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Motivation for Course (1)

According to forecasts, the future of 
IT is characterized by terms such as  

� disappearing computers,

� ubiquitous computing,

� pervasive computing,

� ambient intelligence,

� the Post-PC era, and

� cyber-physical systems.

Basic technologies:

� Embedded Systems

� Communication technologies
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Motivation for Course (2)

“Information technology (IT) is on the verge of another 
revolution. …..

networked systems of embedded computers ... have the 
potential to change radically the way people interact with their
environment by linking together a range of devices and 
sensors that will allow information to be collected, shared, and
processed in unprecedented ways. ...

The use … throughout society could well dwarf previous 
milestones in the information revolution.”

National Research Council Report (US)
Embedded Everywhere, 2001

- 4 - p. marwedel, 
informatik 12, 2010

What is an embedded system?
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Embedded Systems & 
Cyber-Physical Systems

“Dortmund“ Definition: [Peter Marwedel]

Embedded systems are information processing systems  
embedded into a larger product

Berkeley: [Edward A. Lee]:
Embedded software is software integrated with physical
processes. The technical problem is managing time and 
concurrency in computational systems.

� Definition : Cyber-Physical (cy-phy) Systems (CPS) are 
integrations of computation with physical processes
[Edward A. Lee, 2006].
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Growing importance of embedded 
systems

� the global mobile entertainment industry is
now worth some $32 bln…predicting average revenue
growth of 28% for 2010 [www.itfacts.biz, July 8th, 2009]

� …, the market for remote home health monitoring is 
expected to generate $225 mln revenue in 2011, up from 
less than $70 mln in 2006, according to Parks Associates.
[www.itfacts.biz, Sep. 4th, 2007]

� Funding in the 7th European Framework
� Creation of the ARTEMIS Joint Undertaking in Europe
� Funding of CPS research in the US
� Joint education effort of Taiwanese Universities
� ….
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Automotive electronics

Multiple networks
� Body, engine, telematics, 

media, safety, ...

Multiple networked 
processors
� Up to 100

© Jakob Engblom

Functions by embedded 
processing:
� ABS: Anti-lock braking 

systems
� ESP: Electronic stability 

control
� Airbags
� Efficient automatic 

gearboxes
� Theft prevention with smart 

keys
� Blind-angle alert systems
� ... etc ...
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Transportation (continued)

Avionics

� Flight control systems,

� Pilot information systems,

� ….

Railways
� Safety features contribute significantly 

to the total value of trains.

� Integrated systems are required, 
especially for high speeds.

� Example: European Rail Traffic 
Management System

Dependability is of outmost importance. 

© http://www.moroccohighlights.com
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Telecommunication &
Consumer electronics

Telecommunication :

� Mobile phones (one of the 
fastest growing markets in the 
recent years),

� Geo-positioning systems,

� Closed systems for police, 
ambulances, rescue staff.

Consumer electronics:

� TV sets,

� Smart personal assistants.
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IT in Healthcare, Biometric systems, 
security

IT in Healthcare
� Artificial eyes: 

• Connection to brain Previously at 
[www.dobelle.com]

• Translation into sound; 
[http://www.seeingwithsound.com/
etumble.htm]

� …
Biometric systems
� Finger print sensors,
� Face recognition,
� Handwriting,
� …
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Industrial automation &
smart buildings

Industrial automation

� Factories, …

Smart buildings

� Integrated cooling, lightning, 
room reservation, 
emergency handling, 
communication.

� Goal: “Zero-energy building”

� Expected contribution to 
fight against global warming



Common 
characteristics

G
ra

ph
ic

s:
 ©

 A
le

xa
nd

ra
 N

ol
te

, G
es

in
e

M
ar

w
ed

el
, 2

00
3

These slides use Microsoft clip arts. 
Microsoft copyright restrictions apply. 

- 14 - p. marwedel, 
informatik 12, 2010

Dependability

� ES must be dependable ,
• Reliability R(t) = probability of system working 

correctly provided that is was working at t=0
• Maintainability M(d) = probability of system working 

correctly d time units after error occurred.
• Availability A(t): probability of system working at time t
• Safety : no harm to be caused
• Security : confidential and authentic communication

Even perfectly designed systems can fail if the 
assumptions about the workload and possible errors turn 
out to be wrong.
Making the system dependable must not be an after-
thought, it must be considered from the very beginning.

K
op

et
z
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Examples of problems

� Non-real time protocols used for real-time 
applications (e.g. Berlin fire department)

� Over-simplification of models
(e.g. aircraft anti-collision system)

� Using unsafe systems for safety-critical 
missions (e.g. voice control system in Los 
Angeles; ~ 800 planes without voice connection 
to tower for > 3 hrs)
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Efficiency

� ES must be efficient

• Code-size efficient
(especially for systems on a chip)

• Run-time efficient

• Weight efficient

• Cost efficient

• Energy efficient
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Importance of Energy Efficiency

© Hugo De Man, 
IMEC, Philips, 2007

Efficient 
software 
design 
needed, 
otherwise, 
the price 
for software 
flexibility 
cannot be 
paid.

Efficient 
software 
design 
needed, 
otherwise, 
the price 
for software 
flexibility 
cannot be 
paid.

“inherent power

efficiency of silicon“
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Embedded System Hardware

Embedded system hardware is frequently used
in a loop (“hardware in a loop“ ):

� Cyber-physical systems
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Real-time constraints

� Many ES must meet real-time constraints

• “A real-time system must react to stimuli from the 
controlled object (or the operator) within the time 
interval dictated by the environment”.

• For real-time systems, right answers arriving too late 
are wrong.

• “ A real-time constraint is called hard, if not 
meeting that constraint could result in a 
catastrophe “ [Kopetz, 1997].

• All other time-constraints are called soft .

• A guaranteed system response has to be explained 
without statistical arguments
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Reactive & hybrid systems

� Typically, ES are reactive systems :
“A reactive system is one which is in continual 
interaction with is environment and executes 
at a pace determined by that environment “
[Bergé, 1995]
Behavior depends on input and current state .
� automata model appropriate,

model of computable functions inappropriate.

