System-Level Design Space Exploration for HMPSoC

Luigi Pomante

luigi.pomante@univaq.it

University of L'Aquila – ITALY Center of Excellence DEWS

- Introduction
- System-Level Design Flow
- Target Architecture
- Application Specification
 - Internal Models
- Design Space Exploration
 - Exploration Strategy
 - System-Level Metrics
- Conclusions

- System-Level Design Flow
- Target Architecture
- Application Specification
 - Internal Models
- Design Space Exploration
 - Exploration Strategy
 - System-Level Metrics
- Conclusions

- HMPSoC have been recently exploited for a wide range of application domains, for both the embedded and the general purpose products
 - Such systems can include several and different processors, memories, dedicated *ICs* and a set of interconnections between them
- They are so complex that the design methodology plays a major role in determining the success of a product

- For this, in the past few years, a discrete number of research works has focused on system-level co-design of HMPSoC
 - Each of them has proposed a different approach to the design space exploration but all of them always rely on some designer experience to define some aspects of the target architecture
 - In particular, the definition of the communication architecture is often only an input to the design flow (typically imposed by a platform-based approach)

- This talk presents a system-level design space exploration strategy that, starting from the application specification and related constraints, would be able to suggest to the designer
 - an HMPSoC reference architecture
 - an HW/SW partitioning of the given application
 - an allocation of the partitioned entities on the proposed HMPSoC
 - Moreover, by means of abstract modeling, the approach try to preserve general applicability and feasibility of the proposed solutions

- In particular, this talk focuses on
 - Modeling Issues
 - with particular emphasis on model of computation and related "internal models" of representation
 - System-Level Metrics
 - used to identify suitable HMPSoC architectures by analyzing the application specification
 - Design Space Exploration
 - by means of a genetic algorithm that exploits metrics and some profiling/estimations
 - The approach has been partially validated by checking the consistency with respect to some case studies

Introduction

System-Level Design Flow

- Target Architecture
- Application Specification
 - Internal Models
- Design Space Exploration
 - Exploration Strategy
 - System-Level Metrics
- Conclusions

System-Level Design Flow

9

- Introduction
- System-Level Design Flow
- <u>Target Architecture</u>
- Application Specification
 - Internal Models
- Design Space Exploration
 - Exploration Strategy
 - System-Level Metrics
- Conclusions

Target Architecture

- It is an interconnection of some instances of heterogeneous *Basic Building Block*
 - BBB represent the minimal computation, storage and communication unit in the system
 - Distributed memory architecture
 - Each BBB is composed of three main elements
 - The Processing Unit (PU)
 - The Local Memory (LM)
 - The Communication Unit (CU)
 - Number and type of possible isyances of interconnection links (IL)

Target Architecture

- Basic Building Block
 - Processing Unit
 - GPP, DSP, [uC]: {€, L_{MAX}}
 - AS[I]P: {€, G_{eq_MAX}}
 - Local Memory
 - RAM, ROM: {€, KB_{MAX}}
 - Communication Unit
 - Possible Interconnection links
 - $IL_i: \{BW_{MAX}, N_{MIN}, N_{MAX}, €\}$

Target Architecture

 Given several instances of BBB and interconnecting them by means of some instances of the available IL it is possible to build a feasible application-specific architecture on which the application can be mapped on

- Introduction
- System-Level Design Flow
- Target Architecture
- Application Specification
 - Internal Models
- Design Space Exploration
 - Exploration Strategy
 - System-Level Metrics
- Conclusions

- System-Level Model of Computation
 - Communicating Sequential Processes

• e.g.

16

- System-Level Specification Languages
 - Some *homogeneous* languages able to support CSP
 - OCCAM
 - HandelC
 - SystemC
 - Simulink
 - ...

- System-Level Internal Models
 - Different levels of details for IM
 - Stament-level IM
 - Dependent on specification languages and parsers
 - Procedure-level IM
 - Independent from specification languages

- System-Level Internal Models
 - The procedure-level internal model used in this work during the design space exploration to represent the CSP is called *Procedural Interaction Graph (PING)*
 - The PING is
 - based on the well-known Procedural Call Graph
 - able to capture needed information from imperative, possibly object-oriented, specification

- Introduction
- System-Level Design Flow
- Target Architecture
- Application Specification
 - Internal Models

- Exploration Strategy
- System-Level Metrics
- Conclusions

 The goal of DSE is the automatic identification of both the architecture and the mapping that optimizes a given CF

- Each procedure in the PING is supposed to be annotated by different metrics
 - Load imposed to a single GPP
 I_i
 - Bandwidth needed to communicate with other procedures
 - b_{i,}
 - Size
 - s_i : KB or G_{eq}
 - Affinity towards GPP, DSP and ASP

