M O - Ity r_«-qg.mw"rr ‘r‘. : J:._,_L)-" = i i = .
- : . I : 1

F m, o | L s
v - TN S e T
: o .

Intelligent Task Mapping for
MPSoCs using Machine Learning

Dirk Tetzlaff

Technical University of Berlin

3rd Workshop on Mapping of Applications to MPSoCs
June 30th, 2010

Task Mapping for MPSoCs

s Optimal solving NP-complete

x Genetic/Evolutionary Algorithms: many iterations! oL 1YHO?]

x Common heuristics: do not fit to special MPSoCs

x |ILP-modeled: computational complex[YHOS]'[VMO"']

= Requires information about runtime behavior
= Static analyses: over-approximate
= Profiling: strongly input data dependent and expensive

= Use Machine Learning (ML)

PE Dirk Tetzlaff June 30th, 2010 2 -l.

Outline

= ML-based Compilation
m Intelligent Task Mapping

Learning
Task Graph Mapping
Experiments

Results

m Conclusions

PE Dirk Tetzlaff June 30th, 2010

ML-based Compilation

Code Features

Function:
Features — Behavior

ML

Programs

Profiling> L)
Execute]

Behavior

Training Phase

Compile Phase

Behavior
Predictions

Code Features

Extraction .
Program & > | >

PES ik retlaff June 30th, 2010 N ﬂﬁ

Outline

s ML-based Compilation
= Intelligent Task Mapping

Learning

Task Graph Mapping
Experiments

Results

m Conclusions

PE Dirk Tetzlaff June 30th, 2010

PE

Intelligent Task Mapping

= Use Machine Learning (ML)
« provides compiler with knowledge of runtime behavior
v fast and precise heuristics

1) Learn unknown loop bounds

~~ Reduce communication overhead

2) Learn execution times of tasks

~» Reduce power consumption

3) Learn best performing Processing Element (PE)

~~» Treat heterogeneous MPSoCs

Dirk Tetzlaff June 30th, 2010

Code Features

= Unknown loop bounds

Structure of loop bounds, number of loop exit branches,
size of referenced arrays, file-10

m Execution times of tasks

Latency of the most probable path, fraction of control

instructions, loop nesting, amount of interprocessor
communication

s Best performing PE

depends on architectural differences
Caches ~» e.g. sizes of loop bodies
Functional units ~~ e.g. fraction of corresponding operations

PEs Dirk Tetzlaff June 30th, 2010

Task Graph Mapping

= Execution time t; for task T,

,
O Interprocessor communication K
Amount a(T;, T))
Cost ¢(T;, T))
= Runtime r(T;, T))
sequential: t;+t;+a(T;, T) * c(T;, T)
parallel on different PEs: max(t;, t;) +a(T;, T) * c(T;, T,

parallel on same PE: t; + t;
s Latency-weighted list scheduling
s Map tasks to PEs with minimum penalty

PES ik retlaff June 30th, 2010 8 -l.

Intelligent Task Mapping

Behavior
Predictions

Program
()]
2 ﬁ)
+ l
v
= Benefits

Mapping

+ Communication-aware

+ Power-efficient

PES ik tetzlaff

June 30th, 2010

MPSoC

time

Implementation

m Compiler framework: CoSy
Feature extraction
Static branch prediction
Path profiling

= Machine Learning: R Project G

Predictor construction HF A

supervised classification learning

Program classificationlAG03l

hierarchical clustering to minimize inner-cluster error

PEs Dirk Tetzlaff June 30th, 2010

0 W

Experiments

= Learning of unknown loop bounds

66 programs from Ptrdist!A%5], MiBenchl6R01],
SPEC CPU{95,2000,2006} benchmark suites

7970 loops analysed

1 — 98 million iteration counts

115 loop features

Loop iterations classified using truncated log,,

o .. 9 ~~»class 1
10 .. 99 ~~ class 2
10 million .. 99.999.999 ~~ class 8

PE Dirk Tetzlaff June 30th, 2010 11 -I.E

Experimental Results

= Self evaluation (self)
= Validation without program classification (val)

= Validation with program classification (pc-val)

Mean absolute Error Correlation
0.59 1.13 0.94 0.58 0.38 0.40

0.4+

O o

PES ik retlaff June 30th, 2010 12 -I'E

O .