� Hybrid systems
(analog + digital parts).
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Dedicated systems

� Dedicated towards a certain 
application
Knowledge about behavior at 
design time can  be used to 
minimize resources and to 
maximize robustness

� Dedicated user interface
(no mouse, keyboard and screen)
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It is not sufficient to consider ES just as a 
special case of software engineering

CS EE

EE knowledge must be available,
Walls between EE and CS must be torn down

The same for walls to other disciplines and more challenges ….
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Validation & test

Specification

ES-hardware

System software 
(RTOS, 
middleware, …)

Evaluation (energy, cost, 
performance, …) 

Optimization

Application 
mapping
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repository Design
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Hypothetical design flow

Generic loop: tool chains differ in the number and type of iterations
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The V-model as a special case

Software
architecture

System
architecture

Requirement
analysis

System 
design

Software
design

Unit
testsIntegration

testingSystem
integration

Acceptance
& use Skipping some explicit 

repository updates ..
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Motivation for considering specs

� Why considering specs?

� If something is wrong with the specs, then it 
will be difficult to get the design right, 
potentially wasting a lot of time.

� Typically, we work with models of the 
system under design (SUD)

� What is a model anyway?

tim
e

Specification Design 
repository

…
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Models

Definition: “ A model is a simplification of another entity, 
which can be a physical thing or another model. The model 
contains exactly those characteristics and properties of the 
modeled entity that are relevant for a given task. A model
is minimal with respect to a task if it does not contain any other 
characteristics than those relevant for the task.”

[Jantsch, 2004]:

Which requirements do we have for our models?
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Requirements for specification 
techniques (1): Hierarchy

� Hierarchy
Humans not capable to understand systems
containing more than ~5 objects.
Most actual systems require more objects
� Hierarchy (+abstraction)

• Behavioral hierarchy
Examples: states, processes, procedures.

• Structural hierarchy
Examples: processors, racks,
printed circuit boards

proc
proc

proc
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Requirements for specification techniques 
(2):  Component-based design

� Systems must be designed from 
components

� Must be “easy” to derive behavior from
behavior of subsystems

�Work of Sifakis, Thiele, Ernst, …

� Concurrency

� Synchronization and communication
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Requirements for specification
techniques (3): Timing

� Timing behavior
Essential for embedded and cy-phy systems!

• Additional information (periods, dependences, 
scenarios, use cases) welcome

• Also, the speed of the underlying platform must be 
known

• Far-reaching consequences for design processes!

“The lack of timing in the core abstraction (of computer 
science) is a flaw, from the perspective of embedded 
software” [Lee, 2005]
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Requirements for specification techniques 
(4): Support for reactive systems

� State-oriented behavior
Required for reactive systems;
classical automata insufficient.

� Event-handling
(external or internal events)

� Exception-oriented behavior
Not acceptable to describe 
exceptions for every state

We will see, how all the 
arrows labeled k can be 
replaced by a single one.
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Requirements for specification 
techniques (5)

� Presence of programming elements
� Executability (no algebraic specification)
� Support for the design of large systems (� OO)
� Domain-specific support
� Readability
� Portability and flexibility
� Termination
� Support for non-standard I/O devices
� Non-functional properties
� Support for the design of dependable systems
� No obstacles for efficient implementation
� Adequate model of computation

What does it mean “to compute”?
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Models of computation

What does it mean, “to compute”?

Models of computation define :

� Components and an execution model for 
computations for each component

� Communication model for exchange of 
information between components.

C-1

C-2
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Communication

� Shared memory

memoryComp-1 Comp-2

Variables accessible to several components/tasks.

Model mostly restricted to local systems.
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Shared memory

Potential race conditions (�inconsistent results possible)
� Critical sections = sections at which exclusive access to 
resource r (e.g. shared memory) must be guaranteed.

task a {
..
P(S)  //obtain lock
..    // critical section
V(S)  //release lock

}

task b {
..
P(S)  //obtain lock
..    // critical section
V(S)  //release lock

}

Race-free access 
to shared memory 
protected by S 
possible

P(S) and V(S) are semaphore operations,
allowing at most n accesses, n =1 in this case (mutex, lock)
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Non-blocking/asynchronous message 
passing

Sender does not have to wait until message has arrived; 

…
send ()
…

…
receive ()
…

Potential problem: buffer overflow
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Blocking/synchronous message 
passing rendez-vous

Sender will wait until receiver has received message

…
send ()
…

…
receive ()
…

No buffer overflow, but reduced performance.
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Organization of computations within 
the components (1)

� Finite state machines

� Data flow
(models the flow of data in a distributed system)

� Differential equations

b
t

x =
∂
∂

2

2
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Organization of computations within 
the components (2)

� Discrete event model

a
b
c

time
actiona:=5   b:=7  c:=8   a:=6  a:=9

queue

5      10      13     15      19
5
7

8

6

� Von Neumann model

Sequential execution, program memory etc.
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Questions?

Q&A?
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Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |

C, C++, JavaVon-Neumann 
model

Plain text, use cases
|    (Message) sequence charts

Undefined 
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g. 
distributed DE in Ptolemy

VHDL*, Verilog, 
SystemC, …

Discrete event 
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite 
state machines

Message passing
Synchronous   |   Asynchronous

Shared 
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue
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Support for early design phases

� Informal text

� Uses cases

� (Message) sequence charts

The system must respond to 
incoming calls. It must play the 
welcome message followed by a 
beep and then start recording …

Similar to SW specification

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |

C, C++, JavaVon-Neumann 
model

Plain text, use cases
|    (Message) sequence charts

Undefined 
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g. 
distributed DE in Ptolemy

VHDL*, Verilog, 
SystemC, …

Discrete event 
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite 
state machines

Message passing
Synchronous   |   Asynchronous

Shared 
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue
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StateCharts

Extending classical automata to model ES & CPS

� Adding timing with timed automata (� Friday tutorial)

� Adding hierarchy:

Complex graphs cannot be understood by humans.

� Introduction of hierarchy � StateCharts [Harel, 1987]

StateChart = the only unused combination of

„flow“ or „state“ with „diagram“ or „chart“

Used here as a (prominent) example of a 
model of computation based on shared 
memory communication, appropriate only for 
local (non-distributed) systems
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Introducing hierarchy

FSM will be in exactly one of 
the substates of S if S is active
(either in A or in B or ..)
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Definitions

� Current states of FSMs are also called active
states.

� States which are not composed of other states are called 
basic states.

� States containing other states are called super-states .
� For each basic state s, the super-states containing s are 

called ancestor states .
� Super-states S are called OR-super-states , if exactly one 

of the sub-states of S is active whenever S is active.

ancestor state of E

superstate

substates
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Default state mechanism

Try to hide internal 
structure from outside 
world!

� Default state

Filled circle
indicates sub-state 
entered whenever 
super-state is entered.

