
Automatic parallelization of nested loop 
programs with data dependent behavior

Tjerk Bijlsma
Stefan Geuns
Joost Hausmans
Marco Bekooij



June 30, 2010 2

Outline
• Application domain

• Case-study radio application

• State-of-the-art

• Parallelization approach

• Buffers with overlapping windows

• Access pattern types

• Multiprocessor compiler

• Conclusions



June 30, 2010 3

Application domain
Real-time stream processing car-infotainment systems

Advanced radios contain multiple processors



June 30, 2010 4

Case-study radio application
mode=0;
while(1){

in=input();
switch(mode){

case 0: {
detect(in, out mode@);}
case 1: {
decode(in, out mode@, out o1);
process1(o1, out o2);
process2(o2);} 

}
}



June 30, 2010 5

Case-study radio application
mode=0;
while(1){

in=input();
switch(mode){

case 0: {
detect(in, out mode@);}
case 1: {
decode(in, out mode@, out o1);
process1(o1, out o2);
process2(o2);} 

}
}

Note:
• A while-loop instead of a bounded for-loop, not in single assignment form
• Variable “in” is read multiple times
• Variable “mode” is written for both case 0 and 1

• Multiple writing functions for “mode”
• Conditional update

• Conditional execution of functions



June 30, 2010 6

State-of-the-art
• Parallelization approaches

– Decoupled SoftWare Pipeling (Princeton)
• Derives parallelism based on a control dataflow graph

– Compaan (Leiden)
• Derives maximum parallelism based upon exact data dependence analysis

– Daniel Cordes (Dortmund)
• Derives parallelism based upon data dependence analysis and control flow

– No support for data dependent behavior (while-loops, if-statements)

• Temporal analysis models
– Most end-2-end throughput analysis techniques have difficulties with input 

data dependent behavior



June 30, 2010 7

Parallelization approach

• Every function becomes a task

• A shared variable is replaced by a buffer with overlapping windows
– Buffers support multiple readers
– Buffers can have multiple mutual exclusive writers

• That writes are mutual exclusive is explicit in the NLP but not in the task-graph

• A corresponding CSDF model can be derived
– Guarantee throughput for real-time constraint

• Less restrictive form of single assignment required

mode=0;
while(1){

in=input();
switch(mode){

case 0: {
detect(in, out mode);}

case 1: {
decode(in, out mode, out o1);
process1(o1, out o2);
process2(o2);} 

}
}



June 30, 2010 8

Buffers with overlapping windows
• Read and write windows may overlap

– Each written value can be read immediately, instead of at the moment that it falls outside the 
write window

– Prevents deadlock in case of cyclic dependencies

• Multiple reading and writing tasks

• Array size as buffer capacity, sufficient for deadlock freedom

read window write window

x

x

x

x

Full-bits



June 30, 2010 9

Buffers with overlapping windows
• Read and write windows may overlap

– Each written value can be read immediately, instead of at the moment that it falls outside the 
write window

– Prevents deadlock in case of cyclic dependencies

• Multiple reading and writing tasks

• Array size as buffer capacity, sufficient for deadlock freedom

read window write window

x

x

x

x

Full-bits

x

1



June 30, 2010 10

Access pattern types
• Access type indicates that there is FIFO access for variable, such that 

FIFO buffer can be used
– Results in smaller buffers
– Allows acquires and releases inside the switch statements



June 30, 2010 11

Access pattern types
• Access type indicates that there is FIFO access for variable, such that 

FIFO buffer can be used
– Results in smaller buffers
– Allows acquires and releases inside the switch statements



June 30, 2010 12

Multiprocessor compiler

Platform specific

Debug



June 30, 2010 13

Multiprocessor compiler flow



June 30, 2010 14

Conclusion
• Automatic parallelization

– We can automatically extract a task graph from a data dependent NLP
• Is (should be  ) correct by construction
• May contain an infinite loop for endless stream processing
• May contain if-statements

– Buffers with overlapping windows can be used for multiple reading and 
writing tasks

– The access pattern type has been introduced

• The automatic parallelization approach is implented in a 
multiprocessor compiler



June 30, 2010 15

Questions


