

smp
Image

International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications

Workshop Proceedings

Table of Contents

4 Message from the Chairs

4 Program Committee

5 Workshop Program

6 Dual Operating System Architecture for Real-Time Embedded Systems

16 Timeslice Donation in Component-Based Systems

24 Full Virtualization of Real-Time Systems by Temporal Partitioning

33 Cache-Related Preemption and Migration Delays: Empirical Approximation and Impact

on Schedulability

45 Implementation of Overrun and Skipping in VxWorks

53 Schedulable Device Drivers: Implementation and Experimental Results

62 Evaluating Android OS for Embedded Real-Time Systems

70 Extending an HSF-enabled Open Source Real-Time Operating System with Resource

Sharing

81 Implementation and Evaluation of the Synchronization Protocol Immediate Priority

Ceiling in PREEMPT-RT Linux

91 The Case for Thread Migration: Predictable IPC in a Customizable and Reliable OS

Editors:

Stefan M. Petters

Peter Zijlstra

Copyright 2010 Politécnico do Porto.

All rights reserved. The copyright of this collection is with Politécnico do Porto. The

copyright of the individual articles remains with their authors.

3

Message from the Workshop Chairs

It has been a pleasure to serve again in the preparation of this year’s Workshop on

Operating Systems Platforms for Embedded Real-Time Applications. Again we aimed

for an interactive format in the workshop providing a discussion forum for novel ideas

as well as the interaction between academics and practitioners. To enable this we have

looked at providing ample of discussion time both in between paper presentations as

well as in the dedicated discussion slots.

Obviously such endeavours are not the result of one or two individuals working, but are

the product of many helping hands. The first thanks goes to Gerhard Fohler for trusting

us in our second go at this Workshop.

At the start of the day and after lunch between the discussion sessions we have

scheduled three paper presentations sessions. The 10 papers presented were selected

out of a total of 16 submissions. We thank all the authors for their hard work and

submitting it to the workshop for selection, the PC members and reviewers for their

effort in selecting an interesting program, as well as the presenters for ensuring that

this will be an entertaining and informative day.

Last, but not least, we would like to thank you, the audience, for your attendance. A

workshop lives and breathes because of the people asking questions and contributing

opinions throughout the day.

We hope you will find this day interesting and enjoyable.

The Workshop Chairs

Stefan M. Petters

Peter Zijlstra

Program Committee

David Andrews, University of Arkansas Fayettville, USA

Neil Audsley, University of York, UK

Peter Chubb, NICTA, Australia

Steve Goddard, University of Nebraska Lincoln, USA

Hermann Härtig, TU Dresden, Germany

Johannes Helander, Microsoft, Germany

Robert Kaiser, University of Applied Sciences Wiesbaden, Germany

Tei-Wei Kuo, National Taiwan University, Taiwan

Stefan M. Petters, IPP-Hurray, Portugal

Peter Zijlstra, Red Hat, Netherlands

4

Program:

09:00-10:30 Session 1: Virtualisation

Dual Operating System Architecture for Real-Time Embedded Systems

Daniel Sangorrin, Shinya Honda, and Hiroaki Takada; Nagoya University, Japan

Timeslice Donation in Component-Based Systems

Udo Steinberg, Alexander Böttcher, and Bernhard Kaue; TU Dresden, Germany

Full Virtualization of Real-Time Systems by Temporal Partitioning

Timo Kerstan, Daniel Baldin, and Stefan Groesbrink ; Univerisy of Paderborn, Germany

10:30-11:00 Coffee Break

11:00-12:30 Session 2: Panel Discussion Linux Scheduler Meet Real-Time

12:30 -13:30 Lunch

13:30-15:30 Session 3: Implementation and Analysis

Cache-Related Preemption and Migration Delays: Empirical Approximation and Impact on

Schedulability

Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson; University of North Carolina at

Chapel Hill, USA

Implementation of Overrun and Skipping in VxWorks

Mikael Åsberg, Moris Behnam, Thomas Nolte, and Reinder Bril; Maelardalen RTC, Sweden and

TU Eindhofen, Netherlands

Schedulable Device Drivers: Implementation and Experimental Results

Nicola Manica, Luca Abeni, Luigi Palopoli, Dario Faggioli, and Claudio Scordino; University of

Trento, Scuola Superiore S. Anna, and Evidence Srl, Italy

 Evaluating Android OS for Embedded Real-Time Systems

Cláudio Maia, Luís Nogueira, and Luís Miguel Pinho; Polytechnic Institute of Porto, Portugal

15:30-16:00 Coffee Break 16:00-17:30 Session 4: Resource Sharing and Communication

Extending an HSF-enabled Open Source Real-Time Operating System with Resource Sharing

Martijn M.H.P. van den Heuvel, Reinder J. Bril, Johan J. Lukkien, and Moris Behnam; TU

Eindhofen, Netherlands and Maelardalen RTC, Sweden

 Implementation and Evaluation of the Synchronization Protocol Immediate Priority Ceiling

in PREEMPT-RT Linux

Andreu Carminati, Rômulo Silva de Oliveira, Luís Fernando Friedrich, and Rodrigo Lange;

Federal University of Santa Catarina, Brazil

 The Case for Thread Migration: Predictable IPC in a Customizable and Reliable OS

Gabriel Parmer; George Washington University, USA

17:30-18:00 Session 5: Group Discussion Wrap up and lessons learned

5

Dual Operating System Architecture for Real-Time Embedded Systems

Daniel Sangorrin, Shinya Honda and Hiroaki Takada

Graduate School of Information Science, Nagoya University, Japan
{dsl,honda,hiro}@ertl.jp

Abstract

Virtualization architectures for the combination of real-
time and high-level application tasks, on the same embed-
ded platform, pose special reliability and integration re-
quirements compared to solutions for the enterprise do-
main. This paper presents a software architecture to exe-
cute concurrently, on a single processor, a real-time operat-
ing system (RTOS) and a general-purpose operating system
(GPOS). The proposed approach, based on common em-
bedded security hardware (ARM TrustZone R©), enables in-
tegrated scheduling of both operating systems to enhance
the responsiveness of the GPOS soft real-time tasks and in-
terrupts while preserving the determinism of the RTOS and
without modifications to the GPOS core. The presented
architecture has been implemented and evaluated on real
hardware. Its low overhead and reliability makes it suitable
for embedded applications such as car navigation systems,
mobile phones or machine tools.

1. Introduction

In recent years, methods for integrating real-time con-
trol systems and high-level information systems on a single
platform to reduce product costs are gaining considerable
interest from different embedded domains [14]. For exam-
ple, the market for high function in-vehicle technology has
experienced a rapid growth. New car functionality may in-
clude satellite navigation, road information, entertainment
systems or Internet connectivity. In addition, parking and
driving aid systems use the information provided by those
applications to cooperate with control systems for the steer-
ing gear or the engine [16].

In order to develop high-level applications (e.g., a web
browser or media player) efficiently, a general-purpose op-
erating system (GPOS) with a high level of functionality is
usually essential. However, most GPOS are not able to sat-
isfy the strict requirements of real-time control systems in
terms of security, reliability and determinism [15]. For in-
stance, security holes are discovered continuously in GPOS
such as Windows or GNU/Linux [17]. For that reason, dif-
ferent solutions that execute a real-time operating system
(RTOS) in parallel with a GPOS have been proposed.

In hybrid kernel methods [22, 21] both operating sys-
tems execute in privileged level with direct access to the
hardware as shown in Fig 1. Although they have the ad-

Figure 1: Hybrid kernel method

vantage of achieving very low overhead, there is no hard-
ware protection between them, and the RTOS can therefore
be threatened by a malicious attack or misbehavior of the
GPOS. For example, if the GPOS runs out of control with
interrupts disabled, the RTOS would not be able to recover
control. Furthermore, the GPOS may access memory as-
signed to the RTOS, causing its failure or stealing sensitive
information.

Virtual Machine Monitor (VMM/hypervisor) methods
[15, 8, 9, 24], on the other hand, provide strong isola-
tion among multiple guest operating systems by executing
them under a lower privilege level. The disadvantages of
these methods are typically the additional execution over-
head caused by privileged instruction emulation; the mod-
ifications needed on the guest operating systems [20]; and
the loss of isolation caused by DMA capable devices [19].
Fortunately, some embedded processor architectures have
recently introduced hardware extensions that facilitate the
process of virtualization [23].

A virtualization architecture designed for real-time em-
bedded systems must use a deterministic scheduling al-
gorithm. In some approaches both operating systems are
scheduled as black boxes using fixed cyclic scheduling [9].
The main problem with this method is that the worst case re-
sponse time of the RTOS’s activities depends on the size of
the slot assigned to the GPOS. This is especially a problem
for RTOS interrupts that require short response times. In
many other approaches, the GPOS is only executed when
the RTOS becomes idle [13, 24]. This method allows the
RTOS to take precedence over the GPOS and thus maintain
its determinism and low response times. However not all
RTOS tasks require the same degree of responsiveness [22],

6

and some GPOS applications and interrupt handlers, such
as multimedia on mobile wireless devices, require a certain
quality of service [18].

This paper presents a dual operating system virtualiza-
tion architecture that supports integrated scheduling to en-
hance the responsiveness of the GPOS while preserving the
determinism of the RTOS. The proposed approach takes
advantage of common embedded security hardware (ARM
TrustZone R©) to improve the reliability and isolation of the
RTOS with low overhead and no modifications to the GPOS
core.

The paper is organized as follows. Sec. 2 introduces,
briefly, the ARM TrustZone capabilities. Sec. 3 outlines the
set of requirements that must be satisfied by the presented
architecture, whose design, implementation and evaluation
are explained in Sec. 4, 5 and 6. Finally, Sec. 7 draws some
conclusions and discusses future work.

2. ARM TrustZone

This section briefly introduces the ARM TrustZone R© se-
curity extensions that will be used for the presented virtual-
ization architecture. For more information, refer to [4, 5].

2.1. Trust vs. Non-Trust concept

ARM processors define two privilege levels. In privi-
leged mode, all the system resources can be accessed. On
the other hand, in user mode, access to resources is re-
stricted. In a GPOS, the kernel usually runs in privileged
mode while applications run in user mode. TrustZone is or-
thogonal to privilege levels, adding the so-called Trust and
Non-Trust states.

Trust state provides similar behavior to existing privi-
leged and user mode levels. On the other hand, code run-
ning under Non-Trust state, even in privileged mode, cannot
access memory space (including devices) that was allocated
for Trust state usage, nor can it execute certain instructions
that are considered critical.

In order to control the TrustZone state, a new mode,
called Secure Monitor mode, has been added to the pro-
cessor. Switching between Trust and Non-Trust state is per-
formed under Security Monitor mode. As a general rule,
code in Security Monitor mode runs with interrupts dis-
abled to avoid registers being overwritten when an interrupt
arrives.

MMU registers and part of the control registers are
banked. When switching the TrustZone state, only gen-
eral purpose registers that are not banked need to be saved.
TrustZone is also supported by the caches to avoid flushing
the cache when switching between both states. These fea-
tures are important for reducing the overhead of switching
between Trust and Non-Trust states.

2.2. Address space partitioning

In TrustZone, the address space is divided between re-
gions only accessible in Trust state (Trust area) and regions
accessible from both states (Non-Trust area).

When the processor core accesses the bus, a signal in-
dicates the current state (Trust/Non-Trust). Bus controllers

and devices can use that signal to determine the state from
which the access was performed. The TrustZone protection
controller [3] can be used to configure different regions of
memory as Trust or Non-Trust space.

2.3. Interrupts

In the ARM processor, there are two types of interrupt
signals: FIQ and IRQ. When a FIQ or IRQ is generated, the
execution is suspended and the program counter is loaded
with the address of the corresponding interrupt vector. In
TrustZone, there are independent interrupt vectors for the
Trust and Non-Trust state. If an interrupt occurs while exe-
cuting in Trust state, the Trust state vector will be executed,
and vice versa. In addition, Secure Monitor mode has its
own vector table. It is possible to configure whether FIQ
and IRQ are handled by the Trust/Non-Trust vectors, or by
the Secure Monitor vectors.

In ARM processors, FIQ and IRQ interrupts can be dis-
abled separately. With TrustZone, it is possible to prevent
the Non-Trust side from disabling FIQ interrupts (IRQs can
be disabled). For this reason, it is recommended to use IRQs
for the Non-Trust state, and FIQs for the Trust state. Distri-
bution of interrupts between both states can be done through
the TrustZone Interrupt Controller [2].

3. VMM requirements

The following set of requirements were specified for the
presented VMM architecture, taking into account the needs
of different embedded domains, such as car navigation sys-
tems, mobile phones and machine tools.

(a) Support concurrent execution of a GPOS and an RTOS
on an ARM TrustZone single processor.

(b) Spatial isolation of the RTOS. GPOS failures cannot
spread to the RTOS.

(c) Time isolation of the RTOS. The real-time determinis-
tic behavior of the RTOS must not be affected by the
GPOS.

(d) Support integrated scheduling of the GPOS soft real-
time tasks and interrupts.

(e) Basic mechanisms for device sharing. No overhead
must be introduced for devices that are not shared.

(f) Mechanisms to implement a health monitoring system
at the RTOS to monitor the GPOS.

(g) No modifications to the GPOS core (i.e., dispatcher or
interrupt handling code) are required. On the other
hand, changes to the RTOS are allowed due to its lower
scale.

(h) The TrustZone monitor implementation must have an
execution time smaller than the RTOS interrupt latency.

(i) The code of the TrustZone monitor implementation
must be small and easy to verify.

As shown by requirement (a), the goal of this research
is to build a dual operating system architecture, based on
security hardware extensions, on a single low-cost proces-
sor. Support for multi-processor architectures is planned for
future research.

7

Requirement (b) is specified due to the difficulty of in-
creasing the reliability level of a GPOS to the one of a lower
size RTOS.

Requirement (c) is specified because systems controlled
by the RTOS have stricter real-time requirements than the
GPOS processing, while time-consuming tasks such as
route searching are better handled by the GPOS. The worst
case interrupt response time of the RTOS must be indepen-
dent of the length of the maximum critical section of the
GPOS.

Requirement (d) is specified because some GPOS appli-
cations (e.g., multimedia) require a certain quality of ser-
vice. Integrated scheduling methods to improve the respon-
siveness of the GPOS without affecting the determinism of
the RTOS are desired.

Requirement (e) is related to device sharing. For ex-
ample, typical devices in a car navigation system include
a display, storage disk, in-vehicle network (CAN), timers,
to name a few. Not all devices need to be shared. For ex-
ample, the display is usually able to allocate a frame buffer
for each OS, where the RTOS frame buffer has preference
over the GPOS buffer. Also, CAN is only used by the con-
trol system and each OS has an independent timer device.
It is preferable that the use of virtualization does not intro-
duce additional overhead to the operation of devices which
do not need to be shared. The hard disk is an example of
a device that may require sharing, because the RTOS may
need to store critical data. In this study only the basic mech-
anisms to share a device between Trust and Non-Trust are
investigated, leaving for future research a more detailed ar-
chitecture with a more sophisticated application interface.

