
S1 and S2 can then be executed concurrently. However this
technique does not handle the potential initial instability
cycle, and hence we have introduce the expected interfer-
ence mechanism described next.

S = all zones (1 ... 10)
Z = Pick Randomly one zone form S;
Add (Z) to S1;
Add All zones dependant on Z to S2;

While ((S1 U S2) <= S)
{

Si = All zones dependant on S2;
Add (Si) to S1;
Sj = All zones dependant on S1;
Add (Sj) to S2;

}
Return (S1, S2);

Fig. 7. Pseudo-code for the Schedular

Expected Interference: In the first running cycle, a
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local controller does not have any information about the
interferences that cause instability. To avoid this initial in-
stability, an expected interference parameter is introduced
using Linear Prediction Coding (LPC) algorithm. It is
based on Weighted Least Square Error (WLSE) technique,
the constant coefficients are calculated [21] using a specific
equation. The 5th order of the prediction filter polynomial
has been considered in order to cover a week period (5
working days), moreover the first sample is considered as
the average of the last week interferences. However in the
initial running cycle for the overall system, the predictor
does not have any value to start with, so it considers its
own optimal value as it is the actuated value in the neigh-
bour zone and then calculate the expected interference.
Due to space limitations, the details of the equations are
omitted in this paper, however are available in the internal
report [22].

Fig. 8 shows an experimental test for the algorithm ap-
plied to a local controller for a month (20 working days).
It is notable that the prediction error is always less than
70 Lux, which means that even considering the predicted
values the controller will reach the correct actuation deci-
sion.

Fig. 8. Linear Prediction for the Interference During a Month

The simulation results show that due to the previous
factors, the lighting controller gets stabilized after 2 cy-
cles (maximum), however in [23] the system stability needs
100 cycles. Fig. 9(a) and Fig. 9(b) show the luminance
changing in 3 neighbour zones before and after applying
the aforementioned techniques, respectively.

VI. Evaluation Study

In order to verify the modelling technique and show its
similarity to the real environment, we compared the sim-
ulation of a 10-level dimming PI-Controller with a real
scenario. The case study considers a single zone that con-
tains an external light source (window), with 600 Lux as
the maximum luminance that can be supplied and 350 Lux
is the set point.

In order to evaluate the accuracy of the simulations
models, we have compared our simulation results for the
aforementioned model to a dataset from [17]. Fig. 10
shows light luminance variations for the experimental and
the simulation model. Although we ignored several light-
ing factors, e.g. sky luminance distribution, window solar
transmittance and visible reflectance of interior surfaces,
the two curves reflect similar variations. This is mainly due
to the control sensitivity, where 60 Lux sensitivity covers

(a) Before the Tuning

(b) After the Tuning

Fig. 9. Lighting Tuning Process

the influences of such factors.

Fig. 10. Experimental Results Vs. Modelling Results

A. Lighting Baseline Models

In order to evaluate the potential improvement in power
consumption, stability and response time, we have con-
sidered two control models as a baseline. These models
are among the most popular control techniques, and have
been applied to the same aforementioned scenario specifi-
cation. In the first model scenario, called the Null model,
the control strategy is based on user presence, where the
controller switches the light on given a (fixed) predefined
preference whenever a person is detected using Passive In-
fraRed (PIR) sensor. Moreover, the user can turn on/off
the automatic lighting system for several zones, or for the
entire system.

The second control model uses a standard PI-Controller
[24] in order to predict the next actuation sample, depend-
ing on the accumulation of the pervious actuation errors,
the daylight and the light interference.

B. Simulation Results

In this section we outline the simulation results for the
PPD-Controller. Fig. 11 shows that the distributed con-
trol strategy has lower expected delay than the centralized
one for the Null model.
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Fig. 11. Centralized Vs. Distributed Controller

In the rest of the section we describe the simulation re-
sults for single and multiple zone(s) models, the energy
consumption, and the WSAN performance evaluation.

Single Zone : In the single zone lighting control, we
have considered a scenario of one controlled zone with one
external light source (window) as a source of daylight lu-
minance. To allow a clear comparison of the different re-
sults, we have fixed the preferences for all the persons in-
side the controlled area as 50% blinding occlusion and 560
Lux (500 Lux, European law UNI EN 12464). As shown
in Fig. 12(a), the GASA optimisation engine selects the
optimal blinding occlusion, which affects the external light
coming into the controlled zone as depicted in Fig. 12(b).
During the period from 12:00-7:00 AM, no person is in the
controlled zone, and then the controller switches the arti-
ficial light off. In this case the light sensor detects only
the external light intensity as internal light, the controller
is then in a stable state and will request the WSAN to
increase its sampling period to 12 min in order to save
battery power, as shown in Fig. 12(d). When people start
coming at 7:00 AM, the controller actuates the artificial
light to 420 Lux and requests a faster sampling rate (1/6
min), which allows the controller to reach a stable setting
faster. The controller considers 70 Lux as an acceptable
difference margin between the sensed internal light and a
given optimal light (calculated by the preference solver).
If this margin exceeds 70 Lux, the controller updates the
artificial light as illustrated in Fig. 12(c), where the artifi-
cial actuation is increased to 490 Lux when (at 7:00 PM)
the external light decreased to make the margin exceed 70
Lux.

