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Design Space Exploration
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Pareto Dominance

» Without loss of generality, only minimization problems
are assumed in the following
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Optimization Goals

» find Pareto-optimal solutions
» or agood approximation (convergence, diversity)
» with a minimal number of function calls
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Design Space Exploration

» Design Space Exploration is a twofold task:
= How can a single design point be evaluated?

= How can the design space be covered during the
exploration process
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Multi-Objective Evolutionary Algorithms

» Many design points are explored in parallel

» Recombination (Mutation, Crossover) tries to improve
already good solutions

» Requires appropriate problem encoding
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Problem Statement
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Outline

Problem Formulation

The Decision Problem
Symbolic Representation
SAT Decoding

SMT Decoding
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Platform-Based System Synthesis
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Resource Allocation

» Resource allocation, i.e., select resources from a
platform for implementing the application
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Process Binding

» Process binding, i.e., bind processes onto allocated
computational resources

» Each process has to be bound exactly once
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Channel Mapping

» Channel mapping, i.e., assign channels to address
spaces

» Each channel has to be mapped exactly once
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Transaction Routing

» Transaction routing, i.e., compute paths over allocated
resources for all memory accesses

» Transactions, which cannot be routed, lead to infeasible
solutions
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Problem Statement

search space decision space

A A feasible set
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feasibility preserving decoding?

How to represent feasible set?
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Outline

Symbolic Representation
SAT Decoding
SMT Decoding
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Formalizing the Constraints: Allocation
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Formalizing the Constraints: Binding

@ =(r; Vr, Vr; Vir, Vry
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Formalizing the Constraints: Mapping
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Formalizing the Constraints: Routing
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Symbolic System Synthesis

» [Each satisfiable variable assignment for g represents a
feasible implementation, i.e., SAT(¢p)
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feasibility preserving decoding?

how to represent feasible set? ©
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Outline

» SAT Decoding
» SMT Decoding

» Summary
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Binary decision diagram (BDD)

» Properties:
» Test for satisfiability can be done in O(1)
= The variable order can influence the size of a BDD
= Worst case: exponential complexity!

» Example:
" XXy X3V YY) =X AYY V(XA VX5 AY)
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SAT (Boolean Satisfiability)

» Does there exists at least one x € X such that ¢(x) = 1?
= p:x eX— {0,1} with X={0,1} "
= Boolean Satisfiability is NP-complete

* The Function ¢ is given in conjunctive normal form
(CNF)

(x; VX, VX)) N (X; VX) A ...
\ > J -

,clause® Jiteral®

» SAT solvers: Programs designed for efficiently solving
the Satisfiability Problem
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SAT-based System Synthesis

DX X0 X3 X)) = (X; VX)) p = (Xy45 Xp X35 Xg)
N (x, V;z) c=(0,1,0,0)
A(x; Vx,)
A(x; VX, VX, VX, Q

A(x, VX, Vx; VX))

while frue do

branch(p,o)

if CONFLICT(X) then
BACKTRACK() -

else if SATISFIED(o ) then

return x X=(1,1,0,1)
end if

end while
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SAT-Solver (Branching)

> Different decision strategies lead to different solutions

P = (Xq5 Xa1 X35 Xy) P = (X4 Xa5 X35 Xy)
5=(0,1,0,0) s=(1,0,1,1)

X=(1,1,0,1) X=(1,1,1,0)
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Symbolic System Synthesis

search space decision space

A A feasible set
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feasibility preserving decoding? @
how to represent feasible set? ©
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Results SAT Decoding

» Real-world problem: Automotive Application

* To find a single feasible solution is NP-complete

= Runtime over 1000 Generations nearly the same for both
methods!

= SAT Decoding is superior in quality of the results!

Adaptive Light Control (Real-Horld Example:
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Outline

» SMT Decoding

» Summary
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Symbolic System Synthesis

decision space objective space
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feasibility preserving decoding? ©
how to represent feasible set? ©

how to handle stringent constraints efficiently?
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Idea

» Early Constraint Checking
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» Early Constraint Checking + Learning in Boolean

Formula = Satisfiability Modulo Theories (SMT) Solving

> In other words: SAT problem is solved with respect to
given background theories
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SMT Decoding

SAT Decoding with
subsequent constraint checking SMT Decoding
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tested designs tested designs

» Requires monotonous constraint checking functions

» Even methods for checking non-linear constraints can
be incorporated as background theory

> First results will be presented at ESWEEK 2010
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Outline

» Summary

© University of Erlangen-Nuremberg
Christian Haubelt

32



Summary

> Design space exploration requires for repeatedly
solving the system synthesis problem

> Feasibility preserving decoding is particularly useful in
design spaces with small and complex feasible region

» Encoding the feasible region by Boolean formulas
permits use of SAT solvers

» For design spaces with stringent constraints, early
constraint checking together with learning in the
Boolean formula significantly speeds up DSE
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