
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Jonas Diemer, Rolf Ernst
diemer@ida.ing.tu-bs.de
Map2MPSoC Workshop 2010, 29 June 2010

Challenges of Mapping Real-Time Streaming
Applications to General Purpose Manycores

May 05, 2010 | Jonas Diemer | Page 2

Motivation and Introduction

Resource Management Approach

QoS Enforcement and Analysis for the NoC

Conclusion

Outline

May 05, 2010 | Jonas Diemer | Page 3

Motivation

Goal: Combine
Real-time, e.g. augmented reality, SDR
Best-effort, e.g. office, games,
On general-purpose many-cores

Consumer devices (phones, PCs)

Vision: “App Store” for real-time applications
Provide guaranteed performance on a multitude
of devices

System-level challenges:
Resolve resource conflicts (predictability)
Application diversity (throughput vs. guarantees)
Applications change at run time

Hard-
RT Soft-RT

Source: Nokia

General-
purpose

May 05, 2010 | Jonas Diemer | Page 4

Characteristics of Application Classes

Best-effort applications
Most existing applications, major role in user
experience “first-class citizen”
Unpredictable and bursty resource usage
Latency-sensitive: Application performance
degrades with higher latency

Real-time streaming applications
Require resource and timing guarantees

Resource sharing must be under control for
efficient co-execution

Regular access patterns Latency-tolerant:
Performance does not degrade with higher
latency (up to a certain latency bound)

Utility
(~Performance)

Latency

Utility

Latency

Hard RT

Soft RT

Best effort

May 05, 2010 | Jonas Diemer | Page 5

General-Purpose Many-Cores = all shared resources

Cores

Packet switched Network-on-Chip interconnect

Multi-level caches
Private L1 (+L2)
Distributed shared last-level cache (accessible via NoC)

Multi-channel off-chip memory

Currently, resource sharing is managed
by first-come first-serve strategies

Infeasible for guarantees!

MC MC

MC MC

Processor Core(s)

Cache Tile Router

Need predictable resource sharing
mechanisms = Platform QoS

Question:
How can we provide end-
to-end guarantees using

individual resource
sharing mechanisms?

May 05, 2010 | Jonas Diemer | Page 6

Resource Management

1. Applications request resources
from resource manager by
providing an application model
with timing / resource constraints

2. Resource manager performs
mapping of application model

3. Application constraints and
platform limitations are validated

Go back to mapping if constraints
are not met

4. Lightweight platform QoS
mechanisms for predictability

Application
model

Mapping

Constraint
validation

cf. e.g. [terBraak2010], [Shankar1999]

Enforcement

May 05, 2010 | Jonas Diemer | Page 7

Resource Management Infrastructure – Enforcement

Individual mechanisms
Cores: Scheduling, SMT policy
Cache: Address mapping [Cho2007],
locking[Vera2003] and/or partitioning [Kim2004]
NoC: Lightweight Throughput Guarantees
[Diemer2010a,b]
Memory: Priorities, rate limits [Heithecker2005]

Controlled by registers, config. messages

No compromises of BE throughput!

Application

Constraint
validation

MC MC

MC MC

Mapping

Enforcement

May 05, 2010 | Jonas Diemer | Page 8

Example: BE-Optimized QoS for NoCs

Existing mechanisms put BE in background (low priority, idle slots)

Idea: Exploit latency tolerance of RT streaming applications to improve BE latency

Approach: Prioritize BE as long as guaranteed throughput (GT) traffic makes
sufficient progress “Back Suction” [Diemer2010b]

Progress measured by buffer occupancy (similar to Back Pressure)
Prioritize GT only if downstream buffer occupancy low

30% latency
improvement over
standard prioritization
scheme

0,7
0,75

0,8

0,85

0,9

0,95

1

1,05

1,1

Canneal StreamCl.

Application Runtime

Prio Uniform DTS Uniform

Prio Tornado DTS Tornado

Improve application
performance by ~ 10%

May 05, 2010 | Jonas Diemer | Page 9

Back Suction Architecture

Reserve one set of VC (source sink) per GT stream at run-time

Limit rate (to guaranteed rate) at which sink may assert back suction

Threshold Module at every VC
Forward back suction signal on low occupancy towards upstream
Threshold determines how early prioritization of GT propagates towards sink

Thr.Thr.