Not a state by itself!
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Concurrency

Convenient 
ways of 
describing 
concurrency 
are required.

AND-super-
states :
FSM is in all
(immediate) 
sub-states of a 
super-state. 

Example:

- 50 - p. marwedel, 
informatik 12, 2010

Types of states

In StateCharts, states are either

� basic states, or

� AND-super-states, or

� OR-super-states.
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Timers

Since time needs to be modeled in embedded systems,
timers need to be modeled.
In StateCharts, special edges can be used for timeouts.

If event a does not happen while the system is in the left 
state for 20 ms, a timeout will take place.
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Using timers in an answering machine

.
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The StateCharts simulation phases
(StateMate Semantics)

How are edge labels evaluated?
Three phases:

1. Effect of external changes on events and conditions is 
evaluated,

2. The set of transitions to be made in the current step 
and right hand sides of assignments are computed,

3. Transitions become effective, variables obtain new 
values.

Separation into phases 2 and 3 guarantees and
reproducible behavior. 
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Example

In phase 2, variables a and b are assigned to temporary 
variables:

In phase 3, these are assigned to a and b.

As a result, variables a and b are swapped.
Use pen on tablet
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Example (2)

In a single phase environment, executing the left state first 
would assign the old value of b (=0) to a and b:

Executing the right state first would assign the old value of a 
(=1) to a and b.

The result would depend on the execution order.
Use pen on tablet
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Reflects model of clocked hardware

In an actual clocked (synchronous) hardware system, both 
registers would be swapped as well.

Same separation into phases found in other languages as 
well, especially those that are intended to model hardware.
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Steps

Execution of a StateMate model consists of
a sequence of (status, step) pairs

Status= values of all variables + set of events + current time
Step   = execution of the three phases (StateMate semantics)

Status
phase 2

phase 3

phase 1 Other implementations of 
StateCharts do not have 

these 3 phases (and hence 
are non-determinate)!
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Other semantics

Several other specification languages for 
hierarchical state machines (UML,  …) do not 
include the three simulation phases.

These correspond more to a SW point of view 
with no synchronous clocks.

Some systems allow turning the multi-phased 
simulation on and off.



- 59 - p. marwedel, 
informatik 12, 2010

Broadcast mechanism

Values of variables are visible to 
all parts of the StateChart model
New values become effective in phase 3 of the 
current step and are obtained by all parts of the 
model in the following step.

� StateCharts implicitly assumes a broadcast mechanism 
for variables
(→ implicit shared memory communication 
–other implementations would be very inefficient -).

� StateCharts is appropriate for local control systems (☺), 
but not for distributed applications for which updating 
variables might take some time (�). 

!
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Evaluation of StateCharts

Pros:
� Hierarchy allows arbitrary nesting of AND- and OR-super states.

� (StateMate-) Semantics defined in a follow-up paper to original paper.

� Large number of commercial simulation tools available
(StateMate, StateFlow,  ...)

� Available “back-ends“ translate StateCharts into C or VHDL, thus 
enabling software or hardware implementations. 

Cons:
� Not useful for distributed applications,

� No program constructs,

� No description of non-functional behavior,

� No object-orientation,

� No description of structural hierarchy.
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considered in this course

C, C++, Java with libraries
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C, C++, JavaVon-Neumann 
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Undefined 
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Kahn networks, SDF(Not useful)Data flow
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SDL

Language designed for distributed systems.
� Dates back to early 70s,
� Formal semantics defined in the late 80s,
� Defined by ITU (International Telecommunication Union): 

Z.100 recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

� Provides textual and graphical formats to please all users,
� Just like StateCharts, it is based on the CFSM model of 

computation; each FSM is called a process ,
� However, it uses message passing instead of shared 

memory for communications,
� SDL supports operations on data.
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SDL-representation of FSMs/processes

output

input

state
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Communication among SDL-FSMs

Communication between FSMs (or “processes“)
is based on message-passing , assuming a potentially 
indefinitely large FIFO-queue .

�Each process 
fetches next entry 
from FIFO,

� checks if input 
enables transition,

� if yes: transition 
takes place,

� if no: input is ignored 
(exception: SAVE-
mechanism).
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Determinate?

Let tokens be arriving at FIFO at the same time:
�Order in which they are stored, is unknown:

All orders are legal: �simulators can show different 
behaviors for the same input, all of which are correct. 

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |

C, C++, JavaVon-Neumann 
model

Plain text, use cases
|    (Message) sequence charts

Undefined 
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g. 
distributed DE in Ptolemy

VHDL*, Verilog, 
SystemC, …

Discrete event 
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite 
state machines

Message passing
Synchronous   |   Asynchronous

Shared 
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue
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Data flow as a “natural” model of 
applications

Example: Video on demand system

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html 
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Data flow modeling

Definition : Data flow modeling is … 
“the process of identifying, modeling and documenting how 
data moves around an information system.
Data flow modeling examines 

� processes (activities that transform data from one form to 
another), 

� data stores (the holding areas for data),

� external entities (what sends data into a system or receives 
data from a system, and

� data flows (routes by which data can flow)”.

[Wikipedia: Structured systems analysis and design method. 
http://en.wikipedia.org/wiki/Structured Systems Analysis and 
Design Methodology, 2010 (formatting added)].
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Kahn process networks

� Each component is a program/task/process,
not an FSM

� Communication is by FIFOs; no overflow considered
� writes never have to wait,
� reads wait if FIFO is empty.

� Only one sender and one receiver per FIFO
� no SDL-like conflicts at FIFOs
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Example

© R. Gupta (UCSD), W. Wolf (Princeton), 2003

levi animation

Process f(in int u, in int v, out int w){

int i; bool b = true;

for (;;) {

i= b ? wait (u) : wait (v); 
//wait returns next token in FIFO, waits if empty

send (i,w);   //writes a token into a FIFO w/o blocking

b = !b;

}
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Properties of Kahn process networks

� Communication is only via 
channels;

� Mapping from ≥1 input channel to 
≥1 output channel;

� Channels transmit information 
within an unpredictable but finite 
amount of time;

� In general, execution times are 
unknown.
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Key beauty of KPNs

� A process cannot check whether data is
available before attempting a read.

� A process cannot wait for data for more than one port at a 
time.

� Therefore, the order of reads depends only on data, not on 
the arrival time.

� Therefore, for a given input, for Kahn process networks the 
result will always the same, regardless of the speed of the 
nodes.