An example where requirement (f) is important is a car
navigation rear guide application which usually runs on the
GPOS. If the image displayed becomes frozen due to some
problem, there is a high risk of collision. For that reason,
the process of updating the image may need to be mon-
itored from the RTOS. If the GPOS application suffers a
failure, a system at the RTOS could be instructed to take the
appropriate measurements. The infrastructure for develop-
ing a health monitor application that has been investigated
in this study includes low-level mechanisms for monitoring
the status of the GPOS and its interrupts and an interface to
stop, reset and resume the operation of the GPOS.

Regarding requirement (g), in order to run two operating
systems simultaneously on a single processor, changes on
each of those operating systems might be inevitable. When
changes are performed on a large scale, software verifica-
tion becomes very difficult. In addition, the maintenance of
such modifications on different versions of the GPOS usu-
ally requires a considerable engineering effort. Therefore
changes in the GPOS must be minimized. On the other
hand, the RTOS has a lower scale, and so changes are al-
lowed.

Requirement (h) is a performance requirement. The in-
troduction of a TrustZone monitor causes overhead in the
interrupt handling due to the necessity to switch between
both operating systems. This overhead needs to be as small
as possible.

Figure 2: VMM based on TrustZone

Finally, requirement (i) is specified because the Trust-
Zone monitor is the cornerstone of the presented architec-
ture. If its reliability is deteriorated, the whole system reli-
ability will be affected. Some important factors for its ver-
ifiability are the number of tests required to cover all its
possible execution paths, and the size of its code for review.

4. VMM architecture

This section describes the virtualization architecture pro-
posed in this paper, which has been designed with the pre-
vious requirements in mind.

4.1. TrustZone configuration

The overall organization of the system is depicted in
Fig. 2. To satisfy requirement (a), a TrustZone Monitor
called SafeG (Safety Gate) has been designed to execute
in Secure Monitor mode and handle the switching between
the GPOS, executed in Non-Trust state, and the RTOS, ex-
ecuted in Trust state. The implementation of SafeG is de-
scribed in Sec. 5.1.

Spatial isolation (requirement (b)) is supported by con-
figuring resources (memory and devices) used by the RTOS
to be accessible only from Trust state. The remaining re-
sources are configured to be accessible both from Trust and
Non-Trust state. This configuration is performed at initial-
ization time after SafeG is loaded. If the GPOS tries to ac-
cess some resource configured as Trust space, an exception
occurs and SafeG is called.

Time isolation of the RTOS (requirement (c)) is sup-
ported by carefully using the two types of interrupt. FIQ
interrupts are forwarded to the RTOS, while IRQ interrupts
are forwarded to the GPOS. In Trust state, IRQs are dis-
abled so that the GPOS cannot interrupt the execution of the
RTOS. For that reason, the GPOS can only execute once the
RTOS makes an explicit request, through a Secure Monitor
Call (SMC), to SafeG. On the other hand, during the GPOS
execution, FIQs are enabled so that the RTOS can recover
the control of the processor. TrustZone is configured to pre-
vent the Non-Trust side from disabling FIQ interrupts.

8

Figure 3: Health monitoring mechanisms

4.2. Support for health monitoring

Some useful mechanisms for requirement (f) include the
ability to monitor, suspend, resume and restart the operation
of the GPOS. Fig. 3 shows the health monitoring mecha-
nisms in the presented architecture. Monitoring the GPOS
status from the RTOS (access 1) is possible because the
GPOS resides in Non-Trust space memory, which is acces-
sible from Trust state. To support GPOS interrupt monitor-
ing, IRQs are first processed by SafeG, which implements a
Secure Monitor mode vector table, before being forwarded
to the GPOS. The frequency and inter-arrival time of the
GPOS interrupts can be tracked (access 2) and used by a
particular health monitor application in the RTOS (access
3). The operation of the GPOS can be suspended or re-
sumed (access 4) using the RTOS application interface, as
described in Sec. 4.4.1. In addition, SafeG offers an SMC
to reboot (access 5) the GPOS from the RTOS.

4.3. Device sharing

Devices that do not need to be shared are configured to
Trust or Non-Trust space and are accessed directly, with-
out any additional overhead. A basic mechanism for shar-
ing the remaining devices has been designed to achieve re-
quirement (e). More refined methods, including a standard
interface, are left for future research. The mechanism is
based on using an SMC to make a request to the other OS
to handle a certain device. For example, the RTOS may
need to handle a shared disk to store sensible data while the
GPOS needs to make a request which will be verified. In
order to transmit the request, the GPOS executes an SMC
together with some parameters, for example the address of
the buffer with the data to be stored. The SMC call is han-
dled by SafeG which switches to the Trust state. During the
switch, SafeG copies the request type and parameters to the
RTOS task, see details in Table 1, that made a switch request
previously. In addition, SafeG can be configured to force a
special exception in the RTOS when immediate processing
is desired. The buffers to store or read the associated data
must be in Non-Trust memory so that they can be accessed
from both operating systems.

Figure 4: Black box vs Integrated cyclic scheduling

4.4. Integrated Scheduling

4.4.1 The GPOS as an RTOS task

In most VMM architectures, virtual machines are sched-
uled as black boxes. However, using such a hierarchical
scheduling approach, it is difficult to support the integrated
scheduling indicated in requirement (d). Furthermore, im-
plementing a new scheduler inside SafeG would complicate
its verification, making requirement (h) difficult to satisfy.
It would also increase the interrupt latency, since SafeG is
executed with interrupts disabled. For that reason, in the
presented architecture, the RTOS is used to schedule the
GPOS, which is represented as a normal RTOS task. Rep-
resenting the execution of the GPOS as a fully featured
RTOS task gives the user the possibility to use the native
RTOS application interface to suspend or resume the opera-
tion of the GPOS. This functionality can be used to produce
an integrated approach, both for cyclic and priority-based
scheduling, and this will be shown in Sec. 4.4.2 and 4.4.3.

4.4.2 Cyclic scheduling

Cyclic scheduling offers very good determinism proper-
ties. Proof of that is the fact that it is used for scheduling
virtual machines (partitions) in VMMs aimed at safety crit-
ical systems such as spatial systems [9], or in the avionics
ARINC 653 standard [1].

One of the problems of cyclic scheduling when applied
to dual virtual machines is depicted in Fig. 4 (a). If the
RTOS is also based on a cyclic scheduler, it becomes dif-
ficult to maintain both the global and internal schedulers
synchronized.

In the presented architecture, an integrated cyclic
scheduling approach has been implemented. A periodic
handler is used, in the RTOS, to suspend and resume the
execution of the task associated with the GPOS. With this
approach it is easy to produce the synchronized schedule
shown in Fig. 4 (b).

Another problem of scheduling virtual machines as black
boxes is that the worst case latency of every RTOS opera-
tion becomes dependent on the length of the GPOS time
slice. This is especially a problem for RTOS interrupts that
require a very short response time.

In the presented architecture FIQ interrupts—which are

9

Figure 5: Latency in integrated cyclic scheduling

Figure 6: GPOS as idle task

assigned to the RTOS and can not be disabled by the
GPOS—are able to preempt the execution of the GPOS at
any instant. Once the processing of the FIQ handler fin-
ishes, the RTOS scheduler resumes the task that was exe-
cuting (in this example the task representing the GPOS) as
shown in Fig. 5 (a). Furthermore, RTOS tasks that require
short latency can be scheduled at a priority higher than the
whole cyclic schedule as shown in Fig. 5 (b). Another ad-
vantage of the presented architecture is that the period and
length of the time slice associated with the GPOS can be
easily modified at run-time with standard application-level
function calls. Furthermore, idle times inside the time slots
associated to the RTOS can be easily used to execute the
GPOS by creating a new task representing the GPOS at a
lower priority.

4.4.3 Priority based scheduling

In many other VMMs oriented to real-time systems, the
GPOS is only executed when the RTOS becomes idle [13]
[24]. This method allows the RTOS to take precedence over
the GPOS and thus maintain its determinism. In the pre-
sented architecture, this is easy to achieve by configuring
the task representing the GPOS processing as the lowest
priority task of the RTOS. However, Fig. 6 highlights the
problem of using the lowest priority thread to schedule the
GPOS. In the figure, an IRQ request in the GPOS is de-
layed until all the processing at the RTOS is finished. In
the worst case, the IRQ request will be attended only after
a hyper-period in the RTOS schedule. The latency that can
be achieved with this method may not be enough for certain
devices. The same situation can happen for the GPOS soft
real-time tasks which require a certain quality of service to
work correctly.

In order to solve this problem without modifying the

Figure 7: Integrated scheduling architecture

GPOS core (to satisfy requirement (g)) the architecture de-
picted in Fig. 7 has been implemented. The execution of the
GPOS is now handled through several RTOS tasks. In addi-
tion to the lowest priority task BTASK (Background Task),
the ITASK (Interrupt Task) is used to enhance the latency of
GPOS interrupts, and the RTASK (Real-Time Task) is used
to improve the quality of service of GPOS soft real-time
tasks. The body of the three tasks is the same. The main
difference between them is the priority level at which they
execute and the way in which they are activated.

The RTASK task is executed at a middle configurable
priority, between the BTASK background priority and the
priority of the ITASK task. It is necessary that RTOS
tasks with lower priority do not suffer starvation or dead-
line misses. In order to achieve this time isolation (as speci-
fied in requirement (c)) the RTASK task runs under the con-
trol of an aperiodic server with a configurable period and
budget. When the RTASK consumes all the capacity allo-
cated for it, it is suspended. Once it receives new capacity
through a budget replenishment it is resumed again. The
period and budget of the aperiodic server can be configured
to provide a certain quality of service to the GPOS soft real-
time tasks. For example, it makes it possible to guarantee
that the GPOS will receive an amount of processing time
which is equal to its budget for every server period.

The ITASK task also runs under the control of an ape-
riodic server but at a higher priority and with a different
activation scheme. GPOS interrupts that require short la-
tency are configured temporarily as FIQ interrupt sources
and processed by a special handler, called FIQ Latency han-
dler, at the RTOS. Fig. 8 depicts the timeline of an ITASK
task activation. Here SafeG processing overhead is included
for completeness. When a GPOS interrupt occurs the La-
tency handler activates the ITASK task and forwards fur-
ther interrupt requests to the Non-Trust side, as IRQs, by
configuring the TrustZone Interrupt Controller. When the
ITASK task is scheduled (i.e., when it is the active task
with the highest priority) a switch to the Non-Trust state
is performed through SafeG, and the GPOS interrupt han-
dler executes. This method makes it possible to represent
certain GPOS interrupts through a task with high priority,
and so their latency can be enhanced. In the presented ar-
chitecture, modifications to the GPOS core are avoided (re-
quirement (g)), and therefore the budget of the ITASK task
is completely consumed each time a Non-Trust interrupt is

10

Figure 8: ITASK activation timeline (priority: t1 > ITASK > t2)

Figure 9: SafeG execution paths

processed. More refined methods that preserve the budget
between interrupt instances can be implemented. However,
they may require small modifications to the GPOS core in
order to return the control back to the RTOS, once the inter-
rupt is served, and therefore they are left for future research.

5. VMM implementation

The implementation of the presented architecture in-
cludes the SafeG TrustZone Monitor, the RTOS and the
GPOS. TOPPERS/ASP was chosen as the RTOS and Linux
as the GPOS.

5.1. SafeG TrustZone Monitor

SafeG is the implementation of the TrustZone Monitor
for the presented architecture. It runs in Secure Monitor
mode with interrupts disabled. Fig 9 shows the five possi-
ble execution paths in SafeG that are necessary to provide
the means to switch between both operating systems and
handle interrupts. As described in Sec. 4.2, interrupts are
captured by SafeG before being forwarded to the appropri-
ate operating system. In order to satisfy requirement (g), it
is necessary that the GPOS interrupt entry is not modified.
For that reason, SafeG adjusts the value of the registers to
appear as if the interrupt had occurred directly, before load-
ing the program counter with the GPOS interrupt vector ad-
dress. The same procedure is used for RTOS interrupts.

The execution path (1) in Fig 9 shows the path when a
FIQ occurs while the RTOS is executing in Trust state. The
execution flow is suspended and the SafeG FIQ handler is
executed. SafeG FIQ handler performs the necessary pro-
cessing and jumps to the RTOS interrupt handler.

The execution path (2) shows the path when an FIQ oc-

curs while the GPOS is executing in Non-Trust state. The
execution flow is suspended and SafeG FIQ handler per-
forms a context switch. More in detail, 38 GPOS general
purpose 32-bit registers are saved in Trust memory and re-
placed by the corresponding 38 RTOS general purpose reg-
isters, the context. After that, the RTOS interrupt handler is
called in a similar way as in path (1).

The execution path (3) shows the path when an IRQ oc-
curs while the GPOS is executing in Non-Trust state. The
execution flow is suspended and SafeG IRQ handler is in-
voked. SafeG IRQ handler performs the necessary process-
ing (e.g., interrupt frequency monitoring) and jumps to the
GPOS IRQ vector handler.

The execution paths (4) and (5) show the paths when
a Secure Monitor Call (SMC) is executed by one of the
operating systems. Registers are used to indicate the re-
quest type (i.e., switch, message or reboot) and pass argu-
ments when required. When a switch request is performed,
SafeG saves the context of the calling operating system and
loads the context of the other operating system. Message
requests can be used for device sharing as mentioned in
Sec. 4.3, or for other types of intercommunications using
Non-Trust memory, to place the associated data. In addi-
tion, SafeG can be configured to force an artificial exception
in the RTOS, when a message is received, for synchroniza-
tion purposes.

5.2. RTOS porting and extensions

The TOPPERS project [11] follows the ITRON stan-
dard for real-time operating systems to produce high qual-
ity open-source software for embedded systems. ASP (Ad-
vanced Standard Profile kernel) is one of TOPPERS real-
time kernels and is based on the µITRON4.0 [7] specifica-
tion with several extensions.

For the purpose of this study, ASP has been ported to
an ARM TrustZone-enabled platform (PB1176JZF) to run
concurrently with a GPOS (Linux). The porting allows ex-
ecution in Trust and Non-Trust states as two different target
platforms. The porting includes support for:

• Trustzone Interrupt Controller [2].
• Non-Trust Generic Interrupt Controller.
• TrustZone-enabled Memory Management Units.
• FIQ and IRQ interrupt routines with nesting.
• Exception handlers (i.e., data abort, SWI, undefined).
• Dispatcher and context switch code.

In order to schedule the GPOS mentioned in Sec. 4.4.1,
an RTOS task whose body is a loop executing the function
shown in Table 1 is used. The function consists of an SMC
instruction plus the address of a buffer. A while instruc-
tion is used because when the GPOS execution is preempted
by an RTOS FIQ and then the task is resumed, the SMC in-
struction must be executed again. An approach [13] such
as modifying the link register value to point to the SMC in-
struction could be an alternative. However, using the mech-
anism shown in Table 1, the GPOS is also able to pass
requests to the RTOS which can be used as an intercom-
munication mechanism or to share devices as mentioned in
Sec. 4.3. To implement the cyclic scheduling approach pro-

11

Table 1: ITASK, RTASK and BTASK function body

ret_args->arg0 = NULL;

while (1) {

Asm("mov r0, %0\n\t"

"smc %1\n\t"

:: "r" (ret_args),

"I" (NT_SMC_SWITCH)

: "r0", "memory");

if (ret_args->arg0 != NULL)

return;

}

posed in Sec. 4.4.2, µITRON4.0 cyclic handlers are used
to suspend (sus_tsk), resume (rsm_tsk) or change the
priority (chg_pri) of the GPOS processing. This is done
at application level, and thus the internals of the RTOS do
not need to be modified.

