M O - Ity r_«-qg.mw"rr ‘r‘. : J:._,_L )-" = i i = .
- : . I : 1

F m, o | L s
v - TN S e T
: o .

Intelligent Task Mapping for
MPSoCs using Machine Learning

Dirk Tetzlaff

Technical University of Berlin

3rd Workshop on Mapping of Applications to MPSoCs
June 30th, 2010



Task Mapping for MPSoCs

s Optimal solving NP-complete

x Genetic/Evolutionary Algorithms: many iterations! oL 1YHO?]

x Common heuristics: do not fit to special MPSoCs

x |ILP-modeled: computational complex[YHOS]'[VMO"']

= Requires information about runtime behavior
= Static analyses: over-approximate
= Profiling: strongly input data dependent and expensive

= Use Machine Learning (ML)
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ML-based Compilation

Code Features
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PE

Intelligent Task Mapping

= Use Machine Learning (ML)
« provides compiler with knowledge of runtime behavior
v fast and precise heuristics

1) Learn unknown loop bounds

~~ Reduce communication overhead

2) Learn execution times of tasks

~» Reduce power consumption

3) Learn best performing Processing Element (PE)

~~» Treat heterogeneous MPSoCs
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Code Features

= Unknown loop bounds

Structure of loop bounds, number of loop exit branches,
size of referenced arrays, file-10

m Execution times of tasks

Latency of the most probable path, fraction of control

instructions, loop nesting, amount of interprocessor
communication

s Best performing PE

depends on architectural differences
Caches ~» e.g. sizes of loop bodies
Functional units ~~ e.g. fraction of corresponding operations
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Task Graph Mapping

= Execution time t; for task T,

,
O Interprocessor communication K
Amount a(T;, T))
Cost ¢(T;, T))
= Runtime r(T;, T))
sequential: t;+t;+a(T;, T) * c(T;, T)
parallel on different PEs: max(t;, t;) +a(T;, T) * c(T;, T,

parallel on same PE: t; + t;
s Latency-weighted list scheduling
s Map tasks to PEs with minimum penalty
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Intelligent Task Mapping
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Mapping

+ Communication-aware

+ Power-efficient
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Implementation

m Compiler framework: CoSy
Feature extraction
Static branch prediction
Path profiling

= Machine Learning: R Project G

Predictor construction HF A

supervised classification learning

Program classificationlAG03l

hierarchical clustering to minimize inner-cluster error
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Experiments

= Learning of unknown loop bounds

66 programs from Ptrdist!A%5], MiBenchl6R01],
SPEC CPU{95,2000,2006} benchmark suites

7970 loops analysed

1 — 98 million iteration counts

115 loop features

Loop iterations classified using truncated log,,

o .. 9 ~~»class 1
10 .. 99 ~~ class 2
10 million .. 99.999.999 ~~ class 8
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Experimental Results

= Self evaluation (self)
= Validation without program classification (val)

= Validation with program classification (pc-val)

Mean absolute Error Correlation
0.59 1.13 0.94 0.58 0.38 0.40

0.4+

O o
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Conclusions

s Compilation with knowledge of runtime behavior via ML
Unknown loop bounds
Execution times of tasks
Best performing PE

= Intelligent task mapping
+ Communication-aware

v Power-efficient

s Experimental results

v Precise prediction of runtime behavior (error < 1 class)
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Appendix
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Estimating the Program Behavior

Possible Program Behavior
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Program Analysis
m considers all cases
= sdafe, but imprecise

Machine-learned Heuristics
m considers realistic cases
m precise, but unsafe

Profiling
= considers only one case
m (too) precise, but unsafe
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Program Classification!AG02]

s One predictor for all kinds of programs?
m Better: group similar programs, one predictor per group

= Program classification (ML: unsupervised clustering)

Input: set of programs (from the suite)
distance measure/distance matrix

Output: program classes

= Which programs are (dis-)similar?
similar programs should be able to explain each other’s behavior

= Define similarity based on mutual predictability
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Program Classification: ClusteringlAG0]

m Mutual predictability:
= train one predictor for each program p; of the suite
= apply each predictor to every program p,, compare
predicted and correct classes = mean deviation error

= Result: distance matrix
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Combination of Predictors!AG0d]

= n programs = n training sets = n predictors

= How to obtain one predictor?
merge n training sets D, to one, train predictor
build a composite predictor: consult all predictors and

vote
take majority vote (if not unique, take min/max); take mean vote
Preg"eree ;"'I','r'é'('i'\};t; """ é """"""""
training >« |
( D-All j P[|B| = |P
merge data ﬁ """""" 1,? - 'é ---------
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