�Many applications in embedded system design:
simplifies emulation of real systems.
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SDF

Less computationally powerful, but easier to analyze:

Synchronous data flow (SDF).

Again using asynchronous message passing.
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Synchronous data flow (SDF)

Synchronous data flow =
global clock controlling “firing” of nodes

Asynchronous message passing=
tasks do not have to wait until output is accepted.

In the general case, a number of tokens can be produced/ 
consumed per firing; firing rate depends on # of tokens …
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Parallel Scheduling of SDF Models

A

C

D

B

Sequential Parallel

SDF is suitable 
for automated 
mapping onto 
parallel 
processors and 
synthesis of 
parallel circuits.

Many scheduling 
optimization 
problems can be 
formulated. Some 
can be solved, too!

Source: ptolemy.eecs.berkeley.edu/presentations/03/streamingEAL.ppt
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Balance equations (one for each 
channel)

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

N M

MfNf BA = number of tokens consumed

number of firings per “iteration”number of tokens produced

Source: ptolemy.eecs.berkeley.edu/presentations/03/streamingEAL.ppt

Schedulable statically
In the general case, buffers may be needed at edges.
Decidable:
� buffer memory requirements
� deadlock
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Similar MoC: Simulink
- example -

From www.mathworks. 
co.uk/access/helpdesk/help/
toolbox/fuzzy/fuzzyt25.shtml

Semantics? “Simulink uses an idealized timing model for 
block execution and communication. Both happen infinitely fast 
at exact points in simulated time. Thereafter, simulated time is
advanced by exact time steps. All values on edges are 
constant in between time steps.” [Nicolae Marian, Yue Ma]
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Summary

Specifications and Modeling 
� Early phases

• Text
• Use Cases
• (Message) Sequence Charts

� FSM-based models
• Shared memory-based (StateCharts)
• Message passing-based (SDL)

� Data flow
• Kahn process networks
• Synchronous data flow
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Questions?

Q&A?
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Introduction

Introduced in 1962 by Carl Adam Petri in his PhD
thesis. Focus on modeling causal dependencies;
no global synchronization assumed (message passing only).
Key elements:
� Conditions

Either met or no met.
� Events

May take place if certain conditions are met.
� Flow relation

Relates conditions and events.
Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).
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Example: Synchronization at single 
track rail segment

“Preconditions“
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Playing the “token game“

use normal view mode!
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Conflict for resource “track“
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© Cris Kobryn: UML 2001: A 
Standardization Odyssey, 
CACM, October, 1999 

Extended Petri 
nets. Include 
decisions (like 
in flow charts). 
Graphical 
notation similar 
to SDL.

“swimlane“

Petri nets & UML:
Activity diagram
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HDLs using discrete event (DE) 
semantics

Used in hardware description languages (HDLs):
Description of concurrency is a must for HW description 
languages!

� Many HW components are operating concurrently

� Typically mapped to “processes“

� These processes communicate via “signals“

� Examples:

• MIMOLA [Zimmermann/Marwedel], ~1975 …

• VHDL (very prominent example in DE modeling)
One of the 3 most important HDLs:
VHDL, Verilog, SystemC
Definition started in 1980, updated every 5 years
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Discrete event semantics

Basic discrete event (DE) semantics 
� Queue of future actions, sorted by time
� Loop:

• Fetch next entry from queue
• Perform function as listed in entry

- May include generation of new entries

� Until termination criterion = true

a
b
c

time
action

a:=5   b:=7  c:=8   a:=6  a:=9

queue

5      10      13     15      19
5
7

8

6
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Simple example (VHDL notation)

Processes will wait for changes on their input ports.
If they arrive, processes will wake up, compute their code and 
deposit changes of output signals in the event queue and wait 
for the next event. 
If all processes wait, the next entry will be taken from the 
event queue.

gate1:
process (a,b)
begin
c <= a nor b;
end;

gate2: 
process (a,b)
begin
c <= a nor b;
end;

S
a

b

c c

a

R

b
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VHDL processes

Delays allowed:
process (a,b)
begin
c <= a nor b after 10 ns;

end;

Equivalent to 

process
begin
c <= a nor b after 10 ns; 
wait on a,b;
end ;

� <=: signal assignment operator

� Each executed signal 
assignment will result in 
adding entries in the projected 
waveform, as indicated by the 
(optional) delay time

� Implicit loop around the code 
in the body

� Sensitivity lists are a shorthand 
for a single wait on -statement 
at the end of the process body
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δδδδ-simulation cycles
Simulation of an RS-Flipflop

0ns 0ns+δδδδ 0ns+2δδδδ 0ns+3δδδδ
R  1    1  1 1 

S  0    0  0 0

Q  1    0  0 0

nQ 0    0  1 1

0ns 0ns+δδδδ 0ns+2δδδδ 0ns+3δδδδ
R  1    1  1 1 

S  0    0  0 0

Q  1    0  0 0

nQ 0    0  1 1

00011

11000

0000

0111

1st δδδδ

2nd δδδδ

δδδδ cycles reflect the fact that no real 
gate comes with zero delay.
� should delay-less signal 
assignments be allowed at all?

3rd δδδδ

gate1:
process (S,Q)
begin

nQ <= S nor Q;
end ;

gate2:
process (R,nQ)
begin

Q <= R nor nQ;
end ;

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |

C, C++, JavaVon-Neumann 
model

Plain text, use cases
|    (Message) sequence charts

Undefined 
components
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VHDL*, Verilog, 
SystemC, …
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C/E nets, P/T nets, …Petri nets
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* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 94 - p. marwedel, 
informatik 12,  2010



- 95 - p. marwedel, 
informatik 12, 2010

Imperative (von-Neumann) model

The von-Neumann model reflects the principles
of operation of standard computers:
� Sequential execution of instructions

(sequential control flow, fixed sequence of 
operations)

� Possible branches
� Partitioning of applications into threads
� In most cases:

• Context switching between threads, frequently 
based on pre-emption (cooperative multi-tasking 
or time-triggered context switch less common)  

• Access to shared memory
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From implementation concepts
to programming models 

Example languages
� Machine languages (binary)
� Assembly languages (mnemonics)
� Imperative languages providing a limited abstraction 

of machine languages (C, C++, Java, ….)
Threads/processes
� Initially available only as entities managed by the 

operating system
� Made available to the programmer as well
� Languages initially not designed for communication, 

availability of threads made synchronization and 
communication a must.