To implement a priority-based integrated scheduling ap-
proach like that described in Sec. 4.4.3, the ASP kernel has
been extended to support execution-time overrun handlers.
This mechanism makes it possible to limit the processor
time of a specific task, and it has been used to implement
deferrable servers [12] at application level without modi-
fying the ASP scheduler. Cyclic handlers are used for the
budget replenishments.

5.3. GPOS modifications

In the presented VMM architecture the following items
may require modifications to the GPOS. No modifications
to the core (i.e., scheduler or interrupt handlers) of the
GPOS kernel were required.

5.3.1 Vector table

In the ARM processor, it is possible to select a normal
vector table which starts at 0x0 or a high vector table start-
ing at 0xFFFF0000. SafeG uses a normal vector table. If
the GPOS uses the normal vector table, the GPOS vector
table must be stored at a position different to 0x0, and the
base address must be written to the vector base address reg-
ister. In the evaluation environment, Linux was configured
to use the high vector table to prevent conflicts with SafeG
vector table, and thus no changes are required.

5.3.2 Memory and devices allocation

Memory and devices must be allocated either to Trust or
Non-Trust space. To achieve this, it is necessary to modify
the GPOS hardware configuration file for a specific plat-
form. If a single device wants to be shared by the RTOS
and the GPOS, the application libraries need to be modified
to make a request to the RTOS through SafeG.

6. Evaluation

This section shows the evaluation of the presented ar-
chitecture on a real machine. The evaluation platform
is a PB1176JZF-S board, equipped with a TrustZone en-
abled ARM1176jzf processor. The core clock frequency

is 210Mhz and it has 32KB data and instruction caches.
TOPPERS/ASP version 1.3.1 was used as the RTOS. For
the GPOS, an ARM Linux 2.6.24 kernel was used together
with a CRAMFS file-system placed into FLASH memory.
Since the GPOS can affect the execution time of the RTOS
or SafeG through the cache, the whole cache is flushed be-
fore taking each measurement.

6.1. SafeG overhead

In this section, requirement (h) is evaluated. Although
the presented architecture does not introduce overhead in
memory accesses or normal device operation, SafeG intro-
duces a bounded overhead in interrupt processing and Trust-
Zone state switching.

Table 2: SafeG execution time

Path WCET
(1) While RTOS runs FIQ occurs 0.7µs
(2) While GPOS runs FIQ occurs 1.6µs
(3) While GPOS runs IRQ occurs 1.2µs
(4) Switch from RTOS to GPOS 1.5µs
(5) Switch from GPOS to RTOS 1.7µs
From ASP IRQ vector until IRQs enabled 5.1µs

Measurements for each of the execution paths of SafeG
are shown in Table 2. Since execution paths (2), (4) and
(5) require TrustZone state switching (save and restore con-
text), their execution time is a little higher than paths (1)
and (3). As SafeG makes no assumptions about the RTOS
that is running, all the processor registers (38 in this case)
need to be saved and restored. It is possible to reduce the
overhead further by saving only the necessary registers for
a specific configuration. For example, in the presented ar-
chitecture ASP makes switch requests only under task con-
text, and therefore only registers used by the task need to
be saved. This optimization reduces the execution time of
paths (2), (4) and (5) by 240ns.

The last row in Table 2 indicates the interrupt latency
—which is measured as the time between the ASP inter-
rupt vector handler starts until interrupts are enabled again,
just before the interrupt service routine is executed—. This
processing takes place inside the core of ASP, is written in
assembly with no loops, and consists of several steps: save
processor context; nested interrupts handling code; judge
the interrupt cause; set the interrupt priority; obtain the ad-
dress of the interrupt handler; and enable interrupts. After
that, the user interrupt service routine is called. The execu-
tion time of each path is always smaller than ASP interrupt
latency, thus complying with requirement (h).

6.2. SafeG code verifiability

To satisfy requirement (i), SafeG code must be small and
have as few forks as possible so that source code review
becomes easier. The size of the code and data sections of
SafeG, ASP and Linux are shown in Table 3. SafeG occu-
pies a total of 1968 bytes, around 1/60 of the size of ASP,
which is small enough for verification purposes. A total of
304 bytes in the .bss section of SafeG corresponds to the
area where the context of each operating system is stored.

12

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

O
c
c
u

rr
e

n
c
e

s

Timer interrupt latency in µs

ASP
ASP+SafeG

Linux
Linux+SafeG

Figure 10: Timer interrupt latency

Table 3: Code and data size (in bytes)

text data bss total
SafeG 1520 0 448 1968
ASP 34796 0 83140 117936

Linux 1092652 148336 89308 1330296

Inside SafeG there are four forks in total. Three of them
occur when SafeG captures an interrupt (IRQ/FIQ) or re-
ceives an SMC request. They are required to execute dif-
ferent processing depending on the current TrustZone state.
The other fork is required to support instances when a high
vector is used, as explained in Sec. 5.3.1. Because there are
four forks inside SafeG, only eight types of tests are neces-
sary in order to cover all possible execution paths.

Finally, another factor that helps to satisfy requirement
(i) is the fact that SafeG runs with interrupts disabled. If in-
terrupts were enabled, it would be necessary to verify accu-
rately at which point interrupts enter while executing SafeG.

6.3. RTOS time isolation

To confirm that RTOS time isolation from the GPOS is
satisfied (requirement (c)), the latency of the RTOS timer
interrupt is measured before and after the introduction of
SafeG. In the RTOS only a periodic operation to renew the
system tick is executed every 1ms. The ASP system tick
timer is replaced by the ARM performance monitor, whose
value is read at the beginning of the timer interrupt service
routine, and which contains the cycles corresponding to the
interrupt handling code inside ASP. At the GPOS side, a ter-
minal, Xeyes, Xclock and the top command are executed on
top of X windows. For completeness, the latency of Linux
timer interrupts were also measured.

All measurements were repeated for 10,000 times. The
results are shown in Fig. 10 where the vertical axis shows
the frequency, in logarithmic scale, and the horizontal axis

shows the timer interrupt latencies. As shown in the graph,
the introduction of SafeG increased the latency of ASP in-
terrupts by around 2us. This increase is consistent with the
values measured for SafeG overhead in Table 2. The worst
case occurs when an FIQ interrupt arrives just after SafeG
starts switching to the GPOS (with interrupts disabled). De-
spite the interrupt latency of the RTOS is being increased,
it remains bounded and isolated from the GPOS operation,
and therefore requirement (c) is satisfied.

The most common measured value of the GPOS timer
interrupt latency was incremented by around 31µs due to
SafeG overhead plus the preemptions caused by the periodic
processing of ASP system tick. The worst measured value,
7637µs, does not appear in the graph and depends on long
critical sections executed with interrupts disabled inside the
Linux kernel. This problem is not caused by SafeG and can
be addressed with different patches available for the Linux
kernel.

6.4. Integrated scheduling evaluation

This section evaluates whether requirement (d) is satis-
fied or not with the approach proposed in Sec. 4.4.3.

6.4.1 Experiment no. 1: ITASK

In this experiment, the ITASK task shown in Fig. 7 has
been assigned to the Non-Trust serial driver interrupt num-
ber. The input has been generated randomly by a user who
typed characters on the serial console of the Non-Trust op-
erating system at human speed. The serial driver latency
is measured from the beginning of the FIQ Latency handler
until the character is received by the user of the serial driver.
Therefore it includes the overhead caused by the architec-
ture, plus the possible blocking times of the RTOS tasks.
The RTOS executes two tasks with the parameters shown in
Table 4.

Table 5 shows the measured values for three situations.

13

Table 4: RTOS task parameters

task priority period duration utilization
1 high 50ms 10ms 20%
2 low 300ms 100ms 33%

The first row shows the results when the RTOS tasks from
Table 4 are not present. The second row shows the results
when using the idle approach. The maximum measured
value, 113.9ms, includes the blocking caused by tasks 1 and
2. The last row shows the results when an ITASK task is
used at a priority between the two RTOS tasks and with a
server period of 30ms and budget of 2ms. The use of the
ITASK mechanism reduced the measured latency of the se-
rial port driver to 30.3ms.

Table 5: Serial driver latency (in µs)

approach min avg max
alone 15.7 15.81 19.47
idle 14.6 22681 113833
itask 15.45 2292 30275

Configuring the server with 10ms period gave a maxi-
mum latency of 10.3ms caused by the blocking from task
1. However, it is worth mentioning that the shorter the pe-
riod, the greater the overhead on the RTOS tasks. Non-Trust
interrupts assigned to the ITASK task are temporarily han-
dled as FIQs in order to notify the existence of a pending
interrupt in the Non-Trust side. A notification takes similar
time as a normal interrupt and it is bounded by the server
associated to the ITASK task.

6.4.2 Experiment no. 2: RTASK

In order to evaluate the effectiveness of the RTASK task
for improving the quality of service of soft real-time tasks
in the GPOS, the cyclictest program [10], has been used to
measure the response time of the Linux kernel, which was
configured with high resolution timers. This test contains
a periodic thread that measures the difference between the
instant when a wake up call is scheduled, and then that wake
up actually occurs. This measurement includes the interrupt
latency, the interrupt service routine duration and the Linux
scheduler latency. The program was cross-compiled using
Buildroot [6], which was also used to generate a minimal
root file-system based on the uClibc C library. It was run for
60 seconds at priority 80, with a single 10ms periodic thread
using clock_nanosleep. In the background, Linux was
loaded to use 100% of the CPU.

The test was repeated in three different configurations.
Fig. 11 shows the results obtained when Linux is executed
alone. Fig. 12 shows the results obtained when the GPOS
is executed as the idle task of the RTOS, where they are
also compared to those obtained when the GPOS is exe-
cuted using the architecture described in Sec. 4.4.3. The
RTASK task is scheduled through a deferrable server, with
period 30ms, budget 5ms and a priority level between the
two RTOS tasks. Vertical lines in Fig. 11 indicate the mini-
mum, average and maximum measured values.

As shown in Fig. 11, Linux is capable of obtaining short

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700

O
c
c
u
rr

e
n
c
e
s

Scheduling latency in µs (min:19 avg:120 max:689)

Cyclictest - Linux on ARM1176

Figure 11: Cyclictest - Linux alone

Figure 12: Idle vs. RTASK approach

latencies, which is in part thanks to the support for high res-
olution timers. The worst case measured value in that case
was 689µs. However, when Linux is executed concurrently
with the RTOS and scheduled as the idle thread (Fig. 12)
the cyclictest results in a measured maximum latency of
139,3ms. This latency can be explained by the blocking
caused by the RTOS task 2 (100ms), plus two or three in-
stances of the RTOS task 1 (10ms each). As Table 6 shows,
the maximum measured latency in experiments, which oc-
curs when using an RTASK task with a deferrable server of
period 30ms, was reduced to 36,2ms. As the budget and
period of the deferrable servers can be configured, the la-
tency of the GPOS soft real-time tasks and interrupts can
be adjusted in an integrated scheduling fashion that satisfies
requirement (d).

7. Conclusions

In this paper a dual operating system virtualization ar-
chitecture based on ARM TrustZone R© was explained and
evaluated. Although the natural goal of TrustZone is se-
curity, its functionality has been applied to build a VMM
architecture that can satisfy the initial requirements shown
in Sec. 3. A similar configuration, with some slight dif-
ferences, was used by [13] but it does not address require-

14

Table 6: Linux kernel latency (in µs)

approach min avg max
alone 19 120 689
idle 22 30095 139265
rtask 19 5470 36108

ments (d), (e) and (f). In addition, no RTOS was ported to
the TrustZone platform in that work, and so requirements
(a) and (h) were not fully satisfied. The presented approach
satisfies all requirements (a)-(i) and has been proven to be
appropriate for enhancing the responsiveness of the GPOS,
while preserving the determinism of the RTOS, without re-
quiring modifications to the GPOS core.

One possible improvement to increase the usefulness of
TrustZone, as a virtualization hardware, could be a mecha-
nism to separate the control of the Trust/Non-Trust caches.
Currently, caches are not separated and therefore the Non-
Trust side can affect the performance of the Trust side by
flushing the cache. Also, when switching from Non-Trust
to Trust state there are 38 registers which are not banked,
and which need to be saved and restored continuously. The
introduction of an instruction for storing and restoring these
registers could improve the performance.

As future research, a more refined method for integrat-
ing scheduling with small modifications to the GPOS kernel
core will be investigated. Device sharing and intercommu-
nications mechanisms using standard interfaces will also be
explored. Finally, a porting to new multi-core TrustZone-
enabled embedded processors is planned for the immediate
future.

References

[1] Airlines Electronic Engineering Committee, 2551 Riva
Road, Annapolis, Maryland 21401-7435. Avionics Appli-
cation Software Standard Interface (ARINC-653), March
1996.

[2] AMBA3 TrustZone Interrupt Controller (SP890) Technical
Overview, DTO 0013B, ARM Ltd., 2008.

[3] AMBA3 TrustZone Protection Controller (BP147) Techni-
cal Overview, DTO 0015A, ARM Ltd., 2004.

[4] ARM Security Technology. Building a Secure System us-
ing TrustZone Technology, PRD29-GENC-009492C, ARM
Ltd., 2009.

[5] ARM1176JZF-S. Technical Reference Manual, DDI 0301G,
ARM Ltd., 2008.

[6] Buildroot. http://buildroot.uclibc.org/.
[7] H. Takada and K. Sakamura, ”µITRON for small-scale em-

bedded systems”, IEEE Micro, vol. 15, pp. 46-54, Dec.
1995.

[8] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park and C.
Kim, ”Xen on ARM: System Virtualization using Xen Hy-
pervisor for ARM-based Secure Mobile Phones”, In Pro-
ceedings of the 5th Annual IEEE Consumer Communica-
tions & Networking Conference, USA, January 2008.

[9] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. ”Xtra-
tuM: a Hypervisor for Safety Critical Embedded Systems”,
11th Real-Time Linux Workshop. Dresden. Germany 2009.

[10] T. Gleixner cyclictest. https://rt.wiki.kernel.

org/index.php/Cyclictest.
[11] TOPPERS: Toyohashi OPen Platform for Embedded Real-

Time Systems. http://www.toppers.jp.
[12] G. Bernat and A. Burns. New results on fixed priority aperi-

odic servers. In 20th IEEE Real-Time Systems Symposium,
Phoenix. USA, Dec 1999.

[13] I. Cereia, M. Bertolotti. Asymmetric virtualisation for real-
time systems. In ISIE 2008, pages 1680 – 1685, Cambridge,
2008.

[14] G. Heiser. The role of virtualization in embedded systems.
In 1st Workshop on Isolation and Integration in Embed-
ded Systems, pages 11–16, Glasgow, UK, Apr 2008. ACM
SIGOPS.

