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Aim of the course

• Studing software technologies e• Studing software technologies e
methodologies for supporting time critical
computing systems.

• We will not consider how to control a system,
but only how to provide a proper operating
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system support.



Course Outline
• Basic concepts

• Where timing constraints come from?

• Concurrency control

• Task scheduling

• Feasibility Analysis
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• Feasibility Analysis

• Handling shared resources

General Definitions
In every control application, we can
distinguish 3 basic components:

• the system to be controlled
– it may include sensors and actuators

• the controller
it sends signals to the system according to a

distinguish 3 basic components:

4

– it sends signals to the system according to a 
predetermined control objective

• the environment in which the system operates



A typical control system

Environ-
mentSystemController

f db k
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feedback

Detailed block diagram
System

Controller actuators

Environ.

Sensory
i

internal state

external statepre-
i

feedback
sensor sensor
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Other activities
filtering, classification, data fusion, recognition, planning

processing processing



Software Vision

computer

Ambiente

actuators

A/D

D/A
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sensorsA/D

Thread (task) Resource

Types of control systems

Depending of the system-environment interactions,
we can distinguish 3 types of control systems:

• Monitoring Systems
– do not modify the environment

• Open-loop control systems
l l dif th i t

we can distinguish 3 types of control systems:
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– loosely modify the environment

• Closed-loop control systems
– tight interaction between perception and action



Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system
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Examples: surveillance systems,  air traffic control

sensors
Display

Radar tracking systems
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Air traffic control
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Biomedical Systems
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Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators
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Examples: assembly robots,  sorting robots

sensors
Data

processingPlanning

Robot Assembly

sensing control

camera

ROBOT
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Telecommunication systems
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Closed-loop control systems

Sensing and control are tightly coupled

Environ-
ment

SystemController actuators
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Examples: flight control systems, military systems,
living beings

sensors
Data

processingPlanning



Ping-pong robot
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Other RT applications
Defense military systems

18



Flight control systems
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Flight simulators
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Robotics
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… and many others
• control of chemical/nuclear power plants

• automotive applications• automotive applications

• multimedia systems

• small embedded devices
⇒ cell phones
⇒ digital TV

22

⇒ digital TV
⇒ videogames
⇒ intelligent toys



Modem

Phone

TV

Agenda

Calculator

sms

MP3 player

Camera

Camcorder

Radio

p y

Web browser

MappingGaming

Payment

AIBO - Sony
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Entertainment
robots

25

Criticality

Timing constraints

soft firm hard

QoS management High performance Safety critical



Requirements

efficiency predictability
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digital tv

Timing constraints

soft firm hard

QoS management High performance Safety critical

F3

Multi-level feedback control

S2

S3

A2

A3

F1

F2
Sensing Control
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Environment
S1 A1



Implications
• The tight interaction with the environment

i th t t t t t ithirequires the system to react to events within
precise timing constraints.

• Timing constraints are imposed by the
dynamics of the environment.
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The operating system must be able to
execute tasks within timing constraints.

What’s a real-time system?

E i t
x (t)

It is a system in which the correctness depends

EnvironmentRT system

y
t

( )

(t+Δ)
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It is a system in which the correctness depends
not only on the output values, but also on the
time at which results are produced.



What’s a real-time system?

E i t
x (t)

REAL TIME means that system time must be

EnvironmentRT system

y
t

( )

(t+Δ)
t
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REAL TIME means that system time must be
synchronized with the time in the environment.

Typical objection to RT systems

It is not worth to invest in RT theory becauseIt is not worth to invest in RT theory, because
computer speed is increasing exponentially,
and all timing constraints can eventually be
handled.

Answer
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Given an arbitrary computer speed, we must
always guarantee that timing constraints can be
met. Testing is NOT sufficient.



Real-Time  ≠ Fast
• A real-time system is not a fast system• A real time system is not a fast system.

• Speed is always relative to a specific
environment.

• Running faster is good, but does not
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guarantee a correct behavior.

Biological examples
• Living beings react in real-time to events

in their natural habitat independently of
their speed:

?
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• If we insert “anomalous” events in the
environment, even a fast mouse can fail:
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• … or a faster fly

can be catched!

What do we learn?
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A RT system must be designed together
with the environment in which it operates



Speed  vs.  Predictability
• The objective of a real-time system is to

guarantee the timing behavior of eachguarantee the timing behavior of each
individual task.

• The objective of a fast system is to minimize
the average response time of a task set. But
…
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Don’t trust average when you have to
guarantee individual performance

There was a man who drowned crossing
a stream with an average depth of 15 cm.

Average depth
15 cm
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Sources of non determinism
• Architecture

– cache, pipelining, interrupts, DMA

• Operating system
– scheduling, synchronization, communication

• Language
lack of explicit support for time
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– lack of explicit support for time

• Design methodologies
– lack of analysis and verification techniques

Traditional Approach

• In spite of this large application domain, mostIn spite of this large application domain, most
of RT applications are designed using
empirical techniques:
– assembly programming

– timing through dedicated timers
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– control through driver programming

– priority manipulations



Disadvantages

1. Tedious programming which heavily1. Tedious programming which heavily
depends on programmer’s ability

2. Difficult code understanding

1
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Readability    ∝
1

efficiency

int a[1817];
main(z p q r)

An efficient C program

main(z,p,q,r)
{
for(p=80;q+p-80;p-=2*a[p])
for(z=9;z--;)
q=3&(r=time(0)+r*57)/7,q=q?q-1?
q-2?1-p%79?-1:0:p%79-77?

1:0:p<1659?79:0:p>158?-79:0,
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:0:p 659? 9:0:p 58? 9:0,
q?!a[p+q*2]?a[p+=a[p+=q]=q]=q :0:0;

for(;q++-1817;)
printf(q%79?"%c":"%c\n"," Û"[!a[q-1]]);

}



Disadvantages
3. Difficult software maintainabilityy

• Complex appl.s consists of millions lines of code

• Code understanding takes more that re-writing

• But re-writing is VERY expensive and bug prone

4 Difficult to verify timing constraints without
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4. Difficult to verify timing constraints without
explicit support from the OS and the
language

Implications
• Such a way of programming RT applications

i dis very dangerous.

• It may work in most situations, but the risk of
a failure is high.

• When the system fails is very difficult to
understand why.
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y

low reliability



The Patriot case
?

Δt
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patriot

computer

radar

Gulf War
25 February 1991 scud
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patriot

computer

radar

Dhahran

Δ = 343 ms



Other accidents due to SW

• Task overrun during LEM lunar landingg g

• First flight of the Space Shuttle (synch)

• Ariane 5 (overflow)

• Airbus 320 (cart task)
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• Airbus 320 (holding task)

• Pathfinder (reset for timeout)

Lessons learned
• Tests, although necessary, allow only a

partial verification of system’s behavior.

