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Motivation

Goal: Combine 
Real-time, e.g. augmented reality, SDR
Best-effort, e.g. office, games, 
On general-purpose many-cores

Consumer devices (phones, PCs)

Vision: “App Store” for real-time applications
Provide guaranteed performance on a multitude
of devices

System-level challenges:
Resolve resource conflicts (predictability)
Application diversity (throughput vs. guarantees)
Applications change at run time

Hard-
RT Soft-RT

Source: Nokia

General-
purpose
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Characteristics of Application Classes

Best-effort applications
Most existing applications, major role in user 
experience “first-class citizen”
Unpredictable and bursty resource usage
Latency-sensitive: Application performance 
degrades with higher latency

Real-time streaming applications
Require resource and timing guarantees

Resource sharing must be under control for 
efficient co-execution

Regular access patterns Latency-tolerant: 
Performance does not degrade with higher 
latency (up to a certain latency bound)

Utility 
(~Performance)

Latency

Utility

Latency

Hard RT

Soft RT

Best effort
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General-Purpose Many-Cores = all shared resources

Cores

Packet switched Network-on-Chip interconnect

Multi-level caches
Private L1 (+L2)
Distributed shared last-level cache (accessible via NoC)

Multi-channel off-chip memory

Currently, resource sharing is managed 
by first-come first-serve strategies

Infeasible for guarantees!

MC MC

MC MC

Processor Core(s)

Cache Tile Router

Need predictable resource sharing
mechanisms = Platform QoS

Question:
How can we provide end- 
to-end guarantees using 

individual resource 
sharing mechanisms?
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Resource Management

1. Applications request resources 
from resource manager by 
providing an application model 
with timing / resource constraints

2. Resource manager performs 
mapping of application model

3. Application constraints and 
platform limitations are validated

Go back to mapping if constraints 
are not met

4. Lightweight platform QoS 
mechanisms for predictability

Application
model

Mapping

Constraint
validation

cf. e.g.  [terBraak2010], [Shankar1999]

Enforcement
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Resource Management Infrastructure – Enforcement 

Individual mechanisms
Cores: Scheduling, SMT policy
Cache: Address mapping [Cho2007], 
locking[Vera2003] and/or partitioning [Kim2004]
NoC: Lightweight Throughput Guarantees 
[Diemer2010a,b]
Memory: Priorities, rate limits [Heithecker2005]

Controlled by registers, config. messages

No compromises of BE throughput!

Application

Constraint
validation

MC MC

MC MC

Mapping

Enforcement
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Example: BE-Optimized QoS for NoCs

Existing mechanisms put BE in background (low priority, idle slots)

Idea: Exploit latency tolerance of RT streaming applications to improve BE latency

Approach: Prioritize BE as long as guaranteed throughput (GT) traffic makes 
sufficient progress “Back Suction” [Diemer2010b]

Progress measured by buffer occupancy (similar to Back Pressure)
Prioritize GT only if downstream buffer occupancy low

30% latency 
improvement over 
standard prioritization 
scheme

0,7
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1,1

Canneal StreamCl.

Application Runtime

Prio Uniform DTS Uniform

Prio Tornado DTS Tornado

Improve application 
performance by ~ 10%
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Back Suction Architecture

Reserve one set of VC (source sink) per GT stream at run-time

Limit rate (to guaranteed rate) at which sink may assert back suction

Threshold Module at every VC
Forward back suction signal on low occupancy towards upstream
Threshold determines how early prioritization of GT propagates towards sink 

Thr.Thr.

Rate
Limit

Arbiter Thr. ArbiterThr.
Back

Suction

Router 1 Router 2 Sink

GT VC GT VC
GT stream



May 05, 2010 | Jonas Diemer | Back Suction | Page 10

Prioritize BE: Selective-Priority Arbiter

Separate arbiters

BE: Winner-takes-all

GT: Round-robin
Priority selection logic

Select BE or GT 
based on 

Signal aN

Presence of BE/GT
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Resource Management Infrastructure – Validation

Validate timing constraints
Overlapping GT streams require scheduling 
analysis to guarantee individual throughputs
Throughput guarantees depend on selection 
of suction threshold

Analysis to determine minimum threshold

Validate resource availability
Number of overlapping GT connections 
limited by available virtual channels
Available VC buffer space must be larger 
than suction threshold
Granularity of guarantees (rate limiter, 
threshold)

Application

Mapping

Enforcement

Constraint
validation
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Real-Time Analysis of Back Suction (1)

Overlapping GT streams share a
router output port

Scheduling analysis
(similar to Network Calculus)

Stream = task
Output port = resource
Back Suction = task activation
Rate limit at sink = worst case arrival
function

Round-robin analysis at every router:
Worst-case service 
Worst-case backlog 
Threshold & Worst-case response time 
Output event model

Time window (cycles)

Max. 
number 
of back 
suction 
events
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Real-Time Analysis (2)

Analysis performed on-line as part of the resource management process
Analyze at sink first (where we already have an activation model)
Propagate models from sinks towards sources

Analysis time for system ~ 10-100ms (non-optimized python code!)

Router 1 Router 1 Sink 1

Sink 2

Source

Analysis result:
Feasibility, 

Suction thresholds
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Resource Management Infrastructure – Mapping

Map RT applications
Tasks Processing core
Communication GT/GL NoC Links
Buffers Locked/partitioned cache

Optimization (heuristic)

Feedback from validation phase

Application

Constraint
validation

Enforcement

MC MC

MC MC
Mapping
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Resource Management Infrastructure – Application Model

Request specification: abstract extended 
DFG model for real-time applications

Characterization of best-effort applications
Obtained from monitoring
Optional, to guide mapping heuristics

Mapping

Constraint
validation

Enforcement

BE

RT
Application
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Conclusion

Mixing real-time and best-effort applications efficiently is 
challenging

Worst-case predictability vs. best-effort throughput

Platform with light-weight QoS
Predictable sharing mechanisms for individual resources
Low overhead and little negative effect on best-effort 
throughput (e.g. Back Suction)

Need system-level resource management to
Give end-to-end guarantees based on individual mechanisms 
Overcome resource dependencies
Perform run-time mapping
Handle limitations of QoS mechanisms

Mapping

Constraint
validation

Enforcement

Application
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