[15] G. Heiser. Hypervisors for consumer electronics. In
CCNC’09: Proceedings of the 6th IEEE Conference on Con-
sumer Communications and Networking Conference, pages
614–618, Piscataway, NJ, USA, 2009. IEEE Press.

[16] A. Hergenhan and G. Heiser. Operating systems technol-
ogy for converged ECUs. In 6th Embedded Security in Cars
Conference (escar), Hamburg, Germany, Nov 2008. ISITS.

[17] Y. Kinebuchi, H. Koshimae, S. Oikawa, and T. Nakajima.
Virtualization techniques for embedded systems. In Pro-
ceedings of the Work-in-Progress Session: the 12th IEEE In-
ternational Conference on Embedded and Real-Time Com-
puting Systems and Applications, Sydney, Australia, 2006.

[18] Y. Kinebuchi, M. Sugaya, S. Oikawa, and T. Nakajima. Task
grain scheduling for hypervisor-based embedded system.
In HPCC ’08: Proceedings of the 2008 10th IEEE Inter-
national Conference on High Performance Computing and
Communications, pages 190–197, Washington, DC, USA,
2008. IEEE Computer Society.

[19] B. Leslie, N. FitzRoy-Dale, and G. Heiser. Encapsulated
user-level device drivers in the Mungi operating system. In
Proceedings of the Workshop on Object Systems and Soft-
ware Architectures 2004, Victor Harbor, South Australia,
Australia, Jan 2004. http://www.cs.adelaide.

edu.au/˜wossa2004/HTML/.
[20] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie,

and G. Heiser. Pre-virtualization: soft layering for virtual
machines. Technical Report 2006-15, Fakultät für Infor-
matik, Universität Karlsruhe (TH), July 2006.

[21] M. Masmano, I. Ripoll, and A. Crespo. An overview of
the XtratuM nanokernel. In 1st Intl. Workshop on Oper-
ating Systems Platforms for Embedded Real-Time applica-
tions. OSPERT 2005, Palma de Mallorca, Spain, Jul 2005.

[22] H. Takada, S. Iiyama, T. Kindaichi, and S. Hachiya. Linux
on ITRON: A Hybrid Operating System Architecture for
Embedded Systems. In SAINT-W ’02: Proceedings of the
2002 Symposium on Applications and the Internet (SAINT)
Workshops, pages 4–7, Washington, DC, USA, 2002. IEEE
Computer Society.

[23] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves. Im-
plementing Embedded Security on Dual-Virtual-CPU Sys-
tems. IEEE Des. Test, 24(6):582–591, 2007.

[24] S. Yoo, Y. Liu, C.-H. Hong, C. Yoo, and Y. Zhang. Mo-
bivmm: a virtual machine monitor for mobile phones. In
MobiVirt ’08: Proceedings of the First Workshop on Virtu-
alization in Mobile Computing, pages 1–5, New York, NY,
USA, 2008. ACM.

15

Timeslice Donation in Component-Based Systems

Udo Steinberg

Technische Universität Dresden

udo@hypervisor.org

Alexander Böttcher

Technische Universität Dresden

boettcher@tudos.org

Bernhard Kauer

Technische Universität Dresden

bk@vmmon.org

Abstract—An operating system that uses a priority-based
scheduling algorithm must deal with the priority inversion
problem, which may manifest itself when different components
access shared resources. One solution that avoids priority inver-
sion is to inherit the priority across component interactions.
In this paper we present our implementation of a timeslice
donation mechanism that implements priority and bandwidth
inheritance in the NOVA microhypervisor. We describe an
algorithm for tracking dependencies between threads with
minimal runtime overhead. Our algorithm does not limit the
preemptibility of the kernel, supports blocked resource holders,
and facilitates the abortion of inheritance relationships from
remote processors.

I. I

Priority inversion [1] occurs when a high-priority thread

H is blocked by a lower-priority thread L holding a shared

resource R as illustrated in Figure 1. Priority inversion can

be unbounded if a medium-priority thread M prevents the

low-priority thread from running and thus from releasing

the resource. A lock that protects a critical section from

concurrent access is a typical example for a shared resource

that can cause priority inversion. In component-based sys-

tems the shared resource may also be a server thread that is

contacted by multiple clients.

unbounded priority inversion

p
ri

o
ri

ty L

M

H

R

priority inversion

H

L

R

Figure 1. Example of priority inversion: The currently active thread is
marked bold.

Resource Access Protocols

Several solutions for circumventing the priority inversion

problem have been proposed. They range from disabling

preemption to using complex protocols to control resource

access. Disabling preemption while holding a shared re-

source is prohibitive in systems with real-time or low-

latency requirements. Protocols such as the priority ceiling

protocol (PCP) and the priority inheritance protocol (PIP) [2]

avoid priority inversion by defining rules for resource alloca-

tion and priority adjustment that guarantee forward progress

for threads holding shared resources.

The priority ceiling protocol prevents deadlocks that arise

from contention on shared resources. However, PCP requires

a priori knowledge about all threads in the system. At

construction time every shared resource is assigned a static

ceiling priority, which is computed as the maximum of the

priorities of all threads that will ever acquire the resource.

Priority ceiling is therefore unsuitable for open systems [3]

where threads are created and destroyed dynamically or

where the resource access pattern of threads is not known in

advance. Because priority ceiling relies on static priorities

it is not applicable to scheduling algorithms with dynamic

priorities, such as earliest deadline first (EDF) [4].

When using the priority inheritance protocol, the priority

of a thread that holds a shared resource is temporarily

boosted to the maximum of the priorities of all threads

that are currently trying to acquire the resource. Priority

inheritance works in systems with dynamic priorities and

does not require any prior knowledge about the interaction

between threads and resources.

Bandwidth inheritance (BWI) [5] can be considered an

extension of the priority inheritance protocol to resource

reservations. Instead of inheriting just the priority, the holder

of a shared resource inherits the entire reservation of each

thread that attempts to acquire the resource. Bandwidth

inheritance reduces the blocking time for other threads when

the resource holder’s own reservation is depleted.

Resource reservations in our system are called timeslices

and consist of a time quantum coupled with a priority.

Timeslices with a higher priority have precedence over those

with a lower priority. The time quantum facilitates round-

robin scheduling among timeslices with the same priority.

In this paper, we describe and evaluate the timeslice

donation mechanism of the NOVA microhypervisor [6].

This mechanism allows for an efficient implementation of

priority and bandwidth inheritance in an open system with

many threads. We discuss issues that arise when threads

block or unblock while holding shared resources and explore

how blocking dependencies can be tracked with minimal

overhead.

16

II. B

Component-based operating systems achieve additional

fault isolation by running device drivers and system services

in different address spaces. Communication between these

components must use inter-process communication (IPC)

instead of direct function calls in order to cross address-

space boundaries. When multiple clients contact the same

server, threads in the server are a shared resource and

therefore prone to cause priority inversion.

Lazy scheduling was originally introduced as a perfor-

mance optimization in the L4 microkernel family to bypass

the scheduler during inter-process communication [7]. Fig-

ure 2 illustrates the communication between a client and a

server thread. Because threads and timeslices are separate

kernel objects, the kernel can switch them independently.

During IPC, the kernel changes the current thread from the

client C to the server S and back, without changing the

current timeslice. The effect is that the client donates its

timeslice to the server.

running blocked blocked running

request response

c c

C S C S

Figure 2. Synchronous communication between a client and a server in a
component-based system. Left side: During the request the client thread C

donates its timeslice c to the server thread S . Right side: When the server
responds, the kernel returns the previously donated timeslice c back to the
client.

Timeslice donation can be used to implement priority

inheritance, but only if the kernel correctly resumes the

donation after a preemption. For this purpose the kernel must

track dependencies between threads so that it can determine

the thread to which a timeslice has been most recently

donated. Most versions of L4 do not implement dependency

tracking. Therefore, priority inversion may occur when a

server thread is preempted and afterwards uses its own,

potentially low-priority, timeslice. This problem is described

in more detail in [8].

Timeslice Donation and Helping

The NOVA microhypervisor implements priority and

bandwidth inheritance using the following two closely

related mechanisms:

Donation: In the left example of Figure 3, a high-

priority client thread C sends an IPC to a low-priority server

thread S . By donating the client’s timeslice c to the server,

the priority of S is boosted to that of C and the kernel can

directly switch from the client to the server without having

to check for the existence of ready threads with priorities

between the client and the server, such as the medium-

priority thread T . Without timeslice donation, S would use

its own low-priority timeslice s and T would be able to

preempt S , thereby causing priority inversion for C. During

IPC, the kernel establishes an explicit donation dependency

from C to S , which we denote by a solid arrow. When

the scheduler selects the client’s timeslice c, it follows the

donation dependency and activates S instead of C, thereby

resuming the donation.
Helping: Donation boosts the priority of a server to

that of its current client and ensures that, for as long as the

server works on behalf of the client, it can only be preempted

by threads with a higher priority than the client. Helping

augments donation by boosting the priority of the server

even further when higher-priority clients try to rendezvous

with the server while it is busy handling a request. In the

right example of Figure 3, the server thread S is handling

the request of a client thread C and initially uses the client’s

timeslice c. Another thread H with a higher priority than C

can preempt the server and attempt to rendezvous with S .

Because the rendezvous fails, H switches directly to S in

order to help S finish its current request, thereby elevating

the priority of S to that of H. Unlike donation, the kernel

does not establish an explicit dependency from H to S . Upon

selecting the timeslice h, the scheduler activates H, which

simply retries its operation. We denote such an implicit

helping dependency by a dashed arrow.

p
ri

o
ri

ty

donation + helping

C

H

S

donation

S

T

C
t

c

h

c

ss

Figure 3. Example of timeslice donation and helping during client-server
communication. The currently active thread and timeslice are marked bold.

Threads in a realtime system typically obtain only a

limited time quantum in each period of execution. If a

server exhausts the time quantum of its current client during

the handling of a request, the server becomes stuck until

the client’s time quantum has been replenished. In such

cases other clients cannot rendezvous with the server and

therefore make use of the bandwidth inheritance property of

the helping mechanism to allow the server to run the request

to completion.

Similar issues arise when a client aborts its request before

the server can reply, when the client is deleted, or when the

communication channel between the client and the server

is destroyed. Such cases leave the server in an inconsistent

state that is similar to the state when the server is preempted,

except that the old client will no longer provide the time

quantum for the server to complete the request. Instead,

subsequent clients use the helping mechanism to bring the

server back into a consistent state where it can accept the

17

4
3

2

1

2
3

1

31

321

A
C

D

V

X

W

E

Y

Z

3 4

U

4

435

3251

B

A
C

D

V

X

W

E

Y

Z

5 4

U

4

4

p
ri

o
ri

ty

4
5

Figure 4. Dependency tracking: The highest-priority incoming edge of each node and the currently active thread and timeslice are marked bold. Changes
to nodes in the priority inheritance tree may require updates along the path from the changed node to the root node. In this example the incoming edges
of U, X, and Z must be updated when B leaves the priority inheritance tree.

next request. Because synchronous communication between

threads on the same CPU always uses timeslice donation

and helping, server threads that can only be contacted on

their local CPU do not need a timeslice of their own.

The donation and helping mechanisms are transitive. If

a server needs to contact another server to handle a client

request, it further donates the current timeslice to the other

server for the duration of the nested request. Therefore, the

kernel must be able to handle large dependency tracking

trees.

Multiprocessor Considerations

Helping and donation cannot be easily extended to mul-

tiprocessor systems and we are currently aware of only one

proposal that describes a multiprocessor priority inheritance

protocol [9].

One observation is that priorities of threads on different

CPUs are not directly comparable. Additionally, the result of

any comparison would quickly become outdated when other

processors reschedule. Another observation is that a client

cannot donate time from its CPU to help a server on another

CPU. Such an operation would cause time to disappear

on one processor and to reappear on another. Donating

additional time to an already fully loaded CPU causes

overload and can potentially break real-time guarantees.

The overload situation can be avoided if the client pulls

a preempted server thread over to its CPU to help it locally.

However, such an approach requires the address space of

the server to be visible and identically configured on all

processors on which clients for this server exist. In cases

where client threads from different CPUs attempt to help the

same server thread simultaneously, the kernel would need

to employ a complex arbitration protocol among all helping

client threads to ensure that each server thread executes on

one processor only at a time. Furthermore, migrating the

working set of the server thread to the CPU of the client

and then back to the original CPU can result in a significant

amount of coherence traffic on the interconnect.

Due to these drawbacks our algorithm does not include

cross-processor helping. However, it supports IPC aborts

from remote CPUs.

III. RW

In our previous work on capacity-reserve donation [10],

we described an algorithm for computing the effective

priority of a server as the maximum of the effective priorities

of its current and all pending clients. The algorithm performs

the tracking of dependencies and priorities by storing pri-

ority information inside the nodes and along the edges of

a priority inheritance tree. For each node in the tree, the

outgoing edge is marked with the maximum of the priority

along all incoming edges of that node as shown in Figure 4.

Unfortunately, changes to nodes of the inheritance tree

may require numerous updates to the edges of the tree as

shown on the right side. When thread B leaves the priority

inheritance tree (because it experiences an IPC timeout or

is deleted), the kernel must recompute the priorities along

the edges from the changed node down to the root node.

In this example, the kernel must update the incoming edges

of threads U, X, and Z to determine that the timeslice of

thread E has become the highest-priority timeslice donated

to Z. Depending on the nesting level of IPC, the number

of updates to the priority inheritance tree can become very

large, resulting in long-running kernel operations that must

be executed atomically. Protecting the whole tree with a

global lock for the duration of the update is undesirable

because it disables preemption and limits the scalability of

the algorithm in multiprocessor environments.

18

A more efficient version of the bandwidth inheritance

protocol [11] has been implemented in the Linux kernel.

It also uses a tree structure to track the dependencies

between tasks and resources. When a task blocks on a shared

resource, all tasks that previously inherited their bandwidth

to that task must be updated to inherit their bandwidth to

the holder of the shared resource instead.

OKL4 is a commercially deployed L4 microkernel, which

is derived from L4Ka::Pistachio. OKL4 tracks IPC de-

pendencies across preemptions and implements a priority

inheritance algorithm. The kernel grabs a spinlock during

updates to the inheritance tree in order to guarantee atomic

updates.

With the realtime patch [12] series, support for priority

inheritance was introduced to the Linux kernel. Because the

realtime patch made the kernel more preemptible, the need

arose to avoid unbounded priority inversion when threads

are preempted while holding kernel locks [13]. Further

research based on the Linux realtime patches, especially

in the context of priority inheritance, is conducted by the

KUSP [14] group. Their research focus is on supporting

arbitrary scheduling semantics using group scheduling [15]

in combination with priority inheritance.

IV. I

Dependency tracking algorithms that store priority infor-

mation along the edges of the priority inheritance tree share

the problem that updates to a node in the tree require a

branch of the tree to be updated atomically. For example,

when a client with a high-priority timeslice joins or leaves an

existing priority inheritance tree, it must rewrite the priority

information along the edges from the client to the server at

the root of the tree as shown in Figure 4. The update of the

tree cannot be preempted because the scheduler must not see

the tree in an inconsistent state. Therefore, the duration of

the update process defines the preemptibility of the kernel.