Outline

s ML-based Compilation
m Intelligent Task Mapping

= Learning
= Task Graph Mapping
= Experiments

= Results

= Conclusions

PE Dirk Tetzlaff June 30th, 2010 13 ﬂﬁ

Conclusions

s Compilation with knowledge of runtime behavior via ML
Unknown loop bounds
Execution times of tasks
Best performing PE

= Intelligent task mapping
+ Communication-aware

v Power-efficient

s Experimental results

v Precise prediction of runtime behavior (error < 1 class)

PE Dirk Tetzlaff June 30th, 2010 14 -l.

References

[YHO8] H. Yang and S. Ha, “ILP based data parallel multi-task mapping/scheduling
technigue for MPSoC”, 1ISOCC’08

[VMO3] G. Varatkar and R. Marculescu, “Communication-aware task scheduling and
voltage selection for total systems energy minimization”, ICCAD’03

[YO9] M. Yoo, “Real-time task scheduling by multiobjective genetic algorithm”, Journal. of
System a. Software, 2009

[YHO9] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling technique for
MPSoC”, DATE’09

[AG09] L. Alvincz, S. Glesner, “Breaking the curse of static analysis: making compilers
intelligent via Machine Learning”, Proc. of SMART'09, 2009

[A95] T. Austin, et al., The pointer-intensive benchmark suite, 1995,
http://pages.cs.wisc.edu/~austin/ptr-dist.html.

[GRO1] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite”, Workshop on Workload Characterization, 2001.

[RRGO7] C. Roig, A. Ripoll, and F. Guirado, “A new task graph model for
mapping message passing applications”, IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 12, 2007

PE Dirk Tetzlaff June 30th, 2010 15 -I.E

Appendix

PES ik retlaff June 30th, 2010 17 -l.

Estimating the Program Behavior

Possible Program Behavior

<€ >

Over-
Approxi-
mation

A Considered

Behavior

Realistic

Y .
Behavior

Over-
Speciali-
zation

PEs Dirk Tetzlaff June 30th, 2010

Program Analysis
m considers all cases
= sdafe, but imprecise

Machine-learned Heuristics
m considers realistic cases
m precise, but unsafe

Profiling
= considers only one case
m (too) precise, but unsafe

18 -|.

Program Classification!AG02]

s One predictor for all kinds of programs?
m Better: group similar programs, one predictor per group

= Program classification (ML: unsupervised clustering)

Input: set of programs (from the suite)
distance measure/distance matrix

Output: program classes

= Which programs are (dis-)similar?
similar programs should be able to explain each other’s behavior

= Define similarity based on mutual predictability

PE Dirk Tetzlaff June 30th, 2010 19 -I.E

Program Classification: ClusteringlAG0]

m Mutual predictability:
= train one predictor for each program p; of the suite
= apply each predictor to every program p,, compare
predicted and correct classes = mean deviation error

= Result: distance matrix

12345678910 14271035689 14271035689

1 | 1 1

Jamsnnn == BRI = ;) =3

3 2 2 3

3 10 .10 . 5

10

6 3 3 6

7 5 5 7

3 6 6 8

9 8 8 9

10 9 9 10
Distance Distance Resulting Ordered
Matrix Matrix Clustering Program

(permuted) Classes

PES ik retlaff June 30th, 2010 20 -l.

Combination of Predictors!AG0d]

= n programs = n training sets = n predictors

= How to obtain one predictor?
merge n training sets D, to one, train predictor
build a composite predictor: consult all predictors and

vote
take majority vote (if not unique, take min/max); take mean vote
Preg"eree ;"'I','r'é'('i'\};t; """ é """"""""
training >« |
(D-All j P[|B| = |P
merge data ﬁ """""" 1,? - 'é ---------

PES ik retlaff June 30th, 2010 21 -I'E