Multiple Zones: Unlike the single-zone model, the
multi-zone controller considers the light interference be-
tween the different controlled zones. Fig. 13 shows the
simulation results for zone 1 and zone 3. These two zones
have been chosen for illustrative purposes; zone 1 has a
window that provides external light, whereas zone 3 is an
internal zone and it is affected by the light interference
coming from zone 1 (Fig. 2). Based on the WSAN eval-
uation of the sampling interval for the light sensors, the
minimum periods are: 36 sec in the unstable state and 6
min for the stable state. It is obvious that the internal light
in zone 3 is more stable than in zone 1 which indicates an
advantage for the sensor’s battery power consumption by
increasing its sleeping period. From the optimisation side,

(a) Blinding Actuation

(b) External Light coming to Zone1

(c) Artificial Light Actuation & Internal Light

(d) Light Sensor Sampling Intervals

Fig. 12. Lighting Control for a Single Zone

the GASA optimisation engine is used to select a meta-
optimal point between the energy consumption and the
user comfort. As notable in Fig. 13(c), the GASA optimi-
sation engine gives 40% blinding occlusion while the user
requested 50%.

Energy Saving : In order to compare between different
control strategies, we have used the luminance consump-
tion in Lux as the energy consumption metric. Fig. 14
shows the summing of Lux consumed over time in all the
zones for Null, PI-Controller and PPD-Controller strate-
gies using a constant user preference (500 Lux). This pri-
mary test concludes that the PI-Controller improves en-
ergy consumption by 29% over the Null strategy; how-
ever PPD-Controller shows a 32% improvement, and hence
the PPD-Controller improves 3.1% comparing to the PI-
Controller for one time change in the user preference, as
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(a) Artificial Light Actuation & Internal Light/Zone3

(b) Artificial Light Actuation & Internal Light/Zone1

(c) Blinding Actuation/Zone1

(d) Light Sensor Sampling Intervals/Zone1&3

Fig. 13. Lighting Control for Multi Zones

shown in Fig. 16. In order to evaluate the optimisation
engine, we consider that the minmal number of user pref-
erence changes per day is three (650, 500, 700 Lux), Fig.
15 shows the energy consumption for each strategy; the
PI-Controller and PPD-Controller show 23% and 32% im-
provement, respectively, as shown in Fig. 16. We conclude
that the optimisation engine saves nearly 3% of the energy
consumption for each execution.

C. WSAN Performance Evaluation Results

In addition to the Hybrid/Multi-agent model explained
earlier, the associated embedded Java code has been em-
ulated using the Sun-Spot emulator [7]. The results pro-
duced by the emulator are matched to the simulation re-
sults obtained using the Charon simulator. We have also
attempted to use the emulator to evaluate the network’s
performance; we found the tool to be inappropriate for

Fig. 14. Energy Consumption Using Fixed User Preference

Fig. 15. Energy Consumption Using Variable User Preference

such test, since it is dedicated to development, debugging
and testing. For this reason we evaluate the WSAN QoS
using a more appropriate tool, VisualSense.

The QoS network performance metrics that we consider
include buffer size, time response, packet loss (caused by
packet collision), controller/receiver duty cycle, channel
throughput and sensor’s battery life time. Due to space
limitations we show only the main results of the evalua-
tion; a detailed description of the study is described in
[22].

Table I provides the evaluation results for each model
during 100 samples (100 minutes). It clearly shows that
the PPD approach performs better than the centralized
controller. The centralized controller has a higher collision
probability in comparison to the PPD; moreover, it needs
more memory to save the received requests, which leads to
high controller duty-cycle and low time-response. This is
due to the delay that can reach 287 minutes (479 samples
and 0.6 min for service time) to serve the next request un-
der a no drop-out strategy [25]. In relation to the battery
lifetime for the sensors, all models have the same expected
lifetime because of the fixed sampling rate for the sensors.

VII. Summary and Conclusion

This article described a model-based distributed con-
troller for lighting systems, called a parameterizable and
predictable distributed (PPD) controller. The parameter-
izable capability has been implemented through assigning
global parameters, which alter the behaviours of the local
controllers. The PPD-Controller incorporates an optimi-
sation engine to compute the optimal settings for increased
energy-efficient control. The local optimisations are coor-
dinated to achieve a level of global optimlity, using some
features and heuristics to guarantee better control stabil-
ity. These features enable us to overcome the potential
instability in our lighting model due to the limited inter-
ference of lighting levels across the zones. However, for



: 9

TABLE I

WSAN QoS

Single Zone PPD Multiple Zones PPD Centralized Controller Improvement

Packet Loss 0% 4% 8.6% ∼ 53-100%

Buffer Size 5 packets 9 packets 479 packets ∼ 98%

Controller Duty Cycle 35% 66% 100% ∼ 34-65%

Response Time (after 100 samples) 1.8 minute 3 minute 287 minutes ∼ 98-99%

Channel Throughput 0.58 packet/min 1.1 packet/min 6.46 packet/min ∼ 82-91%

Battery Life Time 79.72 days 79.72 days 79.72 days 0%

Fig. 16. Energy Saving

more interference-sensitive systems like HVAC, more so-
phisticated techniques are necessary .

As future work, we intend to implement a demonstra-
tion of the developed system in an actual building, the
Environmental Research Institute (ERI) building, which
is the ITOBO “Living Laboratory” [26]. We also intend
to adapt this work to a more complex scenario including
HVAC control.
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