In an open system, a malicious user can create as many

threads as his resources permit, arrange them in a long

donation or helping chain and then cause an update in the

priority inheritance tree that will disable preemption in the

kernel for an extended period of time. Therefore, we devised

a new dependency tracking algorithm that does not affect

the kernel’s preemptibility and at the same time keeps the

dependency tracking overhead low. Before we describe this

algorithm in detail, we present our requirements.

Requirements

To prevent malicious threads from being able to cause

long scheduling delays in the kernel, we require updates in

the priority inheritance tree to be preemptible. Furthermore,

we demand that each operation is accounted to the thread

that triggered it. Our goal is to move all time-consuming

operations from the performance-critical paths in the kernel

into functions that are called infrequently. For example, we

strive to move as much dependency tracking as possible out

of the IPC path into the scheduler and into functions that

handle deletion of threads and communication aborts. The

new dependency tracking algorithm works for an arbitrary

number of threads and is not limited to small-scale systems

or systems where all communication patterns must be known

in advance.

Improved Algorithm for Dependency Tracking

Our new algorithm is based on the idea of storing no

priority information whatsoever in nodes of the tree, which

obviates the need for updating the priorities when threads

join or leave the priority inheritance tree. Furthermore, pri-

ority information in the tree cannot become stale. However,

this approach requires the kernel to restore the missing

information during scheduling decisions, which works as

follows:

When invoked, the scheduler selects the highest-priority

timeslice from the runqueue and then follows the donation

links to determine the path that the timeslice has taken prior

to a previous preemption. When the scheduler finds a thread

that has no outgoing donation link, it switches to that thread.

In the left example of Figure 4, the scheduler selects the

timeslice with priority 5, which belongs to thread B, and

then follows the donation links from B via U and X to Z.

Because Z has no outgoing edge, Z is dispatched. When

thread B leaves the tree as shown in the right example of

Figure 4, the scheduler selects the timeslice with priority 4,

which belongs to thread E and then follows the donation

links from E via W and Y to the server Z.

Traversing the donation links from a client’s timeslice

to the server at the root of the priority inheritance tree

is a preemptible operation. If a higher-priority timeslice is

added to the runqueue while the scheduler is traversing

the tree, the kernel restarts the traversal, beginning with

the higher-priority timeslice instead. The benefit of this

algorithm is that whenever nodes in the inheritance tree are

added or removed, no priority information must be updated.

Algorithms that store priorities in all nodes of the tree can

quickly determine the highest-priority timeslice donated to

a thread by checking the highest-priority incoming edge of

that thread. In contrast, our algorithm must compute this

information by traversing the priority inheritance tree after

a preemption. We quantify the cost for this operation in

Section V.

Blocking

An interesting scenario occurs when the server thread at

the root of a priority inheritance tree blocks. This can happen

when the server waits for an interrupt that signals completion

of I/O or when it waits for the reply from a cross-processor

request for which timeslice donation cannot be used.

In the left example of Figure 5, a server thread Z blocks

while using timeslice b. In that case the kernel removes b

19

b d c a

blocked

donating

helping

A

B

C
D

Y

ZZ

running

d
c

a B

C
D

Y

b

A

Figure 5. Blocking of threads when the holder of a shared resource is
blocked.

from the runqueue and enqueues it in a priority-sorted queue

of timeslices that are blocked on Z. During the subsequent

reschedule operation, the scheduler selects timeslice d and

traverses the priority inheritance tree down to Z. When it

finds that Z is still blocked, d is also added to the queue of

blocked timeslices. The right side of Figure 5 illustrates that

all other timeslices that have been donated to Z are gradually

removed from the runqueue and become blocked on Z when

they are selected by the scheduler.

Staggered Wakeup

When Z eventually becomes unblocked, all timeslices

that have previously been blocked on Z must be added

back to the runqueue, effectively reversing the operation of

blocking from Figure 5. Because an arbitrary number of

timeslices can potentially be blocked at the root of a priority

inheritance tree, releasing all of them at once contradicts

our requirement of avoiding long scheduling delays. Based

on the observation that only the highest-priority timeslice

from the blocked queue will actually be selected by the

scheduler, releasing the other timeslices can be deferred.

The left side of Figure 6 illustrates that, when Z becomes

unblocked, the kernel adds b, the highest-priority timeslice

blocked on Z, back to the runqueue. The other timeslices that

were blocked on Z remain linked to b and are not added to

the runqueue yet. When b lowers its priority or is removed

from the runqueue, the kernel adds d, the first timeslice

linked to b, back to the runqueue and leaves the remaining

timeslices linked to d as shown in the right of Figure 6.

The benefit of this approach is that when Z unblocks, only a

single timeslice needs to be added to the runqueue. The other

blocked timeslices will be released in a staggered fashion.

Direct Switching

Recall from Figure 2 that the kernel implements timeslice

donation by directly switching from one thread to another

while leaving the current timeslice unchanged. When a

server responds to its client, the kernel must check whether

it can undo the timeslice donation by directly switching back

donating

helping

readyready

A

B

C
D

Y

Z

A
C

D

Y

Z

d
b d c a

c a

Figure 6. Staggered wakeup of threads when the holder of a shared
resource unblocks.

to the client. Switching back to the client is wrong in cases

where the server is currently using the timeslice of a high-

priority helper and the client and the helper do not share

the same incoming edge in the priority inheritance tree of

the server. For example, when Z responds to Y in the left

example of Figure 5, the kernel can only switch from Z to

Y if Z is running on timeslice a or b. If Z is running on

timeslice c or d, the kernel cannot return the timeslice to

Y , because the timeslice was not donated to Z via Y . The

kernel must instead switch to thread C or D so that they can

retry their rendezvous with Z. Because our algorithm does

not store any information along the edges of the priority

inheritance tree, the kernel uses the following trick: When

the scheduler selects a new timeslice and starts traversing the

tree, the kernel counts the number of consecutive donation

links along the path in a CPU-local donation counter. At

the beginning of a new traversal and every time the kernel

encounters a helping link, the donation counter is reset to

zero. The donation counter indicates how often the kernel

can directly switch from a server back to its client. When

Z replies to Y in the left example of Figure 5, the current

timeslice is b and the donation counter is 1, indicating that

the kernel can directly switch from Z to Y , but not from

Y to A. When a client donates the current timeslice to a

server, the kernel increments the donation counter. When

a server responds to its client, the kernel decrements the

donation counter. The update of the donation counter is the

only overhead added to the performance-critical IPC path by

our dependency tracking algorithm.

Livelock Detection

Communication in component-based systems can lead to

deadlock when multiple threads contact each other in a

circular manner. In Figure 7, a client thread C contacts a

server Y , which in turn contacts another server Z. Deadlock

occurs when Z tries to contact Y . In our implementation,

Y and Z would permanently try to help each other, thereby

turning the deadlock into a livelock.

20

In NOVA, the kernel can easily detect such livelocks dur-

ing the traversal of the priority inheritance tree by counting

the number of consecutive helping links in a helping counter.

When the value of the helping counter exceeds the number

of threads in the system, the kernel can conclude that the

current timeslice is involved in a livelock scenario. It can

then remove the timeslice from the runqueue and print a

diagnostic message.

request

c

C Y

Z

request

request

c

C Y

Z

request

request

Figure 7. Development of a Livelock

V. E

We evaluated the performance of our priority-inheritance

implementation using several microbenchmarks, which we

conducted on an Intel Core2 Duo CPU with 2.67 GHz clock

frequency.

In contrast to dependency tracking algorithms that store

priority information in each node of the inheritance tree,

our algorithm keeps the priority information only in the

timeslices bound to the client threads that form the leaves of

the inheritance tree. Whenever the current timeslice changes,

the scheduler must follow the dependency chain to find the

server thread at the root of the inheritance tree to which the

timeslice has been donated. Fortunately such tree traversals

are neither very frequent nor very expensive.

Frequency of Dependency Tracking

The kernel invokes the scheduler to select a new current

timeslice when the current thread suspends itself and thereby

removes the current timeslice from the runqueue. The sched-

uler is also invoked when the kernel releases a previously

blocked thread and that thread adds a timeslice with a

higher priority than the current timeslice to the runqueue.

It should be noted that the scheduler need not be invoked

during client-server communication (see Figure 2) because

the current timeslice remains the same and the runqueue

need not be updated.

The frequency of scheduler invocations depends on the

number of preemptions in the system, which in turn depends

on the length of timeslices and the frequency of higher-

priority threads being released.

Cost of Dependency Tracking

The costs of each traversal depends on the depth of the

priority inheritance tree and on the type of dependency

encountered during the traversal. Donation dependencies are

explicitly tracked by the kernel, which stores the IPC partner

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

C
P

U
C

y
cl

es
p
er

L
in

k

Number of Threads

switch to explicit link

Figure 8. Overhead for traversing a helping link: The average cost is
independent of the number of threads along the path. The graph compares
an implementation in which the kernel simply switches to the destination
thread with an implementation that reduces the overhead by tracking helping
links explicitly.

in the thread control block. Therefore, following a donation

dependency is a pointer chasing operation, which can lead to

cache and TLB misses. In NOVA, all timeslices and threads

are allocated from slab allocators and thus likely to be in

close proximity. Furthermore, the kernel uses superpages for

its memory region to reduce the number of TLB misses. The

traversal of a donation dependency typically only causes a

cache miss.

A helping dependency indicates that a client thread did

not manage to rendezvous with the server because the server

was busy. In that case the client thread retries its rendezvous

and thereby switches to the server thread. The thread switch

is all that is required to traverse a helping dependency. The

cost for the switch typically includes the cost for switching

address spaces unless both threads happen to be in the same

address space. The overhead can be reduced by tracking

helping dependencies explicitly. There is a tradeoff between

faster traversal of dependencies and having to store more

information in the priority inheritance tree. We implemented

and measured both variants. The CPU cycles required to

traverse the priority inheritance tree are accounted to the

newly selected current timeslice where the traversal started.

Determining the thread at the root of the tree that will use

the timeslice is part of the actual helping process.

Figure 8 shows that simply switching to the thread in

order to help is much more expensive than following an

explicit link. Furthermore, the costs of traversing a single

helping link is nearly constant, irrespective of chain length.

The step in the lower curve and the slight increase of 10–

30 cycles in the upper curve can be attributed to additional

cache usage when touching more threads.

21

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 20 40 60 80 100 120

C
P

U
C

y
cl

es

Number of Threads

explicit link

Figure 9. Cost for canceling an IPC: The cost of aborting an IPC operation
scales linearly with the length of the path to the root node.

Cost of Modifying the Inheritance Tree

Updates to the inheritance tree are required when the link

between two threads in the tree is broken. Possible reasons

include thread deletion, abortion of an ongoing IPC between

two threads, or revocation of the communication channel

between the client and its server.

Breaking a link in the inheritance tree requires the deletion

of the IPC connection between the affected threads and a

traversal of the inheritance tree down to the leaf to check

for blocked timeslices. If blocked timeslices are found, the

kernel performs a staggered wakeup for them.

To avoid taking any locks in the IPC path, the IPC

connection is deleted on the CPU on which the client, server,

and the priority inheritance tree are located. In case the

deletion was initiated by a thread on a different processor,

the remote CPU must send an inter-processor interrupt to

break the link. However, the costly part of the tree traversal

down to the root is performed by the initiating thread on the

remote CPU.

Figure 9 shows the cost for an inheritance tree update. We

measured the implementation where helping and donation

links are explicitly tracked in the kernel and the update

was triggered from a remote processor. A thread running on

one CPU is aborted by a remote thread running on another

CPU, so that an additional cross-processor synchronization

is included in the overhead. The overhead depends on the

length of the path from the aborted thread to the root node.

The number of cycles required for breaking a link increases

linearly with the length of path in the inheritance tree. The

absolute duration to update the inheritance tree is less than

5µs for a path length of up to 64 threads and less than 8µs

for up to 512 threads. To date we have not observed calling

depths of more than 16 threads in real-world scenarios.

VI. C

We have designed a novel mechanism that implements

priority and bandwidth inheritance in a component-based

system. Our algorithm does not limit the preemptibility of

the kernel, and keeps the runtime cost on the performance-

critical IPC path minimal. The algorithm supports threads

that block while holding shared resources, and can detect

livelocks. Our evaluation shows that the performance over-

head of the dependency tracking scales linearly with the

number of threads in a call chain.

A

We thank Jean Wolter and the anonymous reviewers for

their comments on an earlier version of this paper.

R

[1] B. W. Lampson and D. D. Redell, “Experience with Processes
and Monitors in Mesa,” Communications of the ACM, vol. 23,
no. 2, pp. 105–117, 1980.

[2] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,”
IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175–
1185, 1990.

[3] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications
in an Open Environment,” in Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS). IEEE Computer
Society, 1997, pp. 308–319.

[4] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” Jour-
nal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[5] G. Lipari, G. Lamastra, and L. Abeni, “Task Synchroniza-
tion in Reservation-Based Real-Time Systems,” IEEE Trans.
Comput., vol. 53, no. 12, pp. 1591–1601, 2004.

[6] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-
Based Secure Virtualization Architecture,” in Proceedings
of the 5th ACM SIGOPS/EuroSys European Conference on
Computer Systems. ACM, 2010, pp. 209–222.

[7] J. Liedtke, “Improving IPC by Kernel Design,” in Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(SOSP). ACM, 1993, pp. 175–188.

[8] S. Ruocco, “Real-Time Programming and L4 Microkernels,”
in In Proceedings of the 2006 Workshop on Operating System
Platforms for Embedded Real-Time Applications, 2006.

[9] M. Hohmuth, “Pragmatic Nonblocking Synchronization for
Real-Time Systems,” Ph.D. dissertation, TU Dresden, Ger-
many, 2002.

[10] U. Steinberg, J. Wolter, and H. Härtig, “Fast Component
Interaction for Real-Time Systems,” in Proceedings of the
17th Euromicro Conference on Real-Time Systems (ECRTS).
IEEE Computer Society, 2005, pp. 89–97.

22

[11] D. Faggioli, G. Lipari, and T. Cucinotta, “An Efficient
Implementation of the Bandwidth Inheritance Protocol for
Handling Hard and Soft Real-Time Applications in the Linux
Kernel,” in Proceedings of the 4th International Workshop
on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2008, pp. 1–10.

[12] Linux Community, “Linux Realtime Patches,” 2010, April
2010. [Online]. Available: http://rt.wiki.kernel.org

[13] S. Rostedt, “RT-mutex Implementation Design,” 2010, Doc-
ument shipping with the Linux 2.6 kernel sources, file:
[Documentation/rt-mutex-design.txt].

[14] D. Niehaus and group, “Proxy Execution in Group Schedul-
ing,” 2010, April 2010. [Online]. Available: http://www.ittc.
ku.edu/kusp/kusp docs/gs internals manual/index.html

[15] M. Friesbie, D. Niehaus, V. Subramonian, and C. Gill, “Group
Scheduling in Systems Software,” in In Workshop on Parallel
and Distributed Real-Time Systems, 2004.