• Predictability must be improved at the
kernel level.

• Overload handling and fault-tolerance.
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g

• Critical systems must be designed by
making pessimistic assumptions.



Murphy’s Laws

If something can go wrong, it will go wrongg g g g g

If a system stops working, it will do it
at the worst possible time
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Sooner or later, the worst possible
combination of circumstances will happen

Why Murphy’s Laws are true

What’s the probability for E to occur in n days?
p p

day 1 day 2 day 3 day 4 day 5

pE pE pE pE pE

qE =  1 − pE
prob. for E not
to occur in a day

50

y

QE (n) =  (1 − pE )nprob. for E not
to occur in n days

PE (n) =  1 − QE (n)prob. for E to
occur in n days



Understanding Murphy’s Laws
If something can go wrong (no matter how small
pE is), it will go wrong (that is, the probability for E

PE (n)  =  1 − (1 − pE )n
PE (n)

1

to occur in long time intervals tends to 1).

51
n

pE =  0.0000000001 

Let’s studyingLet s studying
real-time scheduling

and fight against Murphy’s Laws
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Definitions
• Task (or thread)

is a sequence of instructions that in the absence
of other activities is continuously executed by
the processor until completion.

task τi
arrival time

start time
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start time

finishing time

tai si fi

Tasks and jobs

A task is an infinite sequence of instances
(jobs):

Job 1
τi,1 τi,2 τi,3

Job 2 Job 3
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ri,k ri,k+1
t

τi
Ci

ri,1



Task State Transitions

BLOCKED

READY RUNNING
activation

dispatching
termination

wait
BLOCKED

signal
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READY RUNNING

preemption

ACTIVE

Ready Queue
• The ready tasks are kept in a waiting queue,

ll d th dcalled the ready queue;

• The strategy for choosing the ready task to be
executed on the CPU is the scheduling
algorithm.
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Ready queue

CPU
activation dispatching termination

τ1τ2τ3



Scheduling
• A scheduling algorithm is said to be:

– preemptive: if the running task can be
temporarely suspended in the ready queue
to execute a more important task.

– non preemptive: if the running task cannot
be s spended ntil completion
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be suspended until completion.

Schedule
A schedule is a particular assignment of tasks
to the processorto the processor.

Given a task set Γ = {τ1, …, τn}, a schedule is a
mapping σ : R+ → N such that ∀t ∈ R+, ∃t1, t2 :

t ∈ [t1, t2) e ∀t’ ∈ [t1, t2) : σ(t) = σ(t’)
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σ(t) =
k > 0 if τk is running

0 if the processor is  idle



A sample schedule
τ1 τ2 τ3 idleidle

σ(t)
3

2

1

0
tt3 t4t2t1
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At time t1, t2, t3, e t4 a context switch is performed.

Each interval [ti, ti+1) is called a time slice.

A preemptive schedule

τ1

σ(t)
3

1

τ2

τ3

60

3

2

1

0 t



Real-Time tasks

Ci

Di

ri request time (arrival time ai )
si start time

ri si fi di
t

τi
Ci
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Ci worst-case execution time (wcet)
di absolute deadline
Di relative deadline
fi finishing time

Other parameters

τi
ci(t) slack

ri si fi di
t

τi

Lateness: Li = fi − di

Tardiness: max(0, Li)

t
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Residual wcet: ci(t) ci(ri) = Ci

Laxity (o slack): di − t − ci(t)



Jitter
It is the time variation of a periodic event:

fi,1

τi

Finishing-time Jitter

fi,2 fi,3
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Absolute: max (fi,k – ri,k)  – min (fi,k – ri,k)
k k

Relative: max | (fi,k – ri,k)  – (fi,k-1 – ri,k-1) |
k

Other types of Jitter
Start-time Jitter

si,1

τi

si,2 si,3

Completion-time Jitter (I/O jitter)
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si,1

τi

si,2 si,3fi,2fi,1 fi,3



HARD tasks
All jobs m st meet their deadlines Missing a

Task Criticality

All jobs must meet their deadlines. Missing a
deadline may cause catastrophical effects.

SOFT tasks
Missing deadlines is not desired but causes
only a performace degradation
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only a performace degradation.

An operating system able to handle hard
tasks is called a hard real-time system.

Typical HARD tasks
– sensory acquisition
– low-level controllow level control
– sensory-motor planning

Typical SOFT tasks
– reading data from the keyboard
– user command interpretation
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user command interpretation
– message displaying
– graphical activities



Activation modes

• Time driven: periodic tasks• Time driven: periodic tasks
the task is automatically activated by the
kernel at regular intervals.

• Event driven: aperiodic tasks
th t k i ti t d th i l f
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the task is activated upon the arrival of an
event or through an explicit invokation of
the activation primitive.

Two different approaches

Event driven Time drivenEvent driven Time driven

Sistema RT

y(t+Δ)x(t)

Sistema RT

polling

68

Ambiente Ambiente



Periodic  task  model
ri1 =  Φi

r r + Tri,k+1 =  ri,k + Ti

ri,k ri,k+1 t

Ti

Ci

ri,1 = Φi

τi (Ci , Ti , Di )
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ri,k =  Φi + (k−1) Ti

di,k =  ri,k + Di

often
Di = Ti

Aperiodic task model

A i di >• Aperiodic: ri,k+1 > ri,k

• Sporadic: ri,k+1 ≥ ri,k + Ti

Job 1 Job 2 Job 3
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ri,k ri,k+1
t

τi
Ci

ri,1



OS support for periodic tasks
task τi

while (condition) {

wait_for_next_period();

while (condition) {

}
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ready

running

idle

activeactive

idle idle

The IDLE state

dispatching

i

signal wait

RUNNINGREADY
terminateactivate

BLOCKED

72
Timer

end_cyclewake_up IDLE

preemption



Types of constraints
• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
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esou ce co st a ts
– they enforce a synchronization in the

access of mutually exclusive resources.

Timing constraints
Can be explicit or implicit.

• Explicit constraints
– Are included in the specification of the

system activities.

Examples
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– open the valve in 10 seconds
– send the position within 40 ms
– read the altimeter every 200 ms



• Implicit constraints
– do not appear in the system specification, 

but must be respected to meet thebut must be respected to meet the 
requirements.

Example

What’s the time validity of a sensory data?
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t0 ?

Duration of the yellow light

D  ≥ Td + Tr + Tb

T d i i

STOP
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Td =  detection time
Tr =   reaction time
Tb =   braking time



Duration of the yellow light

Detection time: Td =  1 s
Reaction time: Tr = 1 sReaction time: Tr   1 s
Braking time: Tb =  v/(μg)

v = 50 Km/h = 14 m/s    
μ = 0.5 we have:    Tf = 2.8 sFor
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Time to stop the car from the yellow: D ≅ 5 s

Example: automatic braking
obstacle

v
D

sensor visibility
obstacle

Dashboard
Controls BRAKEShuman Distribution

Unit

D
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condition
checker

sensors
emergency
stop



Ts
acq.
task

Worst-case reasoning

Ts Δ Tb

v
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obstacle in
the field

obstacle
detected

brake
pressed

train
stopped

D = sensor visibility

v(Ts + Δ)  +  Xb <   D

a  =  μ g

g
vX b μ

=
2

2

2

2
1 atvtX b −=

v  = a t
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D
g

vTv s <+Δ+
μ2

)(
2



Δ−−<
g

v
v
DTs μ2

Tmax
ggDgv μΔ−μ+μΔ= 2)( 2

max

gDv μ≅ 2max
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speedvmaxv

Ts

gμmax
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D μ = 0.5
visibility



Car driving

Ts Δ Tbv
60

Km/h 0.5 secvisibility: 50m

T 0 8
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obstacle in
the field

obstacle
detected

brake
pressed

car
stopped

Tmax = 0.8 sec

Lessons learned

The farther we look, the faster we can run
To go fast safely, look ahead!!!

If v ≥ vmax no feasible solution exists, no
matter how fast you react!!!
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Don’t look away from the road for too
long!!!



Esempio2: contour following

v

F

Goal
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Move at velocity v along the surface
tangent, exerting a force F < Fmax along
its normal direction.

Worst-case reasoning
v

Ts

acq.
task

Ts τdv

F(t-1) F(t) F(t+1)

(t/τd)
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force not
detected

trajectory
modified

robot
stopped

v = v0 e–(t/τd)



Lenght covered by the robot after the contact:

L = vTs + xf

dd
t

f veevdtevdttvx d τττ
0

0
00

/
00

)()( =−−=== ∞−∞ −∞

∫∫
L = v(Ts + τd)
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Force on the robot tool:

F = KL = Kv(Ts + τd)  <  Fmax

(K = elastic coefficient)

Condition on the sampling period:

ds Kv
FT τ−<

0

max

Kv0

Tmax

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= dKv

FT τ
0

max
max

F

88
speedvmaxv0

Ts
dK

Fv
τ
max

max =



Types of constraints
• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
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esou ce co st a ts
– they enforce a synchronization in the

access of mutually exclusive resources.

Precedence constraints
Sometimes tasks must be executed with
specific precedence relations specified by aspecific precedence relations, specified by a
Directed Acyclic Graph:

τ1

τ2 τ
τ1 τ4

predecessor

90

τ2 τ3

τ4 τ5 τ1 → τ2

immediate predecessor



Sample application
stereo vision

processing recognition
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Precedence graph

acq1 acq2

edge1 edge2

shapedisp

92

depth

rec



Types of constraints
• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
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esou ce co st a ts
– they enforce a synchronization in the

access of mutually exclusive resources.

Resource constraints
To preserve data consistency, shared resources
m st be accessed in m t al e cl sionmust be accessed in mutual exclusion:

x = 3
y = 5

τW τRx = 1
y = 8

x = 1
y = 5
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τW

τR

x=1 y=8

read



Mutual exclusion
However, mutual exclusion introduces extra delays:

x = 3
y = 5x = 1

y = 8
x = 1
y = 8

τW τR

τ x = 1 y = 8
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τW

τR

Δ

read

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi >  Pj ∀ i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12



Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9
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P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

Shorter tasks

T1: 2 T9: 8
T2: 1

T3: 1

T8: 3
T7: 3
T 3

P1
P2
P3

T3: 1

T4: 1
T6: 3
T5: 3

T1

T2

T3

T4

T5

T6

T7

T8

T9
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P3 T3 T7

tr = 13



Released constraints
T1: 3

T2: 2

T4: 2

T5: 4

T7: 4

T8: 4

P1
P2
P3

T2: 2

T3: 2

T5: 4

T6: 4

T8: 4

T9: 9

T1

T2

T3

T4

T5

T6

T7

T8

T9
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P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T3 T5 T8

tr = 16

Faster  processor

τ1

τ2

τ

double speed deadline miss
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τ1

τ2



A dangerous operation: DELAY

A delay(Δ) may cause a delay longer than Δ.

τ1

τ2
0 2 4 6 8 10 12 14

delay(2) blocked
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y( )
τ1

τ2

0 2 4 6 8 10 12 14

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

τ1

τ2

0 5 10 15

0 4 8 12

delay(1) deadline miss
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y( )

τ1

τ2

deadline miss

0 5 10 15

0 4 8 12

…



A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for deadline scheduling):

deadline miss

τ2
154 120 8

τ1
16
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deadline miss

16

154 120 8

τ2

τ1
delay(8)

Lessons learned
• Tests are not enough for real-time systems

I t iti l ti d t l k• Intuitive solutions do not always work

• Delay should not be used in real-time tasks

The safest approach:
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♦ use predictable kernel mechanisms
♦ analyze the system to predict its behavior



Achieving predictability
• The operating system is the part most

responsible for a predictable behavior.

• Concurrency control must be enforced by:
♦ appropriate scheduling algorithms

♦ appropriate syncronization protocols

♦ efficient communication mechanisms

105

♦ efficient communication mechanisms

♦ predictable interrupt handling

Periodic Task 
Scheduling 



Problem  formulation
τi (Ci, Ti) job τik 

For each periodic task, guarantee that:

rik dik
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• each job τik is activated at rik = (k−1)Ti

• each job τik completes within dik = rik + Di

A farm scheduling problem

Feed cow for
25 min / 50 min

108

Feed pig for
10 min / 20 min



First algorithm

Alternate pig with cowp g

0

600 10020 80

Cow
50

Pig
40

100
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0 50 100

Pig gets hungry

Cow gets fat

Evaluation:

Second algorithm

Feed pig and cow 10 min eachp g

0

600 10020 80

Cow
50

Pig
40

100
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0 50 100

Pig is OK

Cow is not happy

Evaluation:



Third algorithm

Feed pig and cow 5 min eachp g

0

600 10020 80

Cow
50

Pig
40

100
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0 50 100

Pig is OK, Cow is OK

but the farmer is tired

Evaluation:

Optimal algorithm

Feed the most starving animalg

0

600 10020 80

Cow
50

Pig
40

100
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0 50 100

Everybody is happyEvaluation:



Timeline Scheduling
(cyclic scheduling)

It has been used for 30 years in military
systems, navigation, and monitoring systems.

Examples
– Air traffic control

113

Air traffic control

– Space Shuttle

– Boeing 777

Timeline Scheduling
Method
• The time axis is divided in intervals of

equal length (time slots).

• Each task is statically allocated in a slot in
order to meet the desired request rate.

114

q

• The execution in each slot is activated by a
timer.