- System-Level Internal Models
 - Annotated PING derived from CSP

- 1st phase
 - Starting from PING to determine number and type of BBB/PU...
 - Goals
 - Minimize the cost of the set of BBB/PU
 - » Max number for each kind of PU could be provided by the designer
 - Exploit the potential parallelism expressed in the PING
 - Keep the load of each PU near but under its L_{MAX}
 - Minimize communications between different BBB/PU
 - Keep the used size near but under KB_{MAX} or $G_{eq MAX}$
 - Exploit affinity between BBB/PU and the procedures

- 1st phase
 - ...minimizing a cost function by means of a genetic approach

DSP0

									(P1) BBB GPP0	(P2)(P ⁻ BBB GPP1
P1	P2	P3	P4	P5	P6	P7	P8			
GPP	GPP	ASP	ASP	DSP	DSP	GPP	GPP		\sim	
0	1	1	0	0	0	1	2		(P5)(P6)	(P3)
								-	BBB	BBB

P4

BBB

ASP0

P8

BBB

GPP2

ASP1

- System-Level Metrics (1st phase)
 - Affinity Index (I_A) [0, 1]
 - Matching between the functionalities and the processing elements on which they have been allocated
 - Load Indexes (I_{Lsw}, I_{Lhw}) [0, 1]
 - Balancing of the workload over the available HW and SW processing elements
 - Communication Index (I_c) [0, 1]
 - Exchanged data size between functionalities allocated on different processing elements
 - Physical Cost Index (I_{s}) [0, 1]
 - Cost of the solution with respect to the most expensive one

- System-Level Metrics (1st phase)
 - By combining the metrics a cost function has been built to compare different solutions

$$CF = W_A \cdot I_A + W_{Lsw} \cdot I_{Lsw} + W_{Lhw} \cdot I_{Lhw} + W_C \cdot I_C + W_{\$} \cdot I_{\$}$$

- Affinity and load parameters
 - Tend mainly to separate the functionalities to balance the load and exploit the processing elements features
- Communications and physical cost
 - Tend to keep together the functionalities to minimize the number of processing elements

- 2nd phase
 - From the results of the 1st phase and the PING it is possible to build a BBB Interaction Graph (BING)
 - The BING is a model used to represent the partial system at the end of the first phase
 - Each edge will present a proper $B=f(b_i)$

- 2nd phase
 - Starting from BING to determine number and type of IL between PU...
 - Goals
 - Minimize cost of II_i
 - » Max number of instances for each IL can be specified by the designer
 - Keep the bandwidhth of each IL_i under but near BW_{MAX}
 - Keep the number of executors of each IL_i under but near N_{MAX} (and > N_{MIN})
 - Satisfy eventual constraints on the latency
 - Keeping feasibility while respecting CU characterization

- 2nd phase
 - minimizing a cost function by means of a genetic approach

- System-Level Metrics (2nd phase)
 - Saturation Index (I_B) [0, 1]
 - Respect of max bandwidth offered by the IL
 - Exploitation Index (I_E) [0, 1]
 - Respect min/max number of BBB that can use a single IL instance
 - Physical Cost Index (I_{ϵ}) [0, 1]
 - Cost with respect to the expensive solution
 - Feasibility Index (I_F) [0, 1]
 - A pair of CU should be able to manage at least a common IL in order to allow the related BBB to directly communicate

- System-Level Metrics (2nd phase)
 - CU characterization for feasibility
 - e.g.

	IL0	IL1	IL2	IL3	IL4
BBB0-CU	Х	Х	X		X
BBB1-CU	Х	Х	X	Х	X
BBB2-CU	Х		X		Х
BBB3-CU	Х		X	Х	
BBB4-CU		Х	X	Х	X

- Cost Function
 - Used to compares different proposed solutions identifying the one that better tradeoffs different parameters

$$CF = w_B \cdot I_B + w_E \cdot I_E + w_{\mathfrak{E}} \cdot I_{\mathfrak{E}} + I_F$$

- Introduction
- System-Level Design Flow
- Target Architecture
- Application Specification
 - Internal Models
- Design Space Exploration
 - Exploration Strategy
 - System-Level Metrics
- <u>Conclusions</u>

Conclusions

- This talk has presented a System-Level Design Space Exploration strategy for HMPSoC
 - It has presented a methodology able to propose an HW/SW partitioning of the specification, mapping this one onto an automatically selected architecture
 - The methodology has been only partially validated
- The experimental results are encouraging and justify further research efforts in this direction may be also thanks to your comments...