23

Full virtualization of real-time systems by temporal

partitioning

Timo Kerstan

University of Paderborn

Fuerstenalle 11

33102 Paderborn

Germany

timo.kerstan@uni-paderborn.de

Daniel Baldin

University of Paderborn

Fuerstenalle 11

33102 Paderborn

Germany

dbaldin@uni-paderborn.de

Stefan Groesbrink

University of Paderborn

Fuerstenalle 11

33102 Paderborn

Germany

morenga@uni-paderborn.de

Abstract—Virtualization is a promising and challenging tech-
nology in the design of embedded systems. It is feasible for
hard real-time tasks if the guest operating systems can be
modified to enable the virtual machine monitor to access to
required information of the guests. Since licensing restrictions
may prohibit this, full virtualization may remain as the only
solution. Thus communication between the guest OS scheduler
and the scheduler of the virtual machine monitor is not possible,
as the operating system cannot be modified. We will describe a
scheduling model based on single time slot periodic partitions.
This model is based on the idea of temporal partitioning. Each
temporal partition executes a virtual machine, has a fixed length
and is activated periodically. We show how to determine the
global period length enclosing one instance of each temporal
partition. Based on the global period we show how to determine
the length of the temporal partitions inside this global period, to
ensure the real-time constraints of each virtual machine.

Index Terms—Real time systems

I. INTRODUCTION

Virtualization has been a key technology in the desktop and

server market for a fairly long time. Numerous products offer

hardware virtualization at the bare metal level or at the host

level. They enable system administrators to consolidate whole

server farms and end users to use different operating systems

concurrently. In the case of server consolidation, virtualization

helps to improve the utilization or load balance which facili-

tates a reduction of costs and energy consumption. Distributed

embedded systems used in automotive and aeronautical sys-

tems consist of multitudinous microcontrollers, each executing

a dedicated task to guarantee isolation and to prevent a

fault from spreading over the whole network. In addition,

the utilization of a single microcontroller may be very low.

Applying virtualization to distributed embedded systems can

help to increase the scalabilty while preserving the required

isolation, safety, and reliability. It is not possible to apply the

virtualization solutions for server and desktop systems one-to-

one to embedded systems. The inherent timing constraints of

embedded systems preclude this. These timing constraints add

temporal isolation as a requirement to virtualized embedded

real-time systems. Especially the classical approach of the

schedulability analysis[1] is no longer applicable to virtualized

environments[2], such as the open system environments[3],

T1

CPU

VCPU1 VCPU2 VCPU3

RTOS RTOS RTOS

Hypervisor with
FTS Scheduler

VM1 VM2 VM3

CPU1

RTOS

RS1

CPU2

RTOS

RS2

CPU3

RTOS

RS3

!
1

!
2

!
3

!
5

!
4

!
6

!
7

"
1

"
2

"
3

"'
1

"'
2

"'
3

Transformation

!
1

!
2

!
3

!
5

!
4

!
6

!
7

Fig. 1. Virtual real-time system using FTS as a global scheduling policy

[4]. An open system environment requires a modification of

the OS level scheduler to communicate with the virtual ma-

chine monitor (VMM, Hypervisor), which may not be possible

because of licensing restrictions. Instead, it is necessary to

be able to schedule virtual machines and their real-time tasks

using full virtualization at the VMM level. Figure 1 shows our

approach in an abstract manner. We are using given tasksets

Γi from a given real-time execution environment called RS i

and transform these tasksets to tasksets Γ′

i being schedulable

in a virtual real-time system hosting the tasksets Γ′

i as virtual

machines VMi.

To be able to execute more than one virtual machine

on a shared CPU, a global scheduling approach or a time

partitioning of the CPU is necessary. As in this paper we

will focus on full virtualization, we prefer the approach of

time partitioning, because in that case it is not necessary to

modify the local schedulers. Mok, Feng and Chen introduced

24

the resource partition model for real-time systems[2] to handle

the schedulability analysis of a periodic taskset executed on a

resource partition.

Definition A resource partition Π is a tuple (γ, P), where γ is

an array of N time pairs ((S1, E1), ..., (SN , EN)) that satisfies
0 ≤ S1 < E1 < ... < SN < EN for some N ≥ 1, and P is

the partition period. The physical resource is available to the

set of tasks executed on this partition only during intervals

(Si + j · P,Ei + j · P), 1 ≤ i ≤ N, j ≥ 0.[2]

In a nutshell, a (temporal) partition is simply a collection

of time intervals during which the physical resource is made

available to a set of tasks which is scheduled on this partition.

Mok, Feng and Chen introduced two types of periodic resource

partitions:

• Single Time Slot Periodic Partitions (STSPP)

• Multiple Time Slot Periodic Partitions (MTSPP)

In case of a STSPP, there exists only one time interval (N =
1), while in case of a MTSPP, more than one time interval is

specified (N > 1). We will call the time pairs of a resource

partition activation slots and in this paper, we will focus on

the derivation of STSPPs for each virtual machine to obtain

feasible schedules.

II. CONTRIBUTION OF THIS PAPER

To eliminate the need of paravirtualization because of

licensing reasons, we will introduce a methodology to derive a

virtual real-time system from given periodic tasksets Γj . The

local schedulers of the VMs will be left completely untouched

and do not communicate with the scheduler of the hypervisor.

The periodic tasksets will hence run in a full virtualized

environment in contrast to existing solutions like the open

system environment [3], [4], PikeOS[5], and OKL4 [6] which

require a paravirtualized guest operating system. To make the

given tasksets Γi executable on the virtual real-time system

we will determine the needed processor speed of the virtual

real-time system and transform the tasksets Γi according to the

determined speed into tasksets Γ′

i to be executed on our virtual

real-time system defined in Section III. Based on that model

we will illustrate the problem of determining the activation

slots of the STSPPs in Section IV. In Section V we will

show that it is not possible to choose the partition period P

arbitrarily followed by Section VI which will give a solution

to this problem. To show the applicability of our model we

evaluated our model in a case study being presented in Section

VIII and show a solution in section IX on how to face the

problem of the overhead introduced by our model.

III. MODELING THE VIRTUALIZED SYSTEM

We define the virtual real-time system using STSPPs as:

Definition A virtual real-time system is composed of i =
1, ..., n periodic tasksets with Γi = {τk(Tk, Ck)|k = 1, ...,m}
according to the periodic task model of Liu et. al [1]. These

tasksets are executed in virtual machines using their own

local EDF or RM scheduler. The virtual machines them-

selves are scheduled by the VMM using a STSPP Πi =
{{(Si, Ei)}, P |S1 = 0, Ei = Si + αi · U(Γi) · P, Si = Ei−1}
to activate each virtual machine.

This definition essentially describes a virtual real-time sys-

tem hosting n different virtual machines being scheduled

by a simple fixed time slice scheduler (FTS), where the

virtual machines are activated once within the period P . The

advantage of our approach is that it is very easy to implement

and it enables the usage of full virtualization eliminating the

need of paravirtualization as this might be restricted due to

software licenses.

Beside the problem of determining the parameters of the

STSPPs Pi we may have the problem that the virtual real-time

system is overloaded when executing the tasksets Γ i directly

as virtual machines. Therefore it is necessary to transform the

tasksets Γi into tasksets Γ′

i that do not overload the virtual

real-time system and still guarantee a feasible schedule for

their local scheduler. Therefore we assume that the real-time

systems RSi are executed on different hardware platforms.

Our goal is to give the designer a hint on how fast the

virtualized system has to be able to host the virtual machines.

We will first normalize the tasks’ execution times based on

the slowest hardware platform used. Then we will consider

the utilization of this hardware platform when executing all

real-time system as virtual machines as the speedup factor

which is needed to dimension the host system relatively to the

slowest hardware platform. To simplify matters, we assume

that all real-time systems use a common processor architecture

(pipelines, caches, etc.). This leads to a simple speedup factor

relatively to the clock rate of the slowest system which we

will define in this section.

First we start with the definition of the normalization factor

based on the given real-time system introduced in section I

which will allow the normalization of the overall task set:

Definition Let c1, ..., cn be the clock rates of the systems

RS1, ..., RSn. Assuming cs = min(c1, ..., cn), then the fac-

tors s1 = c1
cs
, ..., sn = cn

cs
∈ R

+ are the normalization factors

of each system based on the slowest system.

In case of executing all virtual machines on the slowest

hardware platform, the execution times of the tasks have to

be recalculated to be in line with the execution time on this

platform.

Γis = {τk(Tk, Ck · si)|τk ∈ Γi} (1)

U(Γis) =
∑

τk∈Γi

Ck · si
Tk

= si · U(Γi) (2)

As the slowest system may be overloaded, we now define

a speedup factor S relatively to this system to determine the

required speed of the virtualization host system which executes

all virtual machines. So the execution times of the tasks have

to be recalculated to be in line with the execution time on

25

the virtualization host. However, one may not find a system in

practice which offers exactly the needed speedup S, but one

can choose the best one fitting the demand.

Γ′

i = {τk(Tk,
Ck · si

S
)|τk ∈ Γis} (3)

The utilization of a VMi executing Γ
′

i considering the speedup

factor S is

U(Γ′

i) =
∑

τk∈Γi

Ck · si
S · Tk

=
si

S
· U(Γi) (4)

The identification of S depends on the scheduling algorithm

used within each VM. We will cover EDF and RM in the

following two subsections.

A. Scaling based on EDF

Assuming all real-time systems use EDF with its utilization

bound of 1, the speedup factor S can be calculated as the

overall utilization of all virtual machines executing on the

slowest system.

The speedup factor S for EDF based virtual machines is the

overall utilization of the original tasksets given as:

S = U(

n
⋃

i=1

Γis) =

n
∑

i=1

U(Γis) (5)

The utilization of the virtualized host in that case can thus be

calculated by

U(

n
⋃

i=1

Γ′

i) =

n
∑

i=1

si

S
· U(Γi) = 1 (6)

and shows a full utilization of the virtualized host system.

B. Scaling based on RM

To guarantee the schedulability using RM, it is not possible

to use the scaling of the previous section as this is based on the

assumption that the system can be fully utilized through the

fact that the utilization bound of EDF is 1. Since the utilization

bound of RM depends on the task set, we define the speedup

factor S to be relative to the least upper bound of the virtual

machines.

The speedup S for a virtual real-time system consisting of

VMs using RM only is given as:

S = U(
n
⋃

i=1

Γis) =
n
∑

i=1

1

Ulub(Γi)
· U(Γis) (7)

with Ulub(Γi) = m · (2
1

m − 1)[1] being the least upper bound
of the taskset Γ′

i.

The resulting utilization of the virtualized host can be

calculated by

U(
n
⋃

i=1

Γ′

i) =
1

S
·

n
∑

i=1

si · U(Γi) (8)

We have shown in this section how to determine the speedup

factor S based on the used scheduling algorithm and how to

transform the given tasksets Γi into tasksets Γ
′

i being executed

on the virtual real-time system being S times faster than the

slowest given real-time system while not overloading the new

system. However to execute these tasksets without violating

the deadlines we have to determine the appropriate parameters

of the corresponding STSPP Πi.

IV. DETERMINING THE ACTIVATION SLOTS

To answer the question on how to determine the activation

slots of a STSPP Πi we assume that the first VM starts at

time t = 0 thus S1 = 0. The parameter Ei has to be scaled

relatively to the utilization bound using α i introduced in the

definition of the virtual real-time system. αi thus depends on

the applied scheduling algorithm as scheduling algorithms may

differ in their utilization bound. In case of EDF α i = 1 has to
be used to fully utilize the virtual system. The activation slot

of Πi for VMi can then be calculated by:

Si = Ei−1 (9)

Ei = Si + U(Γ′

i) · P (10)

In case of RM we need to scale relatively to the utilization

bound Ulub(Γi) resulting in αi =
1

Ulub(Γi)
. The slots can then

be calculated by:

Si = Ei−1 (11)

Ei = Si +
1

Ulub(Γi)
U(Γ′

i) · P (12)

Theorem 1. Let the period P of an STSPP Πi be arbitrarily

chosen and αi = 1 in case of EDF scheduling respectively
αi =

1
Ulub(Γi)

in case of RM scheduling. Then the ratio of the

required utilization U(Γ′

i) to the allocated utilization
Ei−Si

P

is equal to the utilization bound of the VM executing the

associated taskset Γ′

i.

Proof:

S
i

E
i

S
i
+

Fig. 2. Graphical illustration of the required computation time within the
allocated interval Ei − Si of Πi

Figure 2 shows how the absolute times for the required

computation time and the allocated computation time within

the period P are calculated. By dividing the required compu-

tation time R = U(Γ′

i) · P by the allocated computation time

A = Ei − Si = αi · U(Γ′

i) · P we get

R

A
=

U(Γ′

i) · P

αi · U(Γ′

i) · P
=

1

αi

26

0

0,5

0

0,5

0

0

1 2 3 4 5 6 7 8 9 10 11 120

1

Task

VM

t

1

2

3

4

2

1

P=8

Fig. 3. Missed deadline due to the wrong selection of the STSPP period.
The numbers within the boxes denote the remaining computation time of that
task.

In case of EDF with αi = 1 this results in the fact that

within the interval Ei − Si the allocated computation time

is exactly the required computation time so that R
A

= 1 being

the utilization bound of EDF.

In case of RM with αi =
1

Ulub(Γi)
this results in the fact that

within the intervalEi−Si the ratio of the required computation

time to the allocated computation time is R
A
= Ulub(Γi)

V. PROBLEMS CHOOSING THE PERIOD OF STSPPS

Although STSPPs are a technically simple possibility to

schedule a set of virtual machines it is not possible to

choose the period arbitrarily. Figure 3 shows an example

schedule with two virtual machines using EDF. The first

virtual machine executes a task set of two tasks Γ ′

1 =
{τ1(8, 2), τ2(10, 2.5)} and the second virtual machine contains
a task set with the same computation times and deadlines

Γ′

2 = {τ3(8, 2), τ4(10, 2.5)}. We decide to choose the period

of the STSPPs to be P = 8. Both virtual machines have a

utilization factor of U(Γ′

1) = U(Γ′

2) =
1
2 and do not overload

the system. This results in S1 = 0, E1 = S1 + U(Γ1) · P1 =
4 ⇒ Π1 = ((0, 4), 8) and S2 = E1 = 4, E2 = S2+UΓ1

·P2 =
8 ⇒ Π2 = ((4, 8), 8). The ends of the STSPPs are highlighted
by a vertical line at time t = 8 and the activation time slots

within the STSPPs are shown by the bar below the schedule.

The execution order is chosen arbitrarily. By the bad choice

of P = 8, task 4, which is executed in VM2, will miss

its deadline at time t = 10, because the required utilization

U(Γ2) =
1
2 has not been completely assigned by Π2 at t = 10.

