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Design Space Exploration
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Pareto Dominance
Without loss of generality, only minimization problems 
are assumed in the following
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Optimization Goals
find Pareto-optimal solutions
or a good approximation (convergence, diversity)
with a minimal number of function calls
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Design Space Exploration
Design Space Exploration is a twofold task:

How can a single design point be evaluated?
How can the design space be covered during the 
exploration process

covering the 
design space

evaluating 
design points
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Multi-Objective Evolutionary Algorithms
Many design points are explored in parallel
Recombination (Mutation, Crossover) tries to improve 
already good solutions
Requires appropriate problem encoding
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Problem Statement

decoding
(+ repair)

decision spacesearch space objective space

evaluation

?
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Platform-Based System Synthesis

Application

System Synthesis

Platform
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Resource Allocation

Resource allocation, i.e., select resources from a 
platform for implementing the application
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Process Binding
Process binding, i.e., bind processes onto allocated 
computational resources
Each process has to be bound exactly once
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Channel Mapping

Channel mapping, i.e., assign channels to address 
spaces 
Each channel has to be mapped exactly once
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Transaction Routing

Transaction routing, i.e., compute paths over allocated 
resources for all memory accesses
Transactions, which cannot be routed, lead to infeasible 
solutions
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Problem Statement

feasibility preserving decoding? 

decision spacesearch space

feasible set

How to represent feasible set?
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r4

Formalizing the Constraints: Allocation

r2r3r1

ϕ = (r1∨ r2∨ r3∨ r4∨ r5)

r5
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r4

Formalizing the Constraints: Binding

r2r3r1

A B

mA1

mB1

mB2

ϕ = (r1∨ r2∨ r3∨ r4∨ r5)

∧ ( mA1∧ (mA1 → r1) )

r5

∧ ( (mB1∨ mB2) ∧ (mB1∧ mB2) 
∧ (mB1 → r1) ∧ (mB2 → r2) )
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r4

Formalizing the Constraints: Mapping

r2r3r1

A B

mA1

mB1

mC1

mC3

mB2

ϕ = (r1∨ r2∨ r3∨ r4∨ r5)

∧ ( mA1∧ (mA1 → r1) )

r5

∧ ( (mC1∨ mC3) ∧ (mC1∧ mC3) 
∧ (mC1 → r1) ∧ (mC3 → r3) )

∧ ( (mB1∨ mB2) ∧ (mB1∧ mB2) 
∧ (mB1 → r1) ∧ (mB2 → r2) )
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r4

Formalizing the Constraints: Routing

r2r3r1

A B

mA1

mB1

mC1

mC3

mB2

ϕ = (r1∨ r2∨ r3∨ r4∨ r5)

∧ ( mA1∧ (mA1 → r1) )

r5

∧ ( (mC1∨ mC3) ∧ (mC1∧ mC3) 
∧ (mC1 → r1) ∧ (mC3 → r3) )

∧ ( ( mA1∧ mC1) → tAC1,1)

∧ ( (mB1∨ mB2) ∧ (mB1∧ mB2) 
∧ (mB1 → r1) ∧ (mB2 → r2) )

∧ ( ( mA1∧ mC3) →
(tAC1,1 ∧ (tAC4,2 ∨ tAC5,2) ∧ tAC3,3) 
∧ (tAC4,2 → r4) ∧ (tAC5,2 → r5) )

∧ ( ( mC1∧ mB1) → tCB1,1)

∧ ( ( mC3∧ mB1) →
(tCB3,1 ∧ (tCB4,2 ∨ tCB5,2) ∧ tCB1,3) 
∧ (tCB4,2 → r4) ∧ (tCB5,2 → r5) )

∧ ( ( mC3∧ mB2) →
(tCB3,1 ∧ (tCB4,2 ∨ tCB5,2) ∧ tCB2,3) 
∧ (tCB4,2 → r4) ∧ (tCB5,2 → r5) )
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Symbolic System Synthesis
Each satisfiable variable assignment for ϕ represents a 
feasible implementation, i.e., SAT(ϕ)

feasibility preserving decoding? 

decision spacesearch space

feasible set

how to represent feasible set? 
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Binary decision diagram (BDD)
Properties:

Test for satisfiability can be done in O(1)
The variable order can influence the size of a BDD
Worst case: exponential complexity! 

Example:
f(x1, x2, x3, y1, y2, y3) = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3)

x1
y1

1

x2
y2

x3
y3

0

x1
x2x2

x3 x3

y1 y1

x3 x3

y1 y1

1 0

y2y2
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SAT (Boolean Satisfiability)
Does there exists at least one x ∈ X such that ϕ(x) = 1?

ϕ : x ∈ X → {0,1} with X = {0,1} n

Boolean Satisfiability is NP-complete
The Function ϕ is given in conjunctive normal form 
(CNF)

SAT solvers: Programs designed for efficiently solving 
the Satisfiability Problem

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x6) ∧ …

„clause“ „literal“
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SAT-based System Synthesis

while true do
branch(ρ,σ)
if CONFLICT(     ) then

BACKTRACK()
else if SATISFIED(   ) then

return x
end if

end while

x1

x3

x2 x2

x4

X = (1, 1, 0, 1)

ϕ(x1, x2, x3, x4) =    (x1 ⋁ x2)
⋀ (x1 ⋁ x2)
⋀ (x1 ⋁ x2)
⋀ (x1 ⋁ x2 ⋁ x3 ⋁ x4)
⋀ (x1 ⋁ x2 ⋁ x3 ⋁ x4)

ρ = (x1, x2, x3, x4)
σ = (0, 1, 0, 0)
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SAT-Solver (Branching)

x1

x3

x2 x2

x4

X = (1, 1, 0, 1)

x1

x3

x2

X = (1, 1, 1, 0)

x4

Different decision strategies lead to different solutions
ρ = (x1, x2, x3, x4)

σ = (0, 1, 0, 0)
ρ = (x1, x2, x3, x4)

σ = (1, 0, 1, 1)
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Symbolic System Synthesis

ρ,σ

feasibility preserving decoding? 

decision spacesearch space

feasible set

how to represent feasible set? 
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Results SAT Decoding
Real-world problem: Automotive Application

To find a single feasible solution is NP-complete
Runtime over 1000 Generations nearly the same for both 
methods!
SAT Decoding is superior in quality of the results!
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Symbolic System Synthesis

feasibility preserving decoding? 

decision space

how to represent feasible set? 

how to handle stringent constraints efficiently? 

objective space
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Idea

Early Constraint Checking + Learning in Boolean 
Formula = Satisfiability Modulo Theories (SMT) Solving
In other words: SAT problem is solved with respect to 
given background theories
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Early Constraint Checking
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SMT Decoding
SAT Decoding with 
subsequent constraint checking 

tested designs

SMT Decoding

tested designs

Requires monotonous constraint checking functions
Even methods for checking non-linear constraints can 
be incorporated as background theory
First results will be presented at ESWEEK 2010 
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Summary

Design space exploration requires for repeatedly 
solving the system synthesis problem

Feasibility preserving decoding is particularly useful in 
design spaces with small and complex feasible region

Encoding the feasible region by Boolean formulas 
permits use of SAT solvers

For design spaces with stringent constraints, early 
constraint checking together with learning in the 
Boolean formula significantly speeds up DSE