Example

40 Hz 25 ms
f T

A

task

Δ = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

Δ  GCD (minor cycle)

T = lcm (major cycle)

TΔ
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0 25 50 75 100 125 150 175 200

CA + CB ≤ Δ
CA + CC ≤ Δ

Guarantee:

Implementation

A
timer

minorA
B

A
C

timer

timer

minor
cycle

major
cycle

116

A
B

A
timer



Timeline scheduling
Advantages

• Simple implementation (no real-time
operating system is required).

• Low run-time overhead.

Advantages
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• It allows jitter control.

Timeline scheduling
Disadvantages

• It is not robust during overloads.

• It is difficult to expand the schedule.

I i h dl i di

Disadvantages
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• It is not easy to handle aperiodic
activities.



Problems during overloads

What do we do during task overruns?What do we do during task overruns?

• Let the task continue
– we can have a domino effect on all the other

tasks (timeline break)
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• Abort the task
– the system can remain in inconsistent states.

Expandibility
If one or more tasks need to be upgraded,
we may have to re-design the whole
schedule again.

Example: B is updated     but     CA + CB > Δ

Δ

120

0 25
A B



Expandibility
• We have to split task B in two subtasksp

(B1, B2) and re-build the schedule:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

121

CA +  CB1 ≤ Δ
CA +  CB2 +  CC  ≤ Δ

Guarantee:

Expandibility
If the frequency of some task is changed,
the impact can be even more significant:

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C
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100 ms 100 msC

before after

Δ = 25 Δ = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!



Example

TΔ

0 25 50 75 100 125 150 175 200

Δ

Δ
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0 25 50 75 100 125 150 175 200

T

Priority Scheduling
Method
• Each task is assigned a priority based on its

timing constraints.

• We verify the feasibility of the schedule
using analytical techniques.
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g y q

• Tasks are executed on a priority-based
kernel.



Rate Monotonic (RM)
• Each task is assigned a fixed priority

proportional to its rate [Liu & Layland ‘73]proportional to its rate [Liu & Layland 73].

0

500 10025 75
τA

τB
40
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0

0
τC

40 80

100

How to assign priorities?

• Typically, task priorities are assigned
based on the their relative importance.

• However, different priority assignments
can lead to different utilization bounds.

126



Priority vs. importance
If τ2 is more important than τ1 and is assigned higher
priority, the schedule may not be feasible:

τ1

τ2
P1 > P2

deadline miss

127

τ1

τ2
P2 > P1

Priority vs. importance
But the utilization upper bound can be arbitrarily small:

An application can be unfeasible even
h h i l !

τ1

τ2
P2 > P1

ε

∞

when the processor is almost empty!

deadline miss
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τ2

U  = 
ε

T1
+

∞
C2 0



Rate Monotonic is optimal
RM is optimal among all fixed priority
algorithms (if Di = Ti):g ( i i)

If there exists a fixed priority assignment
which leads to a feasible schedule for Γ, then
the RM assignment is feasible for Γ.

129

If Γ is not schedulable by RM, then it cannot
be scheduled by any fixed priority assignment.

Deadline Monotonic is optimal
If Di ≤ Ti then the optimal priority assignment is
given by Deadline Monotonic (DM):g y ( )

τ1

τ2
P2 > P1

DM

130

τ1

τ2
P1 > P2

RM



EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for Γ, then
EDF will generate a feasible schedule.

131

If Γ is not schedulable by EDF, then it cannot
be scheduled by any algorithm.

EDF Example
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9
4

6
3

=+=pU
Di = Ti
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The RM unfesible schedule

43

6 120 183 9 15
τ1

944.0
9
4

6
3

=+=pU
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0 9 183 6 12 15

deadline miss

τ2

Priority Assignments
• Rate Monotonic (RM):

P ∝ 1/T ( t ti )Pi ∝ 1/Ti (static)

• Deadline Monotonic (DM):

Pi ∝ 1/Di (static)

Earliest Deadline First (EDF):• Earliest Deadline First (EDF):

Pi ∝ 1/dik (dynamic) di,k =  ri,k + Di



Identifying the worst case

944.0
9
4

6
3

=+=pUFeasibility may depend on the
initial activations (phases):

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

1350 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

Critical Instant
For any task τi, the longest response time occurs
when it arrives together with all higher priority tasks.

τ1

τ2

R2

136

τ1

τ2

R2



Critical Instant
For independent preemptive tasks under fixed priorities, the
critical instant of τi, occurs when it arrives together with all
higher priority tasks.

τ1

τ2

τ3

1/6

2/8

2/12

Idle time

τi 2/14

How can we verify feasibility?
• Each task uses the processor for a fraction

of time:

i

i
i T

CU =

• Hence the total processor utilization is:

∑
n

iCU

138

∑
=

=
i i

i
p T

U
1

• Up is a misure of the processor load



A necessary condition

If Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

However there are cases in which U < 1

139

However, there are cases in which Up < 1
but the task is not schedulable by RM.

An unfeasible RM schedule

944043
=+=U

6 120 183 9 15
τ1

944.0
96

=+=pU
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deadline miss

τ2



Utilization upper bound

833.033
=+=U 833.0

96
+pU

6 120 183 9 15
τ1

τ2

141

0 9 183 6 12 15
2

NOTE: If C1 or C2 is increased,
τ2 will miss its deadline!

A different upper bound

9.042
=+=bU 9.0

104
+ubU

4 120 8 16
τ1

τ2
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The upper bound Uub depends on the
specific task set.

0
2

4 108 1662 12 14 18 20



A different upper bound

142
=+=U 1

84
+pU

4 120 8 16
τ1

τ2

143

The upper bound Uub depends on the
specific task set.

0
2

4 128 16

The least upper bound
Uub

1

Ulub

144

Γ

. . .



A sufficient condition

If Up ≤ Ulub the task set is certainly
schedulable with the RM algorithm.

NOTE

145

If Ulub < Up ≤ 1 we cannot say anything
about the feasibility of that task set.

NOTE

Basic results
In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

( )121
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Cunder RM if

if and only ifunder EDF 1
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i

i

T
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1=i iT

Assumptions:
Independent tasks

Di = TiΦi = 0



Ulub for  RM

• In 1973, Liu and Layland proved that for a
set of n periodic tasks:

( )12 /1
lub −= nRM nU
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for  n → ∞ Ulub → ln 2

RM Schedulability

100
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RM Guarantee Test

• We compute the processor utilization as:

∑
=

=
n

i i

i
p T

CU
1

• Guarantee Test (only sufficient):

149

( )12 /1 −≤ n
p nU

Schedulability region for RM

1
U1 The U-space

Ci Ti

0.83 τ1

τ2

Ci Ti

3

4

6

9

94.0
9
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6
3

=+=pU
1/2

Unfeasible
region

?

?

?
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U2
10.834/9

Feasible
region

?

?



The Hyperbolic Bound

• In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

2)1( ≤+∏
n

iU
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)(
1

∏
=i

i

Proof sketch
T1 <  Ti <  2T1

C1 = T2 – T1τ1
C1 C1

τ2
C2

T1 2T1

τ3
C3

C

T2

T3•••

C2 = T3 – T2

C3 = T4 – T3
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τn-1

0

Cn–1

τn
Cn

Tn–1

Tn

Cn–1 = Tn – Tn–1
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Proof sketch
Ci = Ti+1 – Ti Ui = Ri – 1 Ri = Ui + 1

1
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TC
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k
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HB vs. LL test
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Response Time Analysis
[Audsley ‘90]

• For each task τ compute the interference• For each task τi compute the interference
due to higher priority tasks:

• compute its response time as

∑
<

=
ik DD

ki CI

155

• compute its response time as
Ri =  Ci + Ii

• verify if Ri ≤ Di

Computing Interference
τk

0 Ri

τi

Interference of τk on τi
in the interval [0, Ri]: k

i
ik C

T
RI =

156

[ , i]
kT

Interference of high
priority tasks on τi: k
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i
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k
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Computing Response Time

i
i

CRCR ∑
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k
kk

ii C
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Iterative solution:

CR0
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Dynamic Priority 
Scheduling



Earliest Deadline First (EDF)

• Each job receives an absolute deadline:

di,k = ri,k + Di

• At any time, the processor is assigned to the
job with the earliest absolute deadline.

159

• Under EDF, any task set can utilize the
processor up to 100%.

EDF Example
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The RM unfesible schedule
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EDF schedulability
• In 1973, Liu and Layland proved that for a

t f i di t kset of n periodic tasks:

1lub =EDFU

Thi th t t k t Γ i h d l bl

162

• This means that a task set Γ is schedulable
by EDF if and only if

Up ≤ 1



Dynamic Priority
EDF with D ≤ T

Schedule based on absolute deadlines

Processor Demand Criterion [Baruah ‘90]

Schedulability Analysis

163

In any interval, the computation demanded by the
task set must be no greater than the available time.

Processor Demand

t1 t2

The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :
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equal to t2:



Processor Demand

0 L

Processor Demand in [0, L]
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Processor Demand Test

LLgL ≤>∀ ),0(,0

Question

166

How can we bound the number of intervals
in which the test has to be performed?

Question



Example
τ1

8

g(0, L)

τ2
0 2 6 124 8 10 14 16

L
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L

Bounding complexity

• Since g(0 L) is a step function we can• Since g(0,L) is a step function, we can
check feasibility only at deadline points.

• If tasks are synchronous and Up < 1, we can
check feasiblity up to the hyperperiod H:

168

H  =  lcm(T1, … , Tn)



Bounding complexity

• Moreover we note that: g(0, L) ≤ G(0, L)
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L
L*

for L > L*

g(0,L) ≤ G(0,L) < L



Processor Demand Test

LLgDL ≤∈∀ )0( LLgDL ≤∈∀ ),0(,

D =  {dk | dk ≤ min (H, L* )}

H  =  lcm(T1, … , Tn)
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Summary
• Three scheduling approaches:

− Off-line construction (Timeline)− Off-line construction (Timeline)
− Fixed priority (RM, DM)
− Dynamic priority (EDF)

• Three analysis techniques:

172

− Processor Utilization Bound U ≤ Ulub

− Response Time Analysis ∀i Ri ≤ Di

− Processor Demand Criterion ∀L g(0,L) ≤ L



Complexity  Issues

• Utilization based analysis (U ≤ Ulub)
− O(n) complexity

• Response time analysis (∀i  Ri ≤ Di)
− Pseudo-polynomial complexity

173

• Processor demand analysis (∀L  g(0,L) ≤ L)
− Pseudo-polynomial complexity

RM vs. EDF
Metrics
• Implementation complexity
• Efficiency
• Schedulability analysis
• Runtime overhead
• Overload conditions

174

Overload conditions
• Jitter
• Aperiodic task handling



Context switches

τ1
100 205 15 25 30 35

RM

τ2
0

100 205 15 25

217 14

30

28 35

35

τ1

EDF
deadline miss
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1

τ2
0

100 205 15 25

217 14

30

28 35

35

Schedulability Analysis
Di = Ti Di ≤ Ti

pseudo-polynomialSuff.: polynomial O(n)

RM
LL: ΣUi ≤ n(21/n –1)

HB: Π(Ui+1)  ≤ 2
∀i Ri ≤ Di

p p y

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

Suff.: polynomial ( )

RTA
Exact pseudo-polynomial

Response Time Analysis
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EDF
ΣUi ≤ 1 LLgL ≤>∀ ),0(,0

O(n) pseudo-polynomialpolynomial: Processor Demand Analysis



Questions
• If EDF is more efficient than RM, why

commercial RT systems are still based on RM?

• RM is simpler to implement on top of
commercial (fixed priority) kernels.

Main reason
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• EDF requires explicit kernel support for deadline
scheduling, but gives other advantages.

RM: harmonic periods

Harmonic task sets are schedulable by RM

if and only if U ≤ 1.

A set of tasks is harmonic if every pair of 
periods are in harmonic relation.

178

A common misconception
The RM schedulability bound is 1 if every
period is multiple of the shortest period.



Non harmonic periods

τ1
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Any increase in the Ci’s makes the system unschedulable 

Harmonic task set
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Robustness under overloads
Two situations are considered:

1. Permanent overload

⇒ This occurs when U > 1

2. Transient overload

181

2. Transient overload

⇒ This occurs when some job executes
more than expected

RM under permanent overload

25.1
20
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0 12 24 36 48 60 72 84
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τ3
40 8020 600

• High priority tasks execute at the proper rate
• Low priority tasks are completely blocked



EDF under permanent overload
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τ3
40 8020 600

• All tasks execute at a slower rate

• No task is blocked

EDF is predictable in overloads

Theorem (Cervin ‘03)

If U > 1 EDF executes tasks with anIf U > 1, EDF executes tasks with an
average period T’i = Ti U.

τ1
T’iTi

τ 8 10

U = 1.25
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RM during transient overruns

τ1 (2/5)

Uavg = 0.817 C1avg = 2,  C1max = 4
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1

τ2

τ3

(2/5)

(3/9)

(1/20)
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RM during transient overruns

τ1 (2/5)

Uavg = 0.817 C1avg = 2,  C1max = 4

0
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deadline
miss
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Who is missing its deadline is not the lowest priority task



Advantages of EDF
However, EDF offers the following advantages
with respect to RM:

• Better processor utilization (100%)

• Less overhead due to preemptions;

• More flexible behavior in overload situations;
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• More uniform jitter control;

• Better aperiodic responsiveness.

Handling sharedHandling shared 
resources

Problems caused by
mutual exclusion



Critical sections 
τ2τ1

globlal
memory buffer

write readx = 3;
y = 5;

a = x+1;
b = y+2;
c = x+y;

int   x;
int   y;

wait(s)

signal(s)

wait(s)

189

c  x+y;signal(s)

signal(s)

Blocking on a semaphore 

τ τ
p1 >  p2

Δ

CS

τ1 τ2

CS

τ1

τ2

Δ

190

It seems that the maximum blocking
time for τ1 is equal to the length of the
critical section of τ2, but …



MARS Sojourner

191

Mars Mission
Pathfinder + Sojourner

July 4th, ‘97 landing on Mars (after 6 months)

July 15th, ‘97 the system self-resets for timeout:
the robot stops working

July 16th, ‘97 News spread all over the world:
i t t ki

192

engineers start working

July 17th, ‘97 the error is identified:
probability = 10-6



Application structure
OS:    VxWorks 
CPU:  R6000 buffer 1

B C t l sensory MT

Meteorology
Task

buffer 2

Bus Control
Task

BCT

sensory
data

wheel
position • • •

MT

results

SCT
Satellite
Comm.

193BUS

buffer 3
range
data • • •

Critical sections are 15
instructions long (10μs)

SCT Task

Schedule with no conflicts

priority

BCT

p y

SCT

194

MT



Conflict on a critical section

priority B

BCT

p y

SCT

195

MT

Conflict on a critical section

priority B

BCT

p y

SCT

196

MT



Priority Inversion

A high priority task is blocked by a lower- priority
task a for an unbounded interval of time.

Solution

197

Solution
Introduce a concurrency control protocol for 
accessing critical sections.

Resource Access Protocols

• Non Preemptive Protocol (NPP)• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

198

• Stack Resource Policy (SRP)



Non Preemptive Protocol
• Preemption is forbidden in critical sections.

• Implementation: when a task enters a CS, its 
priority is increased at the maximum value.

ADVANTAGES: simplicity

199

PROBLEMS: high priority tasks that do not
use the CS may also block

Conflict on critical section

priority B

τ1

p y

τ2

200

τ3



Schedule with NPP

priorityp y

τ1

τ2

201

τ3

Pi(R) = max{P1, … Pn}

Problem with NPP

priority uselessp y

τ1

τ2

blocking

202

τ3

τ1 cannot preemt, although it could



Highest Locker Priority

A t k i CS t th hi h t i itA task in a CS gets the highest priority
among the tasks that use it.

FEATURES:

• Simple implementation.

203

S p e p e e tat o

• A task is blocked when attempting to preempt, 
not when entering the CS.

Schedule with HLP
priority

τ1τ1

τ2

τ3

204

τ2 is blocked, but τ1 can preempt within a CS

Pi(R) = max {Pk | τk uses R}



Problem with HLP

τ1 τ2 τ1 blocks just in case ...

CS

test

1

CS

2

τ1

τ2

1 j

205

p1
p2

Priority Inheritance Protocol
[Sha, Rajkumar, Lehoczky, 90]

• A task in a CS increases its priority only if it
blocks other tasks.

• A task in a CS inherits the highest priority
among those tasks it blocks

206

among those tasks it blocks.

Pi(R) = max {Pk | τk blocked on R}



Schedule with PIP
priority

direct blocking
τ1

τ2

τ3

push-through blocking

207

τ3

P1

P3

Types of blocking
• Direct blocking

A task blocks on a locked semaphore

• Push-through blocking
A task blocks because a lower priority task 
inherited a higher priority.

208

BLOCKING:
a delay caused by a lower priority task



Identifying blocking resources

A task τ can be blocked by a semaphore usedA task τi can be blocked by a semaphore used
by lower priority tasks only if it is

• directly shared with τi (direct blocking) or

• shared with tasks having priority higher than τi

209

(push-through blocking).

Identifying blocking resources

Lemma 1: A task τi can be blocked at most
once by a lower priority task.

If there are ni tasks with priority lower than τi,

210

i p y i,
then τi can be blocked at most at most ni times,
independently of the number of critical sections it
uses.



Identifying blocking resources

Lemma 2: A task τi can be blocked at most
once on a semaphore Sk.

If there are mi distinct semaphores that can block

211

a task τi, then τi can be blocked at most mi times,
independently of the number of critical sections it
uses.

Bounding blocking times

• If ni is the number of tasks with priority less
than τi

• and mi is the number of semaphores on
which τi can be blocked, then

212

Theorem: τi can be blocked at most for
the duration of αi = min(ni,mi)
critical sections.



Example
priority

B Cτ1 A D

τ2

τ3

C

DB

A

• τ1 can be blocked once by τ2 (on A2 or C2) and

213

once by τ3 (on B3 or D3)

• τ2 can be blocked once by τ3 (on B3 or D3)

• τ3 cannot be blocked

Schedule with PIP
priority

τ1

τ2

τ3
P2

P1

214

τ3

τ4



Remarks on PIP
ADVANTAGES
• It is transparent to the programmer.

• It bounds priority inversion.

PROBLEMS

215

PROBLEMS
• It does not avoid deadlocks and

chained blocking.

Chained blocking with PIP
priority B1

τ1

B2 B3

1

τ2

τ3

τ4

216

Theorem: τi can be blocked at most once
by each lower priority task.

τ4



Priority Ceiling Protocol

• Can be viewed as PIP + access test• Can be viewed as PIP + access test.

• A task can enter a CS only if it is free and there 
is no risk of chained blocking.

217

To prevent chained blocking, a task may stop at 
the entrance of a free CS (ceiling blocking).

Resource Ceilings

• Each semaphore sk is assigned a ceiling:

C(sk) =  max {Pj :  τj uses sk}

• Each semaphore sk is assigned a ceiling:

• A task τi can enter a CS only if

218

Pi >  max {C(sk) : sk locked by tasks ≠ τi}

i y



Schedule with PCP
s1 C(s1) = P1

s2 C(s2) = P1priority

τ1

τ2

τ3

219

t1

t1: τ2 is blocked by the PCP, since P2 < C(s1)

PCP properties
Theorem 1

Under PCP each task can block at most onceUnder PCP, each task can block at most once.

Theorem 2

PCP prevents chained blocking.

220

Theorem 3

PCP prevents deadlocks.



Typical Deadlock
τ1 τ2

P1 >  P2

τ1

τ2

blocked

blocked

1 2

A

B

B

A
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Deadlock avoidance with PCP
τ1 τ2

P1 >  P2

CA = P1

CB = P1

τ1

τ2

1 2

A

B

B

A

B 1

ceiling blocking

222



PCP problems

1 It is not transparent to the programmer:1. It is not transparent to the programmer:
semaphores need ceilings

2. It is pessimistic (like HLP): it can create
unnecessary blocking

223

Questions
1. If a task uses several critical sections,

can it be blocked on the second one?

2. Each task has a nominal priority (Pi) and
a dynamic priority (pi ≥ Pi) changed by
the protocol to prevent priority inversion.
If τi blocks because

P {C( ) }

224

Pi ≤ max {C(sk) : sk locked by tasks ≠ τi}

can it be that

pi > max {C(sk) : sk locked by tasks ≠ τi} ?



Guarantee with resource 
constraints

• We select a scheduling algorithm and a
resource access protocol.

• We compute the maximum blocking times
(Bi) for each task.
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• We perform the guarantee test including the
blocking terms.

Guarantee with RM
preemption
by HP tasksy

τi

blocking by
LP tasks
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Response Time Analysis

preemptionτi
blocking

iii CBR +=0

iterate while

227

k
k

s
i

i

k
ii

s
i C

T
RCBR

)1(1

1

−−

=
∑++=

)1( −> s
i

s
i RR

Resource Sharing under EDF
The protocols analyzed so far have been
originally developed for fixed priority scheduling
schemes However:schemes. However:

• NPP can also be used under EDF

• PIP has been extended under EDF by Spuri (1997).

• PCP has been extended under EDF by Chen-Lin

228

(1990)

• In 1990, Baker proposed a new protocol that works
both under fixed and dynamic priorities.



Stack Resource Policy [Baker 1990]

This protocol satisfies the same PCP properties:

• it avoids unbounded priority inversion;

• it prevents deadlocks and chained blocking;

• each task can be blocked at most once;

In addition:

SRP allo s sing m lti nit reso rces

229

• SRP allows using multi-unit resources;

• it can be used under fixed and dynamic priorities;

• it allows tasks to share the same stack space.

For each task τi, we have to specify

A priority pi (static or dynamic):

Stack Resource Policy

p y pi ( y )
RM: pi ∝ 1/Ti

DM: pi ∝ 1/Di

EDF: pi ∝ 1/di

A preemption level: πi ∝ 1/Di

230

A set of resource requirements: ∀Rk μi(Rk)

μi(Rk) specifies how many units of Rk are used by τi



πi ∝ 1/Di

Note that, under EDF, a task τi can preempt another
t k l if (th t i if D D )

Preemption Level

task τk only if πi > πk (that is, if Di ≥ Dk)

No preemption can occur if π ≤ π (that is if D ≥ D ):

231

No preemption can occur if πi ≤ πk (that is, if Di ≥ Dk):

Each resource Rk

specifies the total number of units available: N(Rk)

Stack Resource Policy

keeps track of the current available units: n(Rk)

is assigned a dynamic ceiling: CR(nk)

CR(nk) = max{0, πi : n(Rk) < μi(Rk)}

232

CR(nk)  max{0, πi : n(Rk)  μi(Rk)}

NOTE: CR(nk) increases only when a resource is locked
CR(nk) decreases only when a resource is released



Lemma

Ceiling Property

If  πi > CR(nk) then there exist enough units of R

1. to satisfy the requirements of τi

2. to satisfy the requirements of all tasks that 
can make preemption on τi

233

Stack Resource Policy
Finally, a system ceiling is defined as:

Π = max{C (n )}Πs = max{CR(nk)}

A ready task τi can preempt the executing 

SRP preemption rule

234

y i p p g
task τexe if and only if

pi > pexe and   πi > Πs



Computing Resource Ceilings 
NR

3RA

A(3)τ1

2RB
B(1)A(1)

B(2)

τ2

τ3

Di πi μA μB
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τ1

τ2

τ3

3

2

1

10

15

20

3

1

0

0

1

2

Computing Resource Ceilings 
NR

3RA τ1

Di πi

310

μA μB

3 0
2RB

CR(3) CR(2) CR(1) CR(0)

τ2

τ3

2

1

15

20

1

0

1

2
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Schedule with SRP
NR CR(3) CR(2) CR(1) CR(0)

0
-

RA

RB

3
0

3
1

3
2

3
2

A(3)

B(1)A(1)

B(2)

τ1
τ2
τ3

τ1

τ2

τ3

B

B B

A

A
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Πs
π3

π2

π1

A task blocks when attempting to preempt

Schedule with PCP
sA C(sA) = P1

sB C(sB) = P2

A(3)

B(1)A(1)

B(2)

τ1
τ2
τ3

τ1

τ2

τ3

p

B

B

A

A

B B

P2
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p3

P3

P2

P1

A task is blocked when accessing a resource



SRP Properties
Theorem 1

Under SRP, each task can block at most once.

τ1

τ2

BA

A

Consider the following scenario where τ1 blocks twice:

239

τ3 B B

This is not possible, because τ2 could not preempt τ3

because, at time t*, π2 < Πs

t*

SRP Properties

If  πi > Πs then τi will never block once started.

Theorem 2

Since Πs = max{CR(nk)}, then there are enough
resources to satisfy the requirements of τi and those
of all tasks that can preempt τi .

Proof

240

Question
If a task can never block once started, can we get
rid of the wait / signal primitives?



SRP Properties

SRP prevents deadlocks.

Theorem 3

From Theorem 2, if a task can never block once
started, then no deadlock can occur.

Proof

241

Deadlock avoidance with SRP
τ1 τ2 π1 >  π2

τ1

τ2

A

B

B

A

242



Schedulability Analysis 
under EDF
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When Di = Ti
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Bi can be computed as under PCP and refers to the 
length of longest critical section that can block τi.

Schedulability Analysis 
under EDF

When Di ≤ Ti

∀

LC
T

DTLB
n

k
k

k

kk
i ≤

−+
+ ∑

=1

A task set is schedulable if  U < 1  and  ∀L ∈ D

∀i
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where D =  {dk | dk ≤ min (H, L* )}

H  =  lcm(T1, … , Tn) U

UDT
L

n

i
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Stack Sharing
Each task normally uses a private stack for

• saving context (register values)
• managing functions
• storing local variables

stack pointer
PUSH

245
stack

POP

Stack Sharing
Why stack cannot be normally shared?

Suppose tasks share a resource: A

τ1

SP2

SP1

Suppose tasks share a resource: A

blocked
big problems

246

stack

τ2
SP2



Stack Sharing
Why stack can be shared under SRP?

τ1

τ2
SP2

SP1

SP2

247

stack

2

Saving Stack Size
To really save stack size, we should use a 
small number of preemption levels.

100 tasks

10 Kb stack per task
stack size = 1 Mb

10 preemption levels

248

10 preemption levels

10 tasks per group
stack size = 100 Kb

stack saving = 90 %



Non preemptiveNon preemptive 
scheduling

Preemption has a cost, often not negleagible:

S h d l t d t th ti t k b th

Problem Statement

Scheduler cost: due to the time taken by the
scheduler to suspend the running task, switch the
context, and dispatch the new incoming task.

Pipeline cost: due to the time taken to flush the pipeline
when the task is interrupted and the time taken to refill the
pipeline when the task is resumed.

