Accelerated Design Space Exploration for Heterogeneous MPSoCs Using Symbolic Techniques

3rd Workshop on Mapping of Applications to MPSoCs 2010, June 29th

Christian Haubelt (haubelt@cs.fau.de) University of Erlangen-Nuremberg, Germany

With contributions from: M. Glaß, M. Lukasiewycz, F. Reimann, T. Schlichter, J. Teich

© University of Erlangen-Nuremberg Christian Haubelt

Design Space Exploration

Pareto Dominance

Without loss of generality, only minimization problems are assumed in the following

Optimization Goals

- Find Pareto-optimal solutions
- or a good approximation (convergence, diversity)
- with a minimal number of function calls

Design Space Exploration

- Design Space Exploration is a twofold task:
 - How can a single design point be evaluated?
 - How can the design space be covered during the exploration process

Multi-Objective Evolutionary Algorithms

- > Many design points are explored in parallel
- Recombination (Mutation, Crossover) tries to improve already good solutions
- Requires appropriate problem encoding

Problem Statement

© University of Erlangen-Nuremberg Christian Haubelt

Outline

- Problem Formulation
- The Decision Problem
- Symbolic Representation
- SAT Decoding
- SMT Decoding
- > Summary

Platform-Based System Synthesis

© University of Erlangen-Nuremberg Christian Haubelt

Resource Allocation

Resource allocation, i.e., select resources from a platform for implementing the application

Process Binding

- Process binding, i.e., bind processes onto allocated computational resources
- > Each process has to be bound exactly once

Channel Mapping

- Channel mapping, i.e., assign channels to address spaces
- > Each channel has to be mapped exactly once

Transaction Routing

- Transaction routing, i.e., compute paths over allocated resources for all memory accesses
- Transactions, which cannot be routed, lead to infeasible solutions

Problem Statement

feasibility preserving decoding?

How to represent feasible set?

Outline

- Problem Formulation
- > The Decision Problem
- Symbolic Representation
- SAT Decoding
- SMT Decoding
- > Summary

Formalizing the Constraints: Allocation

 $\varphi = (r_1 \vee r_2 \vee r_3 \vee r_4 \vee r_5)$

Formalizing the Constraints: Binding

$$\varphi = (r_1 \lor r_2 \lor r_3 \lor r_4 \lor r_5)$$

$$\land (m_{A1} \land (m_{A1} \rightarrow r_1))$$

$$\land ((m_{B1} \lor m_{B2}) \land \overline{(m_{B1} \land m_{B2})}$$

$$\land (m_{B1} \rightarrow r_1) \land (m_{B2} \rightarrow r_2))$$

Formalizing the Constraints: Mapping

$$\varphi = (r_1 \lor r_2 \lor r_3 \lor r_4 \lor r_5)$$

$$\land (m_{A1} \land (m_{A1} \rightarrow r_1))$$

$$\land ((m_{B1} \lor m_{B2}) \land \overline{(m_{B1} \land m_{B2})}$$

$$\land (m_{B1} \rightarrow r_1) \land (m_{B2} \rightarrow r_2))$$

$$\land ((m_{C1} \lor m_{C3}) \land \overline{(m_{C1} \land m_{C3})}$$

$$\land (m_{C1} \rightarrow r_1) \land (m_{C3} \rightarrow r_3))$$

© University of Erlangen-Nuremberg Christian Haubelt

Formalizing the Constraints: Routing

$$\varphi = (r_1 \lor r_2 \lor r_3 \lor r_4 \lor r_5)$$

$$\land (m_{A1} \land (m_{A1} \rightarrow r_1))$$

$$\land ((m_{B1} \lor m_{B2}) \land (\overline{m_{B1}} \land m_{B2})$$

$$\land (m_{B1} \rightarrow r_1) \land (m_{B2} \rightarrow r_2))$$

$$\land ((m_{C1} \lor m_{C3}) \land (\overline{m_{C1}} \land m_{C3})$$

$$\land (m_{C1} \rightarrow r_1) \land (m_{C3} \rightarrow r_3))$$

$$\land ((m_{A1} \land m_{C1}) \rightarrow t_{AC1,1})$$

$$\land ((m_{A1} \land m_{C3}) \rightarrow (t_{AC4,2} \lor t_{AC5,2}) \land t_{AC3,3})$$

