
St. Goar (Germany) – June 29th, 2010

A Design Exploration Framework for A Design Exploration Framework for

Mapping and Scheduling onto Mapping and Scheduling onto

Heterogeneous MPSoCsHeterogeneous MPSoCs

Christian PilatoChristian Pilato, Fabrizio Ferrandi, Donatella Sciuto
Dipartimento di Elettronica ed Informazione
Politecnico di Milano
{pilato,ferrandi,sciuto}@elet.polimi.it

33rdrdWorkshop on Mapping of Workshop on Mapping of

Applications to MPSoCsApplications to MPSoCs

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

22
OutlineOutline

� Introduction

hArtes project

Preliminaries and Problem Definition

� Proposed Methodology

Generation of Implemention Points

Application mapping and scheduling

� Experimental Results

� Conclusions and Future Work

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

33
hArtes ProjecthArtes Project

� Innovative FP6 European Project (2006-2010 – completed few weeks

ago) to propose a new holistic (end-to-end) approach for complex real-

time embedded system design

support for different formats in algorithm description

a framework for design space exploration, which aims to automate

design partitioning, task transformation and metric evaluation with

respect to the target architecture

a system synthesis tool producing near-optimal implementations

that best exploits the capability of each type of processing element

� We have in charge the automatic parallelizationautomatic parallelization of the initial

specification, performance estimationperformance estimation and an initial guess of mappingmapping

C-to-C transformations and pragma insertion

The application has to be optimized with respect to a hardware

architecture that is given

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

44
Problem DefinitionProblem Definition

� Porting a sequential application on a Multi-Processor System on Chip

requires to:

Partition the application (partitioningpartitioning)

• Estimate the resource requirements of each task

• Apply transformations to the task graph structure

Assign the tasks to the processing elements (mappingmapping)

Determine the order of execution of the tasks (schedulingscheduling)

� Scheduling and mapping are NP-complete problems

� Additional problems due to heterogeneous components and design

constraints (e.g., limited area for HW devices)

Possibility to generate unfeasible solutions

� We need to model the target architecture, its model of execution and

the application

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

55
Model of Target ArchitectureModel of Target Architecture

� Generic architectural template composed of processing and

communication elements. A valid test case is the following one:

Renewable (e.g., local memories, bandwidth)

and non-renewable resources (e.g., hw area)

associated with all the components

ARMARMARM

DSPDSPDSP

Local
Memory

Local
Memory PowerPCPowerPCPowerPC

CLBsCLBsCLBs

Atmel's DIOPSISAtmel's DIOPSIS®® VirtexVirtex--4 FX4 FX

Shared MemoryShared Memory

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

66
Model of ExecutionModel of Execution

� The project relies on the MOLEN paradigm of execution

One master component (ARM) that manages the execution and starts

other elements (fork/join modelfork/join model)

each task is represented through a function

� We adopted OpenMPOpenMP as a standard for representing the partitioning

inside the application

very simple and implicit notation to represent the fork/join model

validation can be also performed on the host machine (--fopenmpfopenmp)

threads produced by omp loop are translated during the analysis

into traditional tasks to be statically assigned to PEs

� Performance estimation and mapping work on standard C functions

estimation of the execution time of a C function

mapping of a sequence of function calls, where the structure of the

task graph represents the parallelism

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

77
Model of ApplicationModel of Application

� Framework built upon the GNU/GCC compiler

we are able to control the optimizations and, then, exploit the

resulting internal representation

� We represent the application through a Hierarchical Task GraphHierarchical Task Graph

Directly extracted from the C code annotated with OpenMP pragmas,

where the hierarchy is induced by loops and functions

Nodes represent group of instructions and are classified as:

• simple: tasks with no sub-tasks

• compound: tasks with other HTGs associated (e.g., subroutines)

• loop: tasks that represent a loop whose (partitioned) iteration body is a

HTG itself

Edges are annotated with the amount of data to be transferred

� Transformations to reduce the overhead required to manage the

tasks based on a path-based estimation of the task graph

[MEMOCODE ‘09]

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

88
ExampleExample

/* task T1*/
while(/*condition Loop0*/){

#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{

while(/*condition Loop1*/){
#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{ /* task T2 */ }
#pragma omp section
{ /* task T3 */ }

}
}

}
#pragma omp section
{

while(/*condition Loop2*/){
#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{ /* task T4 */ }
#pragma omp section
{ /* task T5 */ }

}
}

}
}

}
/* task T6 */

/* task T1*/
whilewhile(/*condition Loop0*/){

#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{

whilewhile(/*condition Loop1*/){
#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{ /* task T2 */ }
#pragma omp section
{ /* task T3 */ }

}
}

}
#pragma omp section
{

whilewhile(/*condition Loop2*/){
#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{ /* task T4 */ }
#pragma omp section
{ /* task T5 */ }

}
}

}
}

}
/* task T6 */

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

99
Methodology OverviewMethodology Overview

InputInput

�� Any C applicationAny C application (single source file of multiple source files)

Interfacing with GNU/GCC compiler

Annotated with pragmas associated to functions or parts of the code

• OpenMP pragmas to described the partitioning

• Profiling annotations, mapping suggestions, …

�� XML fileXML file containing the description of the architecture and the

implementation points, if available

Components, interconnections, sw/hw implementations, …

OutputOutput

� Tasks are represented as (new) functions

� C code, annotated with specific pragmasspecific pragmas to represent the mapping

decisions

�� Priority tablePriority table to represent the scheduling decisions

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1010
Problem DefinitionProblem Definition

�� JobJob: generic activity (task or communication) to be completed in order

to execute the specification.

�� Implementation pointImplementation point: the mode for the execution of a job. It

represents a combination of latency and requirements of resources on the

related target component.

�� MappingMapping: assign each job to an admissible implementation point,

respecting the constraints imposed by the resources of the components.

�� SchedulingScheduling: determine the order of execution of all the jobs of the

specification in terms of priorities.

�� ObjectiveObjective: minimize the overall execution time of the application on the

target architecture.

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1111
Design Space ExplorationDesign Space Exploration

Extract and Optimize HTGExtract and Optimize HTG

Mapping and Scheduling
with Ant Colony Optimization

Mapping and Scheduling
with Ant Colony Optimization

Parse C source file(s)Parse C source file(s)

Generate implementation pointsGenerate implementation points

Generate output C file with pragmas Generate output C file with pragmas

FrontFront--endend

CoCo--Design Design
FrameworkFramework

BackBack--endend

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1212
Generation of Implementation PointsGeneration of Implementation Points

� When not available into the XML file, we need to generate a “realistic”

implementation point

Estimation of execution time and requirements of resources for each

task on each component

� Different levels of accuracy for SW implementations

Code instrumentation and profiling on the target architecture

Estimations able to into account specific architectural characteristics

of the processors (though a model based on linear regression and

particular patterns – sequencessequences – of operations) [CODES ‘10]

• target independent representation (GIMPLE)

• target dependent representation (RTL) – you need the compiler to

expose it

� Design exploration framework for high-level synthesis to generate

different Pareto-optimal HW implementations [JSA ‘08]

Multi-objective genetic algorithm (one objective for each resource)

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1313
Mapping and Scheduling with ACOMapping and Scheduling with ACO

� Ant Colony Optimization (ACOACO) heuristic to analyze and evaluate

different combinations of mapping and scheduling [ASPDAC ‘10]

� Constructive approach that limits as much as possible the generation of

unfeasible solutions

Depth first-analysis that follows the hierarchy and mimics the

execution of the program

Very simple to handle the different design constraints

� Combination of different principles to lead the exploration

Stochastic: at each step, a task is selected among the available ones

and assigned to an implementation point through a roulette wheel

extraction (exploration)

Heuristic: the probability is proportional to a combination of

feedback information and a problem specific metric (exploitation)

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1414
Solution EvaluationSolution Evaluation

� The decisions performed by the ant give a tracetrace

Sequence of jobs, where each of them is assigned to an implementation

point (mappingmapping)

The position into the trace represents the priority for the scheduling scheduling (if

they are selected early, they have higher priority…)

Different traces correspond in exploring different design solutions

(combination of mapping and scheduling)

� Evaluation performed though a list-based scheduler based on the

mapping decisions and the priority values

Average loop iterations improves the task-graph estimation

� Return overall execution time of the application

Good solutions increase the feedback information of each decision

Bad solutions reduce the corresponding feedback information

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1515
Considerations for HTGsConsiderations for HTGs

� Additional considerations have to be introduced for HTGs

How to schedule tasks at different levels of hierarchy?