The timing restrictions of the original real-time systems

have to be kept in mind when determining the properties of a

virtualized system hosting multiple real-time systems as virtual

machines. Therefore, information about the performance of

the original real-time systems is needed. Imagine the case

that two real-time systems, both fully utilizing the same

microprocessor, shall be virtualized to a new system. To

prevent overloading, the virtualized system obviously needs

at least a microprocessor of twice the speed of the original

ones. Additionally, the worst case execution times (WCET)

and the deadlines of all real-time tasks have to be available

to consider the real-time aspects. With this information, it is

possible to determine the length of the period P for a STSPP

0

0,5

0

0,5

0

0

1 2 3 4 5 6 7 8 9 10 11 120

1

Task

VM

t

1

2

3

4

2

1

P=8

0

0,5

0

0,5

1 2 3 4 5 6 7 8 9 10 11 120

Task

VM

t

1

2

3

4

2

1

P=8

0

0

1

Fig. 4. Missed deadline due to the wrong selection of the STSPP period.
Exchange of the activation order has no effect.

of a virtual machine in such a manner that no deadline in the

virtual machines will be missed.

As we have now seen there is a serious problem of missing

deadlines concerning an arbitrary choice of the period length

P of the STSPPs. We will show how to derive the STSPPs to

guarantee that no deadline miss occurs based on the tasksets

Γ′

i which will be derived in the following section.

VI. CALCULATING THE PERIOD OF THE STSPPS

If we consider only STSPPs as a possible partitioning

scheme, the period lengths have to be equal. Otherwise, the

activation slots of the partitions may overlap, which is not

possible for a uniprocessor system. The remaining question to

be answered in this section is how to calculate the period P

of the STSPPs for each virtual machine VMi.

As stated in section V, the choice of P is very important,

since the real-time tasks scheduled within the virtual machines

must not miss their deadlines. When P is chosen arbitrarily,

a deadline may occur anywhere within the interval P . The

activation of the virtual machine within its STSPP has to be

timed in such a manner that the reserved utilization of the VM

has been completely assigned at the time of its deadline. We

will now reconsider the example in figure 4. This example

shows that it is not possible to fix the missed deadline at

time t = 10 by simply exchanging the order in which the

virtual machines are activated within their partitions. This is

due to the fact that the example consists of two identical virtual

machines. Figure 5 illustrates the assigned computation time

Comp(Π, t) to a VM by a STSPP Π for the given example.

The supply function UA represents the assigned utilization

by STSPP Π at time t within the whole system and is given

as:

UA(Πi, t) =
Comp(Π, t)

t
(13)

27

4 8 10 120

VM

t

2

1

C
t

4

VM
1

VM
2

16

8

Fig. 5. Allocated computation time Comp(Π, t) for VM1 and VM2

assigned by Π1 = {(0, 4), 8} and Π2 = {(4, 8), 8}

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

STSPP1

STSPP2

Fig. 6. UA(Π1, t) and UA(Π2, t) of the given example.

In this example at time t = 10, the assigned utilization of

VM2 is not equal to the requested utilization of U(Γ ′

2) =
1
2

which can be seen in figure 5 and 6. To ensure this important

property we will now state our main theorem of this paper.

Theorem 2. When S0 = 0, Si = Ei−1 and Ei = Si +
1

Ulub(Γi)
U(Γ′

i) · P for every Πi and P is chosen as P =

gcd({Tk|τk ∈
⋃n

i=1 Γ
′

i}), then no task τk ∈
⋃n

i=1 Γ
′

i will

miss its deadline, if the tasksets Γi are transformed by Γ
′

i =
{τk(Tk,

Ck·si
S

)|τk ∈ Γis} with S =
∑n

i=1
1

Ulub(Γi)
· U(Γis).

Proof:

To show that the assigned allocation is guaranteed at every

single deadline of a virtual machine, we claim that there exists

a task τk ∈ Γ′

i with deadline Tk where UA(Πi, t) at time

t = Tk is smaller than the required utilization U(Γ ′

i).

∃τk ∈ Γ′

i : UA(Πi, Tk) < U(Γ′

i)

Due to Theorem 1 we know that U(Γi) is equal to the required
utilization R depending on the least upper bound while UA

is equal to the allocated computation time A assigned by the

STSPP Πi. Thus we can follow

R · αi < R,

what is a contradiction, because of αi ≥ 1.

VII. HANDLING APERIODIC LOADS

The occurrence of aperiodic loads within the virtual ma-

chines can be handled by using static priority servers in

case of RM oder dynamic priority servers in case of EDF.

Therefore the periods of the servers need to be considered

when determining the period P of the STSPPs. This ensures

the correct timing behavior of all periodic real-time tasks.

The value of P has a big impact on interrupt latency. The

bigger P gets the worse the interrupt latency gets, as the

activation slots grow with P . While another virtual machine

is active, interrupts have to be buffered for the non-active

virtual machines for as long as the other virtual machines are

active. Thus there is always a trade-off between virtualization

overhead induced by context-switching and interrupt latency

as virtualization overhead decreases with P while interrupt

latency increases with P .

VIII. CASE STUDY

To evaluate our approach, we decided to use our real-

time operating system ORCOS together with our virtualization

platform Proteus[7].

Proteus is the first hybrid configurable virtualization plat-

form which supports both full virtualization and paravirtualiza-

tion, even a mixture of both if needed. The high configurability

allows the system designer to adopt the platform for its

dedicated field of application. By consequence, very small

and efficient systems can be designed. The maximum memory

overhead induced by the virtual machine monitor is below

11Kb which lets Proteus compete with current state-of-the-art

virtualization platforms like Trango[8] or VirtualLogix[9].

ORCOS is a reimplementation of DREAMS[10], [11] which

was developed at the University of Paderborn within the

last decade. ORCOS is designed to be highly portable and

may be run on a broad number of target platforms, from

tiny microcontrollers with restricted computing resources to

embedded platforms with megabytes of RAM.

After this very short introduction of Proteus and ORCOS

we will now describe our example scenario and the resulting

theoretical schedules in section VIII-A. Afterwards in section

VIII-B the execution of the scenario on real hardware is

compared to the theoretical results.

A. Scenario

We use two different real-time systems, executing two tasks

each. The first real-time system is executed on a PowerPC405

running at 150MHz, while the second real-time system is

executed on a PowerPC405 running at 450MHz. The operating

system of these systems is the smallest possible ORCOS

28

0

10 20 30 40 50 60 70 80 90 100 110 1200

VM

t

1

2

3

4

2

1

P=20

130 140 150 160 170 180 190 200

210 220 230 240 250 260 270 280 290 300 310 320200 t

1

2

3

4

2

1
330 340 350 360 370 380 390 400

Task

Task

VM

15 5

0

0

5 0

20

0

10

0

0

0

15 5

0

0

5 0

20

0

10

0

0

6 0

56 46 36

6 0

32 22 12 2 0

8

0

58 48

6 0

44 34 24

6 0

20 10 0

Fig. 7. Example schedule of a virtualized real-time system hosting two
real-time virtual machines using EDF.

configuration to avoid unnecessary OS overhead in our mea-

surements. We will transform these real-time systems into

virtual machines and derive the STSPPs with their activation

time slots according to our presented methodology in section

III and VI. Both virtual machines are executed on top of

our hypervisor Proteus. Caching is completely disabled for

this case study, on the real-time systems as well as on the

virtualization host.

First, we define the task sets and the clock speeds of the

real-time systems. The WCETs and the periods are denoted in

milliseconds. We can calculate the slow down factors s1 and

s2:

Γ1 = {τ1(40, 20), τ2(100, 50)}

Γ2 = {τ3(80,
32

3
), τ4(200,

120

3
)}

c1 = 150 ⇒ s1 = 1, c2 = 450 ⇒ s2 = 3

We scale both virtual machines as if they were executed on

the slowest system:

⇒ Γ1s = {τ1(40, 20), τ2(100, 50)}

⇒ Γ2s = {τ3(80, 32), τ4(200, 120)}

We have to distinguish between the use of RM and EDF.

1) EDF: The use of EDF in both virtual machines results

in a speedup factor S = 2. By consequence, the virtualization
host needs to be twice as fast as RS1. We need at least a

PowerPC405 running at 300 MHz. The execution of the virtual

machines on this system results in the following task sets:

⇒ Γ′

1 = {(40, 10), (100, 25)}

⇒ Γ′

2 = {(80, 16), (200, 60)}

The overall utilization of the virtualized host is 100%.

P = gcd({40, 80, 100, 200}= 20

Now, we can derive the STSPPs:

Π1 = ({(0, 5)}, 10) (14)

Π2 = ({(5, 10)}, 10) (15)

0

3,23 0

10,67

10,67

000

000

10 20 30 40 50 60 70 80 90 100 110 1200

VM

t

1

2

3

4

2

1

P=20

130 140 150 160 170 180 190 200

210 220 230 240 250 260 270 280 290 300 310 320200 t

1

2

3

4

2

1
330 340 350 360 370 380 390 400

Task

Task

VM

0

3,23

0

0

42,82 32,82

3,23 0

26,05 16,05 0

3,23 0

0

19 7,33 0 9 7,33 0

19 7,33 0 9 7,33 0

39,59 29,59 22,72 12,72 2,72

3,23 0

0

6,05

Fig. 8. Example schedule of a virtualized real-time system hosting two
real-time virtual machines using RM.

The schedule for the case that both virtual machines use EDF

is depicted in figure 7. No task misses its deadline till the

hyperperiod of all tasks.

2) RM: The speedup factor in the case of RM is S =
2 · 1

2·(2
1

2 −1)
≈ 2, 42:

⇒ Γ′

1 = {(40, 8.27), (100, 20.67)}

⇒ Γ′

2 = {(80, 13.23), (200, 24.80)}

The resulting overall utilization of the virtualized host is

approximately 83% which is equal to the least upper bound

for two tasks.

P = gcd({40, 80, 100, 200}= 20

The resulting STSPPs are:

Π1 = ({(0, 5)}, 10)

Π2 = ({(5, 10)}, 10)

B. Real Execution

We executed the two virtual machines, which used EDF as

the local scheduling scheme, on our development platform, a

PowerPC405 running at 300 MHZ, using Proteus using the

schedule based on the STSPPs 14 and 15. The tasks read a

hardware register, calculated some mathematical equation and

stored the value into another hardware register within each

instance. With a logic analyzer we measured the points of

time at which a task started or stopped execution. With these

time points, we were able to monitor the real schedule of the

system as seen in figure 9. Only the first 400ms are shown,

since the schedule repeats afterwards.

In order to get the real system running we had to face

multiple problems. We assume the worst case execution time

of the original tasks to be calculated by some means. We

also assume the execution time needed to execute the interrupt

handlers and the kernel code, as well as the time needed for

switching the context, to be included in the task’s execution

times. This can be observed at the beginning of the third time

slot of the virtual machine one. At that time point, the kernel

is handling a timer interrupt and is starting the second instance

of task one which has a higher priority. The execution time

for this operation belongs to the execution time of task one,

29

Fig. 9. Monitored schedule on a PowerPC405@300 MHz with two virtual machines using ORCOS running on the Proteus hypervisor.

but due to the event monitoring approach, it is drawn as a

part of task two. The same holds for the boot up process at

the beginning of each virtual machine execution which is not

drawn at all, but can be recognized as the delayed start time

of the tasks.

Whenever there is no task executing and the kernel is

operating (e.g. interrupt handling), the execution time spent

is not drawn. This can be observed at the 11th time slot of

virtual machine one.

By assuming the above definition of the worst case execu-

tion time, we may also ignore the problem of task synchro-

nization at system start, since our algorithm expects all tasks

to be released at the same time so that the switching time is

an integer fraction of the deadlines. This is feasible for our

example since the boot up process of ORCOS is very short

and thus the overhead induced by this assumption stays small

compared to the computation time of the tasks. Accordingly,

the execution time of later instances of the tasks are fairly

lower than of those at the beginning, which leads to idle times

inside the VMs. Anyhow, it is basically impractical to get an

utilization of exactly one inside the real system.

Regarding later synchronization issues, we assume that the

specific time slices of the virtual machines can be generated

cycle-accurately by the virtual machine monitor.

As the figure shows, the deadlines of all tasks were met and

we were able to place two formerly physically spread systems

onto one platform while guaranteeing the real time constraints

of all tasks.

IX. REDUCING THE VIRTUAL MACHINE SWITCHING

OVERHEAD

In some cases the time slice period P and the resulting

activation slots (Ei, Si) might become too small to place the

virtual machines together on one system since the switching

overhead would become too big. In these cases however,

it is still possible to run the virtual machines with slightly

increased period P . This will probably increase the needed

speedup factor for a virtual machine in order to meet its

realtime constraints since the period might no longer be

a fraction of the deadlines. Let us reconsider the exam-

ple from above with Γ′

1 = {τ1(40, 10), τ2(100, 25)} and

Γ′

2 = {τ3(80, 16), τ4(200, 60)}. The computed period P =
gcd({40, 80, 100, 200} = 20 resulted in time intervals of

6 0

04,5

0

10 20 30 40 50 60 70 80 90 100 110 1200

VM

t

1

2

3

4

2

1

P=25

130 140 150 160 170 180 190 200

210 220 230 240 250 260 270 280 290 300 310 320200 t

1

2

3

4

2

1
330 340 350 360 370 380 390 400

Task

Task

VM

3,5

22,5 10

0

51

0

7,5

38,5

0

5 0

17,5

0

15 5 0

0

3,5 0

29,5 17

0

22,5 10

0

7,5 0

5 0

17,5

0

15 5 0

0

8

0

55,5

0

46,5 34 21,5 9 0

12,5

Fig. 10. Task Schedule of the example virtual machines using the period
P = 25.

Fig. 11. Computation of the speedup factor C(t)i which is needed to generate
a feasible schedule for different time slice periods P and virtual machines
VMi.

length E1 − S1 = E2 − S2 = 10. In order to determine the

speedup needed for a higher period, it is possible to examine

the quotient of the needed amount of computation time N(t) i
and the provided amount Z(t)i of computation time up to

any deadline of a task inside a VMi. Since we get different

quotients for each deadline depending on the period P and on

the time slices Tsi = E1 − S1|E1, S1 ∈ STSPPi , we need

to take the greatest of those quotients to fulfill the real-time

30

constrains for all deadlines. We call this value C(t)i for VMi:

C(t)i = maxt∈TDi

N(t)i
Z(t)i

(16)

In order to compute the provided time for VM i up to a point

of time t, it is possible to use the following modified response

time analysis formula:

Z(t)i =

⌊

t

P

⌋

· Tsi + (t−

⌊

t

P

⌋

· P − δi) (17)

δi represents the relative starting time of the time slice inside

the period P . It is possible to assume the worst case here for

all virtual machines, which assumes that VMi is executed last

inside the period P . The amount of needed computation time

up to a point of time t can be calculated by the following

formula:

N(t)i =
∑

τj∈Γ′

i

⌊

t

Tj

⌋

· Cj (18)

The calculation needs to be done only for all possible deadlines

TDi
of all tasks τj ∈ VMi up to the least common multiple of

the periods of the tasks and P , since afterwards the schedule

repeats:

TDi
=

⋃

τj∈Γ′

i
,k∈N

{k · Tj} | k · Tj ≤ lcm(∪{Tj} ∪ {P}) (19)

The calculation of the quotient C(t)i has been done for a

series of values P for the virtual machines described above.