Rate
Limit

Arbiter Thr. ArbiterThr.
Back

Suction

Router 1 Router 2 Sink

GT VC GT VC
GT stream

May 05, 2010 | Jonas Diemer | Back Suction | Page 10

Prioritize BE: Selective-Priority Arbiter

Separate arbiters

BE: Winner-takes-all

GT: Round-robin
Priority selection logic

Select BE or GT
based on

Signal aN

Presence of BE/GT

May 05, 2010 | Jonas Diemer | Page 11

Resource Management Infrastructure – Validation

Validate timing constraints
Overlapping GT streams require scheduling
analysis to guarantee individual throughputs
Throughput guarantees depend on selection
of suction threshold

Analysis to determine minimum threshold

Validate resource availability
Number of overlapping GT connections
limited by available virtual channels
Available VC buffer space must be larger
than suction threshold
Granularity of guarantees (rate limiter,
threshold)

Application

Mapping

Enforcement

Constraint
validation

May 05, 2010 | Jonas Diemer | Page 12

Real-Time Analysis of Back Suction (1)

Overlapping GT streams share a
router output port

Scheduling analysis
(similar to Network Calculus)

Stream = task
Output port = resource
Back Suction = task activation
Rate limit at sink = worst case arrival
function

Round-robin analysis at every router:
Worst-case service
Worst-case backlog
Threshold & Worst-case response time
Output event model

Time window (cycles)

Max.
number
of back
suction
events

May 05, 2010 | Jonas Diemer | Page 13

Real-Time Analysis (2)

Analysis performed on-line as part of the resource management process
Analyze at sink first (where we already have an activation model)
Propagate models from sinks towards sources

Analysis time for system ~ 10-100ms (non-optimized python code!)

Router 1 Router 1 Sink 1

Sink 2

Source

Analysis result:
Feasibility,

Suction thresholds

May 05, 2010 | Jonas Diemer | Page 14

Resource Management Infrastructure – Mapping

Map RT applications
Tasks Processing core
Communication GT/GL NoC Links
Buffers Locked/partitioned cache

Optimization (heuristic)

Feedback from validation phase

Application

Constraint
validation

Enforcement

MC MC

MC MC
Mapping

May 05, 2010 | Jonas Diemer | Page 15

Resource Management Infrastructure – Application Model

Request specification: abstract extended
DFG model for real-time applications

Characterization of best-effort applications
Obtained from monitoring
Optional, to guide mapping heuristics

Mapping

Constraint
validation

Enforcement

BE

RT
Application

May 05, 2010 | Jonas Diemer | Page 16

Conclusion

Mixing real-time and best-effort applications efficiently is
challenging

Worst-case predictability vs. best-effort throughput

Platform with light-weight QoS
Predictable sharing mechanisms for individual resources
Low overhead and little negative effect on best-effort
throughput (e.g. Back Suction)

Need system-level resource management to
Give end-to-end guarantees based on individual mechanisms
Overcome resource dependencies
Perform run-time mapping
Handle limitations of QoS mechanisms

Mapping

Constraint
validation

Enforcement

Application

May 05, 2010 | Jonas Diemer | Page 17

References

[Braak2010]: Timon D. ter Braak and Philip K.F. Hölzenspies and Jan Kuper and Johann L. Hurink and
Gerard J.M. Smit, “Run-time Spatial Resource Management for Real-Time Applications on
Heterogeneous MPSoCs”, DATE 2010

[Shankar1999]: Shankar, M. and De Miguel, M. and Liu, J.W.S., “An end-to-end QoS management
architecture”, RTAS 1999

[Diemer2010a]: Diemer, J. and Ernst, R. and Kauschke, M., “Efficient Throughput-Guarantees for
Latency-Sensitive Networks-On-Chip” ASP-DAC 2010

[Diemer2010b]: J. Diemer and R. Ernst, “Back Suction: Service Guarantees for Latency-Sensitive On-
Chip Networks”, NOCS 2010

[Cho2007]: Cho, S. and Jin, L. and Lee, K., “Achieving Predictable Performance with On-Chip Shared
L2 Caches for Manycore-Based Real-Time Systems”, RTCSA 2007

[Vera2003]: X. Vera and B. Lisper and J. Xue, “Data cache locking for higher program predictability”,
SIGMETRICS 2003

[Kim2004]: S. Kim and D. Chandra and Y. Solihin, ”Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture”, PACT 2004

[Akesson2007]: Akesson, B.; Goossens, K. & Ringhofer, M., “Predator: A predictable SDRAM memory
controller”, CODES+ISSS 2007

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Jonas Diemer, diemer@ida.ing.tu-bs.de

Thank You for Your Attention!
Questions?

	Challenges of Mapping Real-Time Streaming Applications to General Purpose Manycores
	Outline
	Motivation
	Characteristics of Application Classes
	General-Purpose Many-Cores = all shared resources
	Resource Management
	Resource Management Infrastructure – Enforcement
	Example: BE-Optimized QoS for NoCs
	Back Suction Architecture
	Prioritize BE: Selective-Priority Arbiter
	Resource Management Infrastructure – Validation
	Real-Time Analysis of Back Suction (1)
	Real-Time Analysis (2)
	Resource Management Infrastructure – Mapping
	Resource Management Infrastructure – Application Model
	Conclusion
	References
	Thank You for Your Attention!�Questions?