� Consider two parallel tasks A and B (at the same level), where each of

them has a sub-graphs associated with:

The ant selects A before B (A has a higher priority than B)

During the evaluation, A is scheduled before B

Since a depth-first analysis is performed, the whole sub-graph (and

the corresponding tasks) associated with A is scheduled before the

one associated with B

If the two sub-graphs do not involve the same processing elements,

resource partitioningresource partitioning is exploited and they can effectively run in

parallel

• we verified that the feedback information usually leads to such

solutions, when possible

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1616

� Avoid to allocate on non-renewable resource (e.g., FPGA area) tasks that

cannot fit in the available area

The ant does not generate the related probability into the roulette

wheel and the decision won’t be taken for sure

� Limit the allocation of tasks that fork other tasks (e.g., containing

function calls) to processing elements that cannot spawn threads (e.g.,

FPGA)

However, if allocated, all the sub-graph will be allocated to the same

component (i.e., similar to task inliningtask inlining)

� The implementation point of a task contains also information about the

requirements of the sub-graphs, if any

Very simple to check if the current resources are able to satisfy the

requirements if the subgraphs would have to be assigned to the same

processing element

Handling of Design ConstraintsHandling of Design Constraints

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1717
Handling of Design ConstraintsHandling of Design Constraints

� Hierarchy information (represented as a stack) helps the identification

of candidate processing elements

Avoid to allocate tasks to processing elements occupied by higher

level tasks

When there are not any free processing element, the task is executed

by the current processing element

� When task migration is not supported, the decisions made for a function

are replicated for all the instances (e.g., all the calls to the same function)

� Efficient and flexible representation for different communication models

A direct communication between local memories (e.g., though a DMA

engine) is represented though a single job

A communication based on shared memory is represented though

two jobs (from source task to local memory, from local memory to

target task)

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1818
Experimental ResultsExperimental Results

� Results on HTGs from MiBench MiBench suite targeting a model of architecture

very similar to hArtes’s one

� It performs far better than SA, TS and Dynamic Scheduling*

The depth-first approach is more suitable to approach the problem

Much faster to coverge to a stable solution (not proven to be the

optimum)

� We are working on extending the ILP formulation to cyclic task graphs…

*Scheduling uses a FIFO policy - Mapping adopts a first available policy

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

1919
Stationary Noise FilterStationary Noise Filter

� Application provided by one of the partner of the project

� Execution time measured

on the Atmel's DIOPSIS®

after executing each task, the

control returns to the ARM

� Estimation techniques +

the initial mapping

Speed-up: 4.3x

Overhead due to data

transfers with ARM

� Applying transformations

on the task graph

Speed-up: 5.8x

Unnecessary data transfers

with ARM are removed

Conversion

Filter

downsampling

Filter

Conversion

MAGICARM

Conversion

Filter

downsampling

Filter

Conversion

MAGICARM

Conversion

Filter

downsampling

Filter

Conversion

MAGICARM

New Task

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

2020
Conclusion and Future WorksConclusion and Future Works

� Flexible design exploration framework to map and schedule an OpenMP

application on a given heterogeneous platform

Optimizes the HTG with iterative transformations

Estimates the implementation points for each task when not

provided

Explores different combinations of mapping and scheduling

� Ongoing works

Co-exploration of partitioning and mapping into a unique loop

Co-exploration of application and target architecture

• ReSP: open-source MPSoC simulation platform developed at Politecnico

di Milano

• FPGA prototyping platform based on different variants of Leon

processors, Microblazes, PowerPCs, additional DSPs and HW cores

C. Pilato – 3 rd MPSoCs Workshop 2010 – June 29th, 2010

THANK YOU!THANK YOU!

Christian PilatoChristian Pilato
pilato@elet.polimi.it