The results can be seen in figure 11. In order to generate

a feasible schedule, the maximum speedup over all virtual

machines needs to be used for a chosen value of P . Thus,

in order to generate a feasible schedule, a value of P = 31,
resulting in time slices Ts1 = Ts2 = 15.5, would need a 1.075
times faster system. There might exist values of P bigger than

the greatest common divisor which will still generate a feasible

schedule without any further speed up. This can be seen in

figure 11 at P = 25.
As figure 10 shows, the schedule with the newly computed

period P = 25 is still feasible without any further speedup,

although the period is not a fraction of all task periods. Using

the modified response time analysis, it is possible to create a

modified system using a higher period P and thus to reduce

the relative cost for switching between the virtual machines.

X. RELATED WORK

There already exist a few commercial virtualization

platforms or hypervisors for a range of embedded pro-

cessors, nearly all of them being proprietary. Trango[8]

and VirtualLogix[9] allow virtualization for a range of

ARM and MIPS processors. Green Hills Integrity[12] and

LynxSecure[13] use virtualization to implement high security

systems targeted for the military market and have been certi-

fied to fulfill the EAL7 standard. All these products use par-

avirtualization to provide reasonable performance and support

real-time applications only by the use of dedicated resources.

Naturally, this limits the applicability of these products to a

subset of all possible scenarios.

The scheduling of real-time virtual machines has been

realized in different ways. Deng, Liu and Sun proposed

a system called Hierarchical Scheduling for Open System

Environments[3], [4] which is based on a server approach.

This method uses a global EDF scheduler to schedule a set of

servers which contain a local scheduler for real-time applica-

tions. Servers can leave and enter the system dynamically. An

analysis on how to determine appropriate servers is given by

Lipari and Bini[14]. The global EDF scheduler needs however

access to information of the local schedulers. This is only

possibly in case of paravirtualization.

Mok, Feng and Chen introduced in [2] a formalism for the

schedulability analysis of a task group executed on a single

time slot or multiple time slot periodic partition. Their ap-

proach allows to execute these task groups in a virtual machine

through the use of such a partition, without being necessarily

paravirtualized. This is of great advantage if the licensing

restrictions prohibit the adaption of an RTOS to the underlying

hypervisor. Shin and Lee extended this work in [15], [16],

[17]. They developed a compositional real- time scheduling

framework where global (system-level) timing properties are

established by composing together independently (specified

and) analyzed local (component- level) timing properties. This

work goes quite in the same direction as our work does, but

they assume a given period length for composition, while we

are focusing on deriving the period length and the activation

Another real-time approach is a partitioning with propor-

tional share scheduling[18], [19]. A fixed fraction of the CPU

is assigned to each application. This can be realized by a

simple fixed time slice scheduler. A deterministic, predictable

activation of the hosted applications is ensured. The approach

can be applied to schedule different virtual machines con-

currently, based on their computational weight. The problem

arising, when using proportional share scheduling, is the

decision on how to choose the granularity being defined by the

time quantum q. This is similar to the decision of determining

the period length of STSPPs being the main focus of this paper.

In [20] and [5], Kaiser introduces a method to schedule

hard real-time virtual machines according to proportional share

scheduling which is used in PikeOS. It requires paravirtualiza-

tion of the guest operating systems and allows the concurrent

execution of time-triggered and event-triggered hard real-time

virtual machines. Each virtual machine obtains a fixed priority

and is assigned to a time domain. The time domains are

activated by round robin scheduling while the virtual machines

within a time domain are activated by a priority based fixed

time slice scheduling. The length of the time slice is calculated

based on proportional share scheduling. To guarantee short

latencies, event-triggered virtual machines are placed in a

background time domain which is always active together with

the other active time domain. If such an event-triggered virtual

machine becomes active, it may preempt the active time-

triggered virtual machine in case of a higher priority. The

configuration of the time domains is done offline and faces the

31

same problem of choosing the correct parameters for the time

slots and the period length as just described for proportional

share scheduling.

XI. CONCLUSION AND FUTURE WORK

The approach proposed in this paper enables the design of a

virtualized system hosting different real-time systems without

modifications of the operating systems. The major features of

our methodology are:

• Full virtualization support

• EDF and RM are supported as guest OS scheduler

• Simple determination of the required speedup for the

virtualization host

• Simple determination of the STSPP period length and

their activation time slots

• Improvement of the period length by response time

analysis at the cost of additional speedup

The proposed methodology was evaluated using our hybrid

hypervisor Proteus on a PowerPC405 prototyping platform

with two virtual machines executing our real-time operating

system ORCOS. This experiment proofs the applicability to

real systems.

In the future, we would like to investigate whether it is

possible to enlarge the period lengths without performing a re-

sponse time analysis to further reduce the switching overhead

induced by the virtual machine monitor. Another interesting

aspect is the synchronization of the virtual machines to ensure

that the switching times of the virtual machine monitor is

synchronized with the deadlines of the tasks. We want to

achieve this without losing the support of full virtualization.

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the Association for computing
Machinery, Jan 1973.

[2] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” Proc. of IEEE Real-Time Technology and Applications . . . ,
Jan 2001.

[3] Z. Deng, J. Liu, and J. Sun, “A scheme for scheduling hard real-time
applications in open system environment,” Real-Time Systems, 1997.
Proceedings., Ninth Euromicro Workshop on, pp. 191 – 199, May 1997.

[4] Z. Deng and J. Liu, “Scheduling real-time applications in an open
environment,” Real-Time Systems Symposium, 1997. Proceedings., The
18th IEEE, pp. 308 – 319, Nov 1997.

[5] R. Kaiser, “Alternatives for scheduling virtual machines in real-time
embedded systems,” IIES ’08: Proceedings of the 1st workshop on
Isolation and integration in embedded systems, Apr 2008.

[6] “Virtualization for embedded systems,” Open Kernel Labs, Tech. Rep.,
Apr 17 2007.

[7] D. Baldin and T. Kerstan, “Proteus, a hybrid virtualization platform for
embedded systems,” Proceedings of the International Embedded Systems
Symposium, 14 - 16 September 2009 IFIP WG 10.5, 2009.

[8] VmWare, “TRANGO Virtual Prozessors: Scalable security for embed-
ded devices.” Website, February 2009, http://www.trango-vp.com/.

[9] VirtualLogix, “VirtualLogix - Real-time Virtualization for Connected
Devices :: Products - VLX for Embedded Systems:,” Website, February
2009, http://www.virtuallogix.com/.

[10] C. Ditze, “A customizable library to support software synthesis for
embedded applications and micro-kernel systems,” EW 8: Proceedings
of the 8th ACM SIGOPS European workshop on Support for
composing distributed applications, Sep 1998. [Online]. Available:
http://portal.acm.org/citation.cfm?id=319195.319209

[11] ——, “A step towards operating system synthesis,” in In Proc. of the 5th
Annual Australasian Conf. on Parallel And Real-Time Systems (PART).
IFIP, IEEE, 1998.

[12] G. Hills, “Real-Time Operating Systems (RTOS), Embedded Develop-
ment Tools, Optimizing Compilers, IDE tools, Debuggers - Green Hills
Software,” Website, February 2009, http://www.ghs.com/.

[13] LynuxWorks, “Embedded Hypervisor and Separation Kernel for
Operating-system Virtualization: LynxSecure,” Website, February 2009,
http://www.lynuxworks.com/virtualization/hypervisor.php.

[14] G. Lipari and E. Bini, “A methodology for designing hierarchical
scheduling systems,” Journal of Embedded Computing, Jan 2005.

[15] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” Proceedings of the 24th IEEE International Real-Time . . . ,
Jan 2003.

[16] ——, “Compositional real-time scheduling framework,” Proc. of IEEE
Real-Time Systems Symposium, Jan 2004.

[17] ——, “Compositional real-time scheduling framework with
periodic model,” ACM Transactions on Embedded Com-
puting Systems . . . , Jan 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1347383

[18] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
C. Plaxton, “A proportional share resource allocation algorithm for real-
time, time-shared systems,” Real-Time Systems Symposium, 1996., 17th
IEEE, pp. 288 – 299, Nov 1996.

[19] K. Jeffay, F. D. Smith, A. Moorthy, and J. Anderson, “Proportional share
scheduling of operating system services for real-time applications,” Real-
Time Systems Symposium, 1998. Proceedings., The 19th IEEE, pp. 480
– 491, Nov 1998.

[20] R. Kaiser, “Applying virtualization to real-time embedded systems,” 1.
GI/ITG KuVS Fachgespr”ach Virtualisierung, 2008.

[21] J. E. Smith and R. Nair, Virtual Machines - Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

[22] G. C. Buttazzo, Hard Real-Time Computing Systems. Springer, 2004.
[23] R. Greene and G. Lownes, “Embedded cpu target migration, doing more

with less,” 1994, 197743 429-436.

32

Cache-Related Preemption and Migration Delays:

Empirical Approximation and Impact on Schedulability∗

Andrea Bastoni† Björn B. Brandenburg‡ James H. Anderson‡

Abstract

A job that is impeded by a preemption or migration incurs

additional cache misses when it resumes execution due to

a loss of cache affinity. While often regarded negligible in

scheduling-theoretic work, such cache-related delays must

be accounted for when comparing scheduling algorithms in

real systems. Two empirical methods to approximate cache-

related preemption and migration delays on actual hard-

ware are proposed, and a case study reporting measured

average- and worst-case overheads on a 24-core Intel sys-

tem with a hierarchy of shared caches is presented. The

widespread belief that migrations are always more costly

than preemptions is refuted by the observed results. Ad-

ditionally, an experiment design for schedulability studies

that allows algorithms to be compared objectively under

consideration of cache-related delays is presented.

1 Introduction

A controversial topic with regard to the choice of scheduler

in multiprocessor real-time systems—both within academia

and among practitioners—is the relative impact of cache-

related preemption and migration delay (CPMD), i.e., the

delay that a preempted job incurs due to a loss of cache

affinity after resuming execution.

Traditionally, migrations are considered to be a source of

unacceptable overhead, and thus implementors tend to fa-

vor partitioning to avoid migrations altogether. This view,

however, conflicts with scheduling-theoretic advances from

the last decade that show that there exist global schedulers,

which allow jobs to migrate freely, that are provably supe-

rior to partitioning if overheads (including CPMD) are neg-

ligible [5, 17, 19, 24, 33]. In contrast, if CPMD is deemed to

be significant (which, of course, it is in practice), then one

can easily construct scenarios in which global scheduling

is not a viable alternative by assuming prohibitively high

migration costs. However, how realistic are such scenarios?

Clearly, a meaningful comparison of schedulers requires

CPMD to be taken into account, yet arbitrarily choosing

∗Work supported by AT&T, IBM, and Sun Corps.; NSF grants CNS

0834270, CNS 0834132, and CNS 0615197; ARO grant W911NF-09-1-

0535; and AFOSR grant FA 9550-09-1-0549.
†SPRG, University of Rome “Tor Vergata”
‡Dept. of Computer Science, U. of North Carolina at Chapel Hill

delays is of only little benefit. The problem is compounded

by the difficulty of measuring CPMD [9], which can only be

observed indirectly and is heavily dependent on the working

set size (WSS) of each task, in contrast to other OS delays

such as scheduling overhead [8, 9].

This raises three central questions:

1. How can CPMD be estimated empirically when eval-

uating algorithms for a specific platform?

2. What are reasonable values to assume for CPMD

when evaluating (newly-proposed) algorithms in

scheduling-theoretic work?

3. How can schedulers be evaluated without accidentally

introducing a bias towards a particular WSS?

In particular, we are interested in simple, yet effective,

methods that can be realistically performed as part of

scheduling research and by practitioners during early de-

sign phases (i.e., when selecting platforms and algorithms).

Contributions. In this paper, we propose two approaches

to measure CPMD: a “schedule-sensitive method” that can

measure scheduler-dependent cache effects (Sec. 3.1), and

a “synthetic method” that can be used to quickly record a

large number of samples (Sec. 3.2). (A preliminary version

of the “schedule-sensitive method” was previously used—

but not described in detail—in [9].)

To demonstrate the efficacy of our approaches, we re-

port average and maximum CPMD for various WSSs on

a current 24-core Intel platform with hierarchical caches

(Sec. 4). Perhaps surprisingly, in a system under load, mi-

grations were found to not cause significantly more delay

than preemptions (Sec. 4.2). In particular, our results show

that CPMD is (i) in excess of one millisecond for work-

ing set sizes exceeding 256 KB (Fig. 2(a)), (ii) ill-defined

if there is heavy contention for shared caches (Fig. 2(c)),

(iii) strongly dependent on the preemption length (Fig. 3),

and (iv) not dependent on task set size (Fig. 4).

Finally, we discuss how CPMD can be integrated into

large-scale schedulability studies without rendering the re-

sults dependent on particular WSS assumptions (Sec. 5).

Related work. Accurately assessing cache-related delays

is a classical component of worst-case execution time

(WCET) analysis [42], in which an upper bound on the

33

maximum resource requirements of a real-time task is de-

rived a priori based on control- and data-flow analysis. Un-

fortunately, predicting cache contents and hit rates is notori-

ously difficult: even though there has been some initial suc-

cess in bounding cache-related preemption delays (CPDs)

caused by simple data [31] and instruction caches [37], an-

alytically determining preemption costs on uniprocessors

with private caches is still generally considered to be an

open problem [42]. Thus, on multicore platforms with a

complex hierarchy of shared caches, we must—at least for

now—resort to empirical approximation. However, given

recent advances in bounding migration delays [21] and ana-

lyzing interference due to shared caches [16, 43], we expect

multicore WCET analysis to be developed eventually.

Trace-driven memory simulation [41], in which mem-

ory reference traces collected from actual program execu-

tions are interpreted with a cache simulator, has been ap-

plied to count cache misses after context switches [29, 36].

Using traces from throughput-oriented workloads, Mogul

and Borg [29] estimated CPDs to lie within 10µs to 400µs
on an early ’90s RISC-like uniprocessor with caches rang-

ing in size from 64 to 2048 kilobytes. In work on real-

time systems, Stärner and Asplund [36] used trace-driven

memory simulation to study CPDs in benchmark tasks on

a MIPS-like uniprocessor with small caches. As the sim-

ulation environment is fully controlled, this method allows

cache effects to be studied in great detail, but it is also lim-

ited by its reliance on accurate architectural models (which

may not always be available) and representative memory

traces (which are difficult to collect due to complex instru-

mentation requirements).

Several probabilistic models have been proposed to pre-

dict expected cache misses on uniprocessors [1, 27, 39]. In

the context of evaluating (hard) real-time schedulers, such

models apply only to a limited extent because it is difficult

to extract bounds on the worst-case number of cache misses.

Further, they rely on task parameters that are difficult to ob-

tain or predict (e.g., cache access profiles [27]), and do not

predict cache misses after migrations.

Closely related to our approach are several recent CPD

microbenchmarks [18, 25, 40]. Li et al. [25] measured the

cost of switching between two processes that alternate be-

tween accessing a data array and communicating via a pipe

on an Intel Xeon processor with a 512kB L2 cache, and

found that average case CPDs can range from around 100µs
to 1500µs, depending on array size and access pattern. In

the context of real-time systems, Li et al.’s experimental

setup is limited because it can only estimate average-case,

but not worst-case, delays. David et al. [18] measured

preemