

Intelligent Task Mapping for MPSoCs using Machine Learning

Dirk Tetzlaff

Technical University of Berlin

3rd Workshop on Mapping of Applications to MPSoCs June 30th, 2010

Task Mapping for MPSoCs

- Optimal solving NP-complete
 - **★** Genetic/Evolutionary Algorithms: many iterations [Y09],[YH09]
 - Common heuristics: do not fit to special MPSoCs
 - **▼** ILP-modeled: computational complex [YH08],[VM03]
- Requires information about runtime behavior
 - Static analyses: over-approximate
 - Profiling: strongly input data dependent and expensive
- → Use Machine Learning (ML)

Outline

- ML-based Compilation
- Intelligent Task Mapping
 - Learning
 - Task Graph Mapping
 - Experiments
 - Results
- Conclusions

ML-based Compilation

Outline

- ML-based Compilation
- Intelligent Task Mapping
 - Learning
 - Task Graph Mapping
 - Experiments
 - Results
- Conclusions

Intelligent Task Mapping

- ⇒ Use Machine Learning (ML)
 - provides compiler with knowledge of runtime behavior
 - fast and precise heuristics
- 1) Learn **unknown loop bounds**
 - → Reduce communication overhead
- 2) Learn **execution times of tasks**
 - Reduce power consumption
- 3) Learn **best performing Processing Element** (*PE*)

Code Features

- Unknown loop bounds
 - Structure of loop bounds, number of loop exit branches, size of referenced arrays, file-IO
- Execution times of tasks
 - Latency of the most probable path, fraction of control instructions, loop nesting, amount of interprocessor communication
- Best performing PE
 - depends on architectural differences
 - Caches → e.g. sizes of loop bodies
 - Functional units → e.g. fraction of corresponding operations

Task Graph Mapping

- Execution time t_i for task T_i
- Interprocessor communication
 - Amount $a(T_i, T_j)$
 - Cost $c(T_i, T_j)$

- parallel on same PE: $t_i + t_j$
- Latency-weighted list scheduling
- Map tasks to PEs with minimum penalty

Intelligent Task Mapping

- Benefits
 - Communication-aware
 - Power-efficient

Implementation

- Compiler framework: CoSy

- Feature extraction
- Static branch prediction
- Path profiling
- Machine Learning: R Project

- **Predictor construction**
 - supervised classification learning
- Program classification^[AG09]
 - hierarchical clustering to minimize inner-cluster error

Experiments

- Learning of unknown loop bounds
 - 66 programs from Ptrdist^[A95], MiBench^[GR01],
 SPEC CPU{95,2000,2006} benchmark suites
 - 7970 loops analysed
 - 1 98 million iteration counts
 - 115 loop features
 - Loop iterations classified using truncated log₁₀

```
■ 0 .. 9 \( \sim \text{class 1} \)
```

•••

■ 10 million .. 99.999.999 class 8

Experimental Results

- Self evaluation (self)
- Validation without program classification (val)
- Validation with program classification (pc-val)

Outline

- ML-based Compilation
- Intelligent Task Mapping
 - Learning
 - Task Graph Mapping
 - Experiments
 - Results
- Conclusions

Conclusions

- Compilation with knowledge of runtime behavior via ML
 - Unknown loop bounds
 - Execution times of tasks
 - Best performing PE
- Intelligent task mapping
 - Communication-aware
 - Power-efficient
- Experimental results
 - Precise prediction of runtime behavior (error < 1 class)</p>

References

- [YH08] H. Yang and S. Ha, "ILP based data parallel multi-task mapping/scheduling technique for MPSoC", ISOCC'08
- [VM03] G. Varatkar and R. Marculescu, "Communication-aware task scheduling and voltage selection for total systems energy minimization", ICCAD'03
- **[Y09]** M. Yoo, "Real-time task scheduling by multiobjective genetic algorithm", Journal. of System a. Software, 2009
- [YH09] H. Yang and S. Ha, "Pipelined data parallel task mapping/scheduling technique for MPSoC", DATE'09
- [AG09] L. Alvincz, S. Glesner, "Breaking the curse of static analysis: making compilers intelligent via Machine Learning", Proc. of SMART'09, 2009
- [A95] T. Austin, et al., The pointer-intensive benchmark suite, 1995, http://pages.cs.wisc.edu/~austin/ptr-dist.html.
- [GR01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, "Mibench: A free, commercially representative embedded benchmark suite", Workshop on Workload Characterization, 2001.
- [RRG07] C. Roig, A. Ripoll, and F. Guirado, "A new task graph model for mapping message passing applications", IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 12, 2007

Appendix

Estimating the Program Behavior

Program Classification[AG09]

- One predictor for all kinds of programs?
- Better: group similar programs, one predictor per group
- Program classification (ML: unsupervised clustering)
 - Input: set of programs (from the suite)
 distance measure/distance matrix
 - Output: program classes
- Which programs are (dis-)similar?
 - similar programs should be able to explain each other's behavior
- Define similarity based on mutual predictability

Program Classification: Clustering[AG09]

Mutual predictability:

- train one predictor for each program p_i of the suite
- apply each predictor to every program p_i, compare
 predicted and correct classes ⇒ mean deviation error

→ Result: distance matrix

Combination of Predictors[AG09]

- n programs $\Rightarrow n$ training sets $\Rightarrow n$ predictors
- How to obtain one predictor?
 - merge n training sets D_i to one, train predictor
 - build a composite predictor: consult all predictors and vote
 - take majority vote (if not unique, take min/max); take mean vote