B
ot

to
m

 u
p 

pr
oc

es
s
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Communication via shared memory

Several threads access the same memory
� Very fast communication technique

(no extra copying)
� Potential race conditions:

thread a {
u = 1;
if u<5 {u = u + 1; ..}

}

thread b {
..
u = 5
}

Context switch after the test could result in u == 6.

�inconsistent results possible

� Critical sections = sections at which exclusive access to 
resource r (e.g. shared memory) must be guaranteed
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Shared memory

thread a {
u = 1; ..
P(S)  //obtain mutex
if u<5 {u = u + 1; ..}
// critical section
V(S)  //release mutex

}

thread b {
..
P(S)  //obtain mutex
u = 5 
// critical section
V(S)  //release mutex

}

S: semaphore
P(S) grants up to n concurrent accesses to resource
n=1 in this case (mutex/lock)
V(S) increases number of allowed accesses to resource

Imperative model should be supported by:
� mutual exclusion for critical sections
� cache coherency protocols
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Synchronous message passing:
CSP

� CSP (communicating sequential processes)
[Hoare, 1985],
Rendez-vous-based communication:
Example:

process A
..
var a ...
a:=3;
c!a; -- output

end

process B
..
var b ...
...
c?b; -- input

end
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Communication/synchronization

� Special communication libraries for ES & CPS

• OSEK/VDX COM

• …

� Adopted communication libraries for general computing

• CORBA (Common Object Request Broker Architecture)

• Message passing interface (MPI)

• Posix threads (PThreads)

• OpenMP

• UPnP, DPWS, JXTA, …

Frequently not easy to adjust to real-time requirements
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Deadlocks

Deadlocks can happen, if the following
4 conditions are met [Coffman, 1971]:

� Mutual exclusion : a resource that cannot be used by >1 thread at a 
time 

� Hold and wait : thread already holding resources may request new 
resources 

� No preemption : Resource cannot be forcibly removed from threads, 
they can be released only by the holding threads 

� Circular wait : ≥ 2 threads form a circular chain where each thread 
waits for a resource that the next thread in the chain holds

There is no general, always applicable technique for turning one of these 
conditions false.

In non-safety-critical software, it is “ok” to ensure that deadlocks are 
“sufficiently” infrequent.
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Mutual exclusion in Java

“The Observer pattern defines a one-to-many
dependency between a subject object and
any number of observer objects
so that when the subject object changes state,
all its observer objects are notified and updated automatically.”

© Edward Lee, Berkeley, Artemis
Conference, Graz, 2007

Erich Gamma, Richard Helm, Ralph Johnson, John 
Vlissides: Design Patterns, Addision-Wesley, 1995



- 103 - p. marwedel, 
informatik 12, 2010

Mutexes using monitors are minefields

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}
valueChanged() may attempt to acquire a lock 
on some other object and stall. If the holder of 
that lock calls addListener(): deadlock!

© Edward Lee, Berkeley, Artemis 
Conference, Graz, 2007

x calls addListener

valueC
hanged

requests

lock

he
ld

 b
y 

x

lock
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Problems with imperative languages
and shared memory

� Potential deadlocks

� Specification of total order of operations is an over-
specification. A partial order would be sufficient.
The total order reduces the potential for optimizations

� Timing cannot be specified

� Access to shared memory leads to anomalies, that have to 
be pruned away by mutexes, semaphores, monitors

� Access to shared, protected resources leads to priority 
inversion

� Termination in general undecidable

� Preemptions at any time complicate timing analysis



Comparison
of models

G
ra

ph
ic

s:
 ©

 A
le

xa
nd

ra
 N

ol
te

, G
es

in
e

M
ar

w
ed

el
, 2

00
3

These slides use Microsoft clip arts. 
Microsoft copyright restrictions apply. 

- 106 - p. marwedel, 
informatik 12, 2010

Expressiveness of data flow MoCs

HSDF=Homogeneous 
synchronous data flow
(all firing rates are the 
same)
CSDF=Cyclo static 
data flow (rates vary in 
a cyclic way)

Turing-complete

Not Turing-
complete

[Sander Stuijk, PhD thesis, TU Eindhoven, 2007]
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The expressiveness/analyzability 
conflict

[Sander Stuijk, PhD thesis, TU Eindhoven, 2007]
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How to cope with MoC and language 
problems in practice?

Mixed approaches:Mixed approaches:

Mixing models may require formal models of MoCs
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Mixing models of computation: 
Ptolemy

Ptolemy (UC Berkeley) is an environment for simulating 
multiple models of computation.

Available examples are restricted to a subset of the 
supported models of computation.

http://ptolemy.berkeley.edu/

� Ptolemy simulations

Newton‘s craddle
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Mixing MoCs: Ptolemy
(Focus on executable models; “mature” models only)

Special model for wireless communicationWireless

CSP                    |Von Neumann model

Partial differential equationsContinuous time

Kahn networks, SDF, dynamic 
dataflow, discrete time

Data flow

Experimental distributed DEDEDiscrete event (DE) model

Petri nets

FSM, synchronous/reactive MoCCommunicating finite 
state machines

Message passing
Synchronous  | Asynchronous

Shared 
memory

Communication/
local computations
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Mixing models of computation: UML
(Focus on support of early design phases)

--Von Neumann model

Use cases
|    Sequence charts, timing diagrams

Undefined 
components

Data flow(Not useful)Data flow

--Discrete event (DE) 
model

Activity chartsPetri nets

State 
diagrams

Communicating finite 
state machines

Message passing
Synchronous     |   Asynchronous

Shared 
memory

Communication/
local computations
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UML for embedded systems?

Initially not designed for real-time.

Initially lacking features:
� Partitioning of software into tasks and processes

� specifying timing

� specification of hardware components

Projects on defining profiles for embedded/real-time systems
� Schedulability, Performance and Timing Analysis

� SysML (System Modeling Language)

� UML Profile for SoC

� Modeling and Analysis of Real-Time Embedded Systems

� UML/SystemC, …

Profiles may be incompatible
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Example: Activity diagram with 
annotations

See also W. Müller et al.: UML for 
SoC, http://jerry.c-lab.de/uml-soc/
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What‘s the bottom line?

� The prevailing technique for writing embedded
SW has inherent problems; some of the difficulties of writing embedded 
SW are not resulting from design constraints, but from the modeling.

� However, there is no ideal modeling technique which fits in all cases.

� The choice of the technique depends on the application.

� Check code generation from non-imperative models  

� There is a tradeoff between the power of a modeling technique and its 
analyzability.

� It may be necessary to combine modeling techniques.

� In any case, open your eyes & think about the model
before you write down your spec! Be aware of pitfalls .

� You may be forced, to use imperative models, but you can
still implement, for example, finite state machines or KPNs in Java.
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Summary

� Imperative Von-Neumann models

• Problems resulting from access to shared resources 
and mutual exclusion (e.g. potential deadlock)

• Communication built-in or by libraries

� Comparison of models

• Expressiveness vs. analyzability

• Process creation

• Mixing models of computation
- Ptolemy & UML

- Using FSM and KPN models in imperative languages, etc.

Validation & test

Specification

ES-hardware

System software 
(RTOS, 
middleware, …)

Evaluation (energy, cost, 
performance, …) 

Optimization

Application 
mapping

A
pp

lic
at

io
n 

K
no

w
le

dg
e Design 

repository Design
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Structure of this course
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Trends for the Speeds

Speed gap between processor 
and main DRAM increases

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]

2

4

8

2 4 5

Speed

years

CPU P
er
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rm
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(1
.5

-2
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.a
.)

DRAM (1.07 p.a.)

31

≥ 2x
every 2 
years

1
0

Similar problems also for 
embedded systems & 
MPSoCs
� In the future:
Memory access times >> 
processor cycle times
� “Memory wall”
problem
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Memory

For the memory, efficiency is again a concern:
� speed (latency and throughput); predictable timing
� energy efficiency
� size
� cost
� other attributes (volatile vs. persistent, etc)

Memories?

Oops! 
Memories!
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Energy consumption in mobile devices

[O. Vargas (Infineon Technologies): Minimum power consumption in mobile-phone memory subsystems; Pennwell
Portable Design - September 2005;] Thanks to Thorsten Koch (Nokia/ Univ. Dortmund) for providing this source.
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Access times and energy consumption
for multi-ported register files

Rixner’s et al. model [HPCA’00], Technology of 0.18 µm

Cycle Time (ns) Area (λλλλ2x106) Power (W)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

16 32 64 128

Register File Size

0

1

2

3

4

5

6

7

16 32 64 128

GP6M2 GP6M3

0

2

4

6

8

10

12

14

16 32 64 128

Register File Size

Source and © H. Valero, 2001
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Questions?

Q&A?

Exploitation of the 
memory hierarchy
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Access times and energy consumption 
increases with the size of the memory

Example (CACTI Model): 
"Currently, the size of 
some applications is 
doubling every 10 
months" [STMicroelectronics, 
Medea+ Workshop, Stuttgart, Nov. 
2003]

+ locality in 
applications
� memory
hierarchies
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Hierarchical memories
using scratch pad memories (SPM)

Address space

ARM7TDMI 
cores, well-
known for 
low power 
consumption

scratch pad memory

0

FFF..

main

SPM

processor

HierarchyHierarchy

ExampleExample

no tag memory

SPM

select
Selection is by an 
appropriate address 
decoder (simple!)

SPM is a small, 
physically separate 
memory mapped 
into the address 
space
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Comparison of currents using 
measurements

E.g.: ATMEL board with 
ARM7TDMI and
ext. SRAM

Current
32 Bit-Load Instruction (Thumb)

48,2 50,9 44,4 53,1

116
77,2 82,2

1,16

0

50

100

150

200

Prog Main/ Data
Main

Prog Main/ Data
SPM

Prog SPM/ Data
Main

Prog SPM/ Data SPM
m

A

Core+SPM (mA) Main Memory Current (mA)
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Why not just use a cache ? 

0
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3
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9
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Scratch pad

Cache, 2way, 4GB space

Cache, 2way, 16 MB space

Cache, 2way, 1 MB space

[R. Banakar, S. Steinke, B.-S. Lee, 2001]

Energy for parallel access of sets, in comparators, muxes.
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Influence of the associativity

Parameters different from 
previous slides

[P. Marwedel et al., ASPDAC, 2004]
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Very limited support in ARMcc-based 
tool flows

1. Use pragma in C-source to allocate to specific
section: For example:
#pragma arm section rwdata = "foo", rodata = "bar" 
int x2 = 5; // in foo (data part of region)
int const z2[3] = {1,2,3}; // in bar

2. Input scatter loading file to linker for allocating section to 
specific address range

http://www.arm.com/documentation/ 
Software_Development_Tools/index.html
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Migration of data & instructions, global 
optimization model (TU Dortmund)

Which memory object (array,
loop, etc.) to be stored in SPM?

Non-overlaying (“Static”)  
allocation:

Gain gk and size sk for each object 
k. Maximise gain G = Σgk, 
respecting size of SPM SSP ≥ Σ sk.

Solution: knapsack algorithm.

Overlaying (“dynamic”) 
allocation:

Moving objects back and forthProcessor

Scratch pad 
memory,
capacity SSP

main 
memory

?

For i .{   }

for j ..{   }

while ...

Repeat

call ...

Array ...

Int ...

Array

Example:
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IP representation
- migrating functions and variables-

Symbols:
S(vark ) = size of variable k
n(vark) = number of accesses to variable k
e(vark ) = energy saved per variable access, if vark is migrated
E(vark ) = energy saved if variable vark is migrated (= e(vark) n(vark))
x(vark ) = decision variable, =1 if variable k is migrated to SPM,

=0 otherwise
K = set of variables; Similar for functions I

Integer programming formulation:

Maximize ∑ k ∈K x(vark) E(vark ) + ∑i∈I x(Fi ) E(Fi )

Subject to the constraint

∑k ∈K S(vark) x(vark ) + ∑i ∈I S(Fi ) x(Fi) ≤ SSP
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Reduction in energy and average run-
time

Multi_sort 
(mix of sort 
algorithms)

C
yc

le
s 

[x
10

0]
E

ne
rg

y 
[µ

J]
Feasible with standard compiler & postpassoptimization

Measured processor / external memory energy + 
CACTI values for SPM (combined model)

Numbers will change with technology, 
algorithms remain unchanged.
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Allocation of basic blocks

Fine-grained 
granularity 
smoothens 
dependency on the 
size of the scratch 
pad.

Requires additional 
jump instructions to 
return to "main" 
memory.