$$\land (t_{AC4,2} \rightarrow r_4) \land (t_{AC5,2} \rightarrow r_5))$$

$$\land ((m_{C3} \land m_{B1}) \rightarrow t_{CB1,1})$$

$$\land ((m_{C3} \land m_{B1}) \rightarrow (t_{CB5,2}) \land t_{CB1,3})$$

$$\land (t_{CB4,2} \rightarrow r_4) \land (t_{CB5,2} \rightarrow r_5))$$

$$\land ((m_{C3} \land m_{B2}) \rightarrow (t_{CB5,2}) \land t_{CB2,3})$$

$$\land (t_{CB3,1} \land (t_{CB4,2} \lor t_{CB5,2}) \land t_{CB2,3})$$

$$\land (t_{CB4,2} \rightarrow r_4) \land (t_{CB5,2} \rightarrow r_5))$$

Symbolic System Synthesis

> Each satisfiable variable assignment for φ represents a feasible implementation, i.e., SAT(φ)

Outline

- Problem Formulation
- The Decision Problem
- Symbolic Representation
- SAT Decoding
- SMT Decoding
- Summary

Binary decision diagram (BDD)

> **Properties:**

- Test for satisfiability can be done in O(1)
- The variable order can influence the size of a BDD
- Worst case: exponential complexity!

> Example:

• $f(x_1, x_2, x_3, y_1, y_2, y_3) = (x_1 \land y_1) \lor (x_2 \land y_2) \lor (x_3 \land y_3)$

© University of Erlangen-Nuremberg Christian Haubelt

SAT (Boolean Satisfiability)

> Does there exists at least one $x \in X$ such that $\varphi(x) = 1$?

•
$$\varphi : \mathbf{X} \in \mathbf{X} \rightarrow \{\mathbf{0}, \mathbf{1}\}$$
 with $\mathbf{X} = \{\mathbf{0}, \mathbf{1}\}^n$

- Boolean Satisfiability is NP-complete
- The Function φ is given in conjunctive normal form (CNF)

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_6}) \land \dots$$

", clause" ", literal"

SAT solvers: Programs designed for efficiently solving the Satisfiability Problem

SAT-based System Synthesis

$$\varphi(x_1, x_2, x_3, x_4) = (x_1 \lor x_2)$$

$$\land (x_1 \lor \overline{x_2})$$

$$\land (\overline{x_1} \lor \overline{x_2})$$

$$\land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4})$$

$$\land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4)$$

while true do
 branch(ρ,σ)
 if CONFLICT() then
 BACKTRACK()
 else if SATISFIED(•) then
 return x
 end if
end while

 $\rho = (\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_3, \, \mathbf{x}_4)$ $\sigma = (\mathbf{0}, \, \mathbf{1}, \, \mathbf{0}, \, \mathbf{0})$

X = (1, 1, 0, 1)

SAT-Solver (Branching)

Different decision strategies lead to different solutions

$$\rho = (x_1, x_2, x_3, x_4)$$

$$\sigma = (0, 1, 0, 0)$$

(x_1)
(x_2)
(x_2)
(x_3)
(x_4)
(x

 $\rho = (\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_3, \, \mathbf{x}_4)$ $\sigma = (\mathbf{1}, \, \mathbf{0}, \, \mathbf{1}, \, \mathbf{1})$

X = (1, 1, 0, 1)

X = (1, 1, 1, 0)

Symbolic System Synthesis

Results SAT Decoding

- Real-world problem: Automotive Application
 - To find a single feasible solution is NP-complete
 - Runtime over 1000 Generations nearly the same for both methods!
 - SAT Decoding is superior in quality of the results!

© University of Erlangen-Nuremberg Christian Haubelt

Outline

- Problem Formulation
- > The Decision Problem
- Symbolic Representation
- > SAT Decoding
- SMT Decoding
- > Summary

Symbolic System Synthesis

Idea

- Early Constraint Checking + Learning in Boolean Formula = Satisfiability Modulo Theories (SMT) Solving
- In other words: SAT problem is solved with respect to given background theories

SMT Decoding

- Requires monotonous constraint checking functions
- Even methods for checking non-linear constraints can be incorporated as background theory
- First results will be presented at ESWEEK 2010

 \cap

Outline

- Problem Formulation
- > The Decision Problem
- Symbolic Representation
- > SAT Decoding
- > SMT Decoding
- > Summary

Summary

- Design space exploration requires for repeatedly solving the system synthesis problem
- Feasibility preserving decoding is particularly useful in design spaces with small and complex feasible region
- Encoding the feasible region by Boolean formulas permits use of SAT solvers
- For design spaces with stringent constraints, early constraint checking together with learning in the Boolean formula significantly speeds up DSE