Cache-related cost: due to the time taken to reload
the cache lines evicted by the preempting task.



• As a consequence, WCETs estimations
for preemptive tasks are

Influence on WCETs

higher
less predictable (highly variable)

non-preemptiveWCET
distribution

preemptive

Cmin C

• It reduces context-switch overhead:
making WCETs smaller and more predictable.

Advantages of NP scheduling

• It simplifies the access to shared resources:
No semaphores are needed for critical sections

• It reduces stack size:
Task can share the same stack, since no more thanTask can share the same stack, since no more than
one task can be in execution

• It allows achieving zero I/O Jitter:
finishing_time – start_time = Ci (constant)



RM 97.0
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Advantages of NP scheduling
In fixed priority systems can improve schedulabiilty:

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

NP-RM
deadline miss

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

• In general, NP scheduling reduces schedulability
introducing blocking delays in high priority tasks:

Disdvantages of NP scheduling

deadline deadlinedeadline
miss

deadline
missΔ Δ



• The utilization bound under non preemptive
scheduling drops to zero:

Disdvantages of NP scheduling

τ1

τ2 ∞
T

T1

C1 = ε

C T T2C2 = T1

U  = 
ε

T1
+

∞
C2 0

Non preemptive scheduling anomalies

τ1

ττ2

τ3

τ1

deadline missdouble speed

τ1

τ2

τ3



Non-preemtive analysis
It is a special case of preemptive scheduling where
all tasks share a single resource for their entire
duration.

τ1

τ2

τ3 R

R

R

The max blocking time for task τi is given by the
largest Ck among the lowest priority tasks:

Bi = max{Cj : Pj < Pi}

Response time analysis

τi

Bi Ii
Ciτi

WOi = max{sik – rik}

WOi = Worst-case occupied time: due to blocking from lp(i)
and interference from hp(i)

sik fikrik

k

p( )

NOTE: the end of WOi cannot coincide with the activation of a
higher priority task τh, which would increase WOi by Ch



Response time analysis

τi

Bi Ii
Ciτi

WOi = max{sik – rik}

sik fikrik
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Stop when )1()( −= s
i

s
i WOWO

Ri =  WOi + Ci



NonLimited

Taking advantage of NP scheduling

Preemptive
scheduling

Non
Preemptive
scheduling

Limited
Preemptive
scheduling

Trade-off solutionsTrade-off solutions
Deferred preemptions

Fixed preemption points

Preemption thresholds

Deferred Preemption
Each task can defer preemption up to qi

NP regions are floating in the code
(i e NP regions can start at any time)(i.e., NP regions can start at any time)

q3

q2

}{max jPPi qB
ij <

=



Interesting problem
Given a preemptively feasible task set, reduce
preemptions as much as possible still preserving
schedulability.

This means finding the longest non-preemptive chunk
Qi for each task that can still preserve schedulability.

Reducing context switch costs and WCETs

Under EDF

Under Fix. Pr. Yao et. al. - RTCSA 2009 

Baruah - ECRTS 2005

Qi is related with the maximum blocking time that can
be tolerated by higher priority tasks.

A simple bound for Qi

Let βi be the maximum blocking time that can be
tolerated by τi, called blocking tolerance.

Then, it must be

}{B

iiB β≤

}{max jPPi qB
ij <

=where

Hence:
ijPP

q
ij

β≤
<

}{max



A simple bound for Qi

ijPP
qi

ij

β≤∀
<

}{max

max {q2, q3, q4} ≤ β1

max {q3, q4} ≤ β2

q4 ≤ β3

i = 1

i = 2

i = 3

q2 ≤ β1

q3 ≤ min{β1, β2}
i = 1

i = 2

i = 3 q4 ≤ min{β1, β2, β3}

Q1

A simple bound for Qi

Q1 = ∞

i ≥ 2

i = 1

Qi =  min{Qi-1, βi-1}



Deriving  βi from the utilization test
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Fixed Preemption Points (FPP)
Each task τi is divided in mi chunks: qi,1 ... qi,mi

It can only be preempted between chunks

}{max max
jPPi qB

ij <
=



Example
Let: τ1 be fully non preemptive: q11 = C1 = 3

τ2 consisting of 2 NP chunks: q21 = 1, q22 = 3, C2 = 4
τ3 be fully non preemptive: q31 = C3 = 2

6 12 18 24

9 180 27

0

τ1

τ2

τ3

3 y p p q31 3

Note that:
The worst case response time of τ2 does not occur in the first
instance.
The interference on τ2 is larger than B2 + C1.

τ

Must be carry out up to the busy period of each task.

Response Time Analysis (FPP)

6 12 18 24

9 180 27

0

τ1

τ2

τ3

Busy period of τ2

Level-i busy period
It is the interval in which the processor is busy executing tasks
with priority higher than or equal to Pi, including blocking times.



6 12 18 24

9 180 27

0

τ1

τ2

Response Time Analysis (FPP)

Level-i busy period
It can be computed as the shortest interval that satisfies:

τ3

Busy period of τ2
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Response Time Analysis (FPP)
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iii TLN /=

( )lastqCTks −+−= )1()0(

for (i=1 to n) {

Response Time Analysis (FPP)
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do {
k = 1

if (Rik > Ri) then  Ri = Rik

} while (k ≤ Ni)
k++

}

( ik i) i ik

if (Ri > Di) then return(UNFEASIBLE)

return(FEASIBLE)

Special cases
Fully non preemptive scheduling

i
last
i Cq =

Deferred Preemption
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Preemption Thresholds (PT)
Each task has two priorities:

Pi nominal priority: used to enqueue the task in the ready

threshold priority ≥ nominal priority

queue and to preempt

θi threshold priority: used for task execution

threshold
nominal

Unfeasible task set
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But feasible with preemption thresholds

Pi θi

τ1 can preempt τ3

τ2 cannot preempt τ3
τ1 cannot preempt τ2

3

2

1

3

3

2

τ1

τ2

τ3

2

2

5

NOTE:
The same feasible schedule is obtained by splitting τ3 in two non
preemptive chuncks: q31 = 2, q32 = 3

Response time analysis (PT)

τi

τi can only be preempted
by tasks τh: Ph > Pi

τi can only be preempted
by tasks τh: Ph > θi

θi
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Remarks
Preemption Thresholds are easy to specify, but it is difficult to
predict the number of preemptions and where they occur ⇒
large preemption overhead

Deferred Preemption allows bounding the number of
preemptions but it is difficult to predict where they occur. Note
that the analysis assumes

Fixed Preemption Points allow more control on preemptions
and can be selected on purpose (e.g., to minimize overhead,

0=last
iq

and can be selected on purpose (e.g., to minimize overhead,
stack size, and reduce WCETs).

A large final chunk in τi reduces the interference from hp-tasks
(hence Ri), but creates more blocking to hp-tasks.