Main 
memory

BB1

BB2

Jump1

Jump2

Jump4

Jump3

For consecutive 
basic blocks

Statically 2 
jumps,
but only one 
is taken
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Allocation of basic blocks, sets of 
adjacent basic blocks and the stack

Requires generation of additional jumps (special compiler)

C
yc

le
s 

[x
10

0]
E

ne
rg

y 
[µ

J]
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Savings for memory system energy 
alone

Combined model for memories
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Multiple scratch pads

scratch pad 0, 256 entries

scratch pad 1, 2 k entries

scratch pad 2, 16 k entries

background memory

ad
dr

es
se

s

0

Small is beautiful: 

One small SPM is 
beautiful (☺).

May be, several 
smaller SPMs are 
even more 
beautiful (☺ ☺ ☺)?
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Optimization for multiple scratch pads

∑∑ ⋅⋅=
i

iij
j

j nxeC ,Minimize

With ej: energy per access to memory j,
and xj,i= 1 if object i is mapped to memory j, =0 otherwise,
and ni: number of accesses to memory object i,
subject to the constraints:

∑ ≤⋅∀
i

jiij SSPSxj ,:

∑ =∀
j

ijxi 1: ,

With Si: size of memory object i,
SSPj: size of memory j.
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Considered partitions

00000011

00000202

00002103

00021104

00211105

02111106

21111107

641282565121k2k4k

number of partitions of size:# of 
partitions

Example of considered memory partitions for a total 
capacity of 4096  bytes
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Results for parts of GSM coder/ 
decoder

A key advantage of partitioned 
scratchpads for multiple applications is 
their ability to adapt to the size of the 
current working set.

„Working set“
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Worst/best case execution times 
(WCET/BCET)

Requirements on WCET estimates:
� Safeness: WCET ≤ WCETEST!
� Tightness: WCETEST – WCET → minimal

© h. falk/p. marwedel

di
st

rib
ut

io
n 

of
 ti

m
es

WCETBCET
The actual WCET
must be found or
upper bounded

timepossible execution times0

Lower
timing
bound

Upper
timing
bound

timing predictability

worst-case performance

worst-case guarantee

WCETEST
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Scratch-pad/tightly coupled memory
based predictability

C program

SPM size

executable

Actual
performance

Worst case
execution time

memory-aware
compiler ARMulator

aiT

Pre run-time scheduling is often the only practical means of providing 
predictability in a complex system [Xu, Parnas].
�Time-triggered, statically scheduled operating systems
� Let‘s do the same for the memory system

�Are SPMs really more timing predictable?
�Analysis using the aiT timing analyzer
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Architectures considered

ARM7TDMI with 3 different memory
architectures:

1. Main memory
LDR-cycles: (CPU,IF,DF)=(3,2,2)
STR-cycles: (2,2,2)
* = (1,2,0)

2. Main memory + unified cache
LDR-cycles: (CPU,IF,DF)=(3,12,6)
STR-cycles: (2,12,3)
* = (1,12,0)

3. Main memory + scratch pad
LDR-cycles: (CPU,IF,DF)=(3,0,2)
STR-cycles: (2,0,0)
* = (1,0,0)
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Results for G.721

References:
� Wehmeyer, Marwedel: Influence of Onchip Scratchpad Memories on WCET: 4th Intl Workshop on 

worst-case execution time (WCET) analysis, Catania, Sicily, Italy, June 29, 2004
� Second paper on SP/Cache and WCET at DATE, March 2005

Using Scratchpad: Using Unified Cache:
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Tight integration of compilation and 
timing analysis

� Computation of the WCET after compilation
does not give us optimum results

� Let‘s optimize for the WCET
during compilation

� Tight integration
of aiT WCET
analyzer from
AbsInt into
experimental
WCET aware
compiler WCC

- 144 - p. marwedel, 
informatik 12, 2010

WCETEST for g721 encoder

Steady WCET EST decreases for increasing SPM sizes
WCETEST reductions from 29% – 48%

0%
10%
20%
30%
40%
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80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Relative SPM Size [%]

A
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. R
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e 
W

C
E

T
E

S
T 

[%
] g721_encode

X-Axis: SPM size = x% of benchmark’s code size
Y-Axis: 100% = WCET EST when not using SPM at all

© h. falk/p. marwedel

H. Falk, J. Kleinsorge: Optimal 
Static WCET-aware Scratch-
pad Allocation of Program
Code, 46th Design Automation 
Conference (DAC), 2009
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Average WCET EST for 73 Benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Relative SPM Size [%]

A
vg

. R
el

at
iv

e 
W

C
E

T
E

S
T
 [%

]

X-Axis: SPM size = x% of benchmark’s code size
Y-Axis: 100% = WCET EST when not using SPM at all

Steady WCET EST decreases for increasing SPM sizes
WCETEST reductions from 7% – 40%

© h. falk/p. marwedel
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Dynamic replacement within scratch 
pad

� Effectively results in a kind 
of compiler-controlled 
segmentation/ paging for 
SPM 

� Address assignment within 
SPM required
(paging or segmentation-
like)

Reference: Verma, Marwedel: Dynamic Overlay of 
Scratchpad Memory for Energy Minimization, ISSS 2004

CPU

Memory

Memory

SPM
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Dynamic replacement of data within scratch 
pad: based on liveness analysis

MO = {A, T1, T2, T3, T4}
SP Size = |A| = |T1| …= |T4| 

Solution:
A � SP & T3 � SP

Solution:
A � SP & T3 � SP

SPILL_STORE(A);
SPILL_LOAD(T3);

SPILL_STORE(A);
SPILL_LOAD(T3);

SPILL_LOAD(A);SPILL_LOAD(A);

T3

DEF A

USE A

USE A

MOD A USE T3

USE T3

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10
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Dynamic replacement within scratch pad
- Results for edge detection relative to static 
allocation -

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

64 100 128 200 256 avg.

