

Elena Maftei, Paul Pop, Jan Madsen

Technical University of Denmark DTU Informatics

www.dreamstime.com

Digital Microfluidic Biochip

Biochip created at Duke University

Microfluidic Biochips

- Applications
 - Sampling and real time testing of air/water for biochemical toxins
 - Detection of adverse atmospheric conditions
 - DNA analysis and sequencing
 - Clinical diagnosis
 - Point of care devices
- Types:
 - Continuous flow microfluidic biochips
 - Digital microfluidic biochips

Microfluidic Biochips

- Advantages:
 - High throughput (reduced sample / reagent consumption)
 - Space (miniaturization)
 - Time (parallelism)
 - Automation (minimal human intervention)

- Motivation
- Architecture
- Typical Design Tasks
- Problem Formulation
- Proposed Solution
 - GRASP-Based Synthesis
- Experimental Evaluation
- Conclusions

Architecture and Working Principles

Biochip architecture

Dilution

Architecture and Working Principles

Biochip architecture

Dilution

Architecture and Working Principles

Biochip architecture

- Dispensing
- Transport
- Mixing
- Dilution

Operation	Area(cells)	Time(s)
Mix/Dlt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

Allocation			
Operation	Area(cells)	Time(s)	
Mix/DIt	2x4	2.8	
Mix/Dlt	1x4	4.6	
Mix/Dlt	2x3	5.6	
Mix/Dlt	2x2	9.96	

Allocation			
Operation	Area(cells)	Time(s)	
Mix/DIt	2x4	2.8	
Mix/DIt	1x4	4.6	
Mix/DIt	2x3	5.6	
Mix/Dlt	2x2	9.96	

Binding & Scheduling

Allocation			
Operation	Area(cells)	Time(s)	
Mix/DIt	2x4	2.8	
Mix/Dlt	1x4	4.6	
Mix/DIt	2x3	5.6	
Mix/Dlt	2x2	9.96	

- Disadvantages of modules:
 - Pessimistic segregation area
 - Routing performed post-synthesis

- Disadvantages of modules:
 - Pessimistic segregation area
 - Routing performed post-synthesis

Eliminate the concept of modules: Routing-based synthesis

Characterize Droplet Movement

Characterize Droplet Movement

Characterize Droplet Routing

Operation	Area(cells)	Time(s)
Mix/Dlt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

Characterize Droplet Routing

Operation	Area(cells)	Time(s)
Mix/DIt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

Routing-Based Synthesis

Module-Based Synthesis

Problem Formulation

- Input
 - Sequencing graph
 - Library of modules
 - Area constraint
- Output
 - Implementation which minimizes application execution time
 - Allocation of modules from modules library
 - Binding of modules to operations in sequencing graph
 - Scheduling of operations
 - Routes of the droplets

- Module-based
- Routing performed as a post-synthesis process
 - A*-based: K. F. Bohringer: Towards optimal strategies for moving droplets in digital microfluidic systems. 2004
 - Lee-based: F. Su et all.: Droplet routing in the synthesis of digital microfluidic biochips. 2006
 - Network flow-based: P.-H. Yuh et all.: A network-flow-based routing algorithm for the synthesis of digital microfluidic biochips.

- Module-based
- Routing performed as a post-synthesis process
 - A*-based: K. F. Bohringer: Towards optimal strategies for moving droplets in digital microfluidic systems. 2004
 - Lee-based: F. Su et all.: Droplet routing in the synthesis of digital microfluidic biochips. 2006
 - Network flow-based: P.-H. Yuh et all.: A network-flow-based routing algorithm for the synthesis of digital microfluidic biochips.
- Routing done between modules: given start and end points

- Module-based
- Routing performed as a post-synthesis process
 - A*-based: K. F. Bohringer: Towards optimal strategies for moving droplets in digital microfluidic systems. 2004
 - Lee-based: F. Su et all.: Droplet routing in the synthesis of digital microfluidic biochips. 2006
 - Network flow-based: P.-H. Yuh et all.: A network-flow-based routing algorithm for the synthesis of digital microfluidic biochips.
- Routing done between modules: given start and end points
 Goal: minimizing the performed routing

Proposed Solution

Proposed Solution

Proposed Solution

- For each droplet:
 - Determine possible moves
 - Evaluate possible moves
 - Make a list of best N possible moves
 - Perform a randomly chosen possible move

- For each droplet:
 - Determine possible moves
 - Evaluate possible moves
 - Make a list of best N possible moves
 - Perform a randomly chosen possible move

- For each droplet:
 - Determine possible moves
 - Evaluate possible moves
 - Make a list of best N possible moves
 - Perform a randomly chosen possible move

- For each droplet:
 - Determine possible moves
 - Evaluate possible moves
 - Make a list of best N possible moves
 - Perform a randomly chosen possible move

- For each droplet:
 - Determine possible moves
 - Evaluate possible moves
 - Make a list of best N possible moves
 - Perform a randomly chosen possible move

Experimental Evaluation

- GRASP algorithm implemented in Java
- Improvement brought by Routing-Based Synthesis (RBS) compared to Module-Based Synthesis*(MBS)
 - Two real-life applications
 - Ten synthetic bechmarks

E. Maftei at all.: *Tabu Search-Based Synthesis of Dynamically Reconfigurable Digital Microfluidic Biochips*. CASES, 2009.

Improvement of RBS vs. MBS in schedule length

Colorimetric protein assay

- Addressed design problems characteristic to digital microfluidic biochips.
- Eliminated the concept of "virtual modules" and proposed a routing-based synthesis approach.
- Proposed a method for determining the percentage of operation completion on a given route.
- Proposed a GRASP-based algorithm for showing that routing-based synthesis leads to significant improvements compared to module-based synthesis.

...and answers