Scratchpad Size (Bytes)

Processor Energy Memory Energy Total Energy Execution Time
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References to large arrays (1)
- Regular accesses -

for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (k=0; k<n; k++)

U[i][j]=U[i][j] + V[i][k] * W[k][j]

Tiling �

[M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, 
I. Kadayif, A. Parikh: Dynamic Management of Scratch-Pad 
Memory Space, DAC, 2001, pp. 690-695]

for (it=0; it<n; it=it+Sb)

{read_tile V[it:it+Sb-1, 1:n]
for (jt=0; jt<n; jt=jt+Sb)

{read_tile U[it:it+Sb-1, jt:jt+Sb-1];
read_tile W[1:n,jt:jt+Sb-1];

U[it:it+Sb-1,jt:jt+Sb-1]=U[it:it+Sb-1,jt:jt+Sb-1]

+ V[it:it+Sb-1,1:n]
* W [1:n, jt:jt+Sb-1]; 

write_tile U[it:it+Sb-1,jt:jt+Sb-1]

}}
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References to large arrays
- Irregular accesses -

for each loop nest L in program P {
apply loop tiling to L based on the access patterns of

regular array references;
for each assignment to index array X
update the block minimum and maximum values of X;

compute the set of array elements that are irregularly
referenced in the current inter-tile iteration;

compare the memory access costs for using
and not using SPM;
if (using SPM is beneficial)
execute the intra-tile loop iterations by using the SPM

else
execute the intra-tile loop iterations by not
using the SPM

}
[G. Chen, O. Ozturk, M. 
Kandemir, M. Karakoy: Dynamic 
Scratch-Pad Memory 
Management for Irregular Array 
Access Patterns, DATE, 2006]
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Results for irregular approach

Cache

Kandemir@DAC01

Kandemir@DATE06
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Saving/Restoring Context Switch

Saving Context Switch (Saving)
� Utilizes SPM as a common region 

shared all processes
� Contents of processes are copied 

on/off the SPM at context switch
� Good for small scratchpads

P1

P2

P3

Scratchpad

Process P3
Process P1Process P2

Saving/Restoring at 
context switch

Saving/Restoring 
at context switch
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Non-Saving Context Switch

Process P1

Process P3

Process P2

Scratchpad

Process P1

Non-Saving Context Switch
� Partitions SPM into disjoint regions
� Each process is assigned a SPM 

region
� Copies contents during initialization
� Good for large scratchpads

Process P2

Process P3

P1

P2

P3
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Hybrid Context Switch

Hybrid Context Switch (Hybrid)
� Disjoint + Shared SPM regions
� Good for all scratchpads
� Analysis is similar to Non-Saving 

Approach
� Runtime: O(nM3)Scratchpad

Process 
P1,P2, P3

Process P1

Process P2

Process P3

Process  P1Process P2Process P3

P1

P2

P3
Saving/Restoring 
at context switch

Saving/Restoring at 
context switch
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Multi-process Scratchpad Allocation: 
Results

80

90

100

110

120
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150
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64 128 256 512 1024 2048 4096
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o
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p
tio

n
 (

m
J)

Energy (SPA) Energy (Non-Saving)

Energy (Saving) CopyEnergy (Saving)

Energy (Hybrid) CopyEnergy (Hybrid)

27%

� For small SPMs (64B-512B) Saving is better
� For large SPMs (1kB- 4kB) Non-Saving is better
� Hybrid is the best for all SPM sizes.
� Energy reduction @ 4kB SPM is 27% for Hybrid approach

edge detection, 
adpcm, g721, mpeg

SPA: Single Process Approach
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Dynamic set of multiple applications

MEMMEM

CPU

SPM

SPM
Manager

SPM
Manager

App. 2App. 2

App. 1App. 1

App. nApp. n

S
P

M

App. 3

App. 2

App. 1

t

Address space:

SPM

??

Compile-time partitioning of 
SPM no longer feasible

�Introduction of SPM-manager

�Runtime decisions, but
compile-time supported

[R. Pyka, Ch. Faßbach, M. Verma, H. Falk, P. Marwedel: Operating system integrated energy 
aware scratchpad allocation strategies for multi-process applications, SCOPES, 2007]
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Approach overview

App. 2App. 2

App. 1App. 1

App. nApp. n Allocation
Manager

Allocation
Manager

Standard 
Compiler

(GCC)

Standard 
Compiler

(GCC)

Operating
System

Operating
System

Compile-time
Transformations
Compile-time

Transformations

Profit values / Allocation hints

� 2 steps: compile-time analysis & runtime decisions
� No need to know all applications at compile-time
� Capable of managing runtime allocated memory objects
� Integrates into an embedded operating system

Using MPArm simulator from U. Bologna
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Comparison of SPMM to Caches for 
SORT

� Baseline: Main memory only
� SPMM peak energy reduction by 

83% at 4k Bytes scratchpad
� Cache peak: 75% at 2k 2-way 

cache

� SPMM
outperforming caches

� OS and libraries are not 
considered yet

Chunk allocation results:

SPM Size ∆ 4-way

1024 74,81%

2048 65,35%

4096 64,39%

8192 65,64%

16384 63,73%
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Research monographs

� Lars Wehmeyer, Peter Marwedel: Fast, 
Efficient and Predictable Memory 
Accesses, Springer, 2006

� Manish Verma, Peter Marwedel: 
Advanced Memory Optimization 
Techniques for Low-Power Embedded 
Processors, Springer, May 2007

� Paul Lokuciejewski, Peter Marwedel: 
WCET-aware Source Code and 
Assembly Level Optimization Techniques 
for Real-Time Systems, Springer, 2010
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Textbook(s)

Several Editions:
� 1st English edition

• Original hardcover version, 
Kluwer, 2003, >100 $/€

• Reprint, lighter cover borders;
• Reprint, soft cover, corrections, 

Springer, 2006, 37-39€
� 2nd English edition, 2010
� 1st German edition 29€

• March 2007
• Reprint, 2008

� Chinese edition, April 2007, only 
preface in Chinese, not for sale 
outside China

� Plans for Russian, Portuguese, 
Macedonian and Greek edition

Peter
Marwedel

Peter
Marwedel

Peter
Marwedel
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Slides

� Slides for ES course are available at: 
http://ls12-www.cs.tu-dortmund.de/staff/marwedel/es-
book/index.html

� Video recordings will also be made available

Validation & test

Specification

ES-hardware

System software 
(RTOS, 
middleware, …)

Evaluation (energy, cost, 
performance, …) 

Optimization

Application 
mapping

A
pp

lic
at

io
n 

K
no

w
le

dg
e Design 

repository Design
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Next short courses
(simplified view)

Thiele: Performan-
ce analysis in dis-
tributed real-time
systems

Buttazzo: Real-Time Operating
Systems and Task Scheduling

Almeida: Real-Time Communication in ES °

° Not just hardware, but also protocols, timing analy sis

Nielsen: Modeling, verification and 
testing in embedded systems
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Overall Summary

� Introduction, Motivation and Overview
• Motivation
• Common characteristics

� Specifications and Modeling 
• Models of computation
• Early phases
• FSM-based models, Data flow, Petri nets, discrete 

event-based models, Von-Neumann models
• Comparison

� Exploitation of the memory hierarchy 
• Scratch pad memories

- Non-overlaying allocation
- Overlaying allocation
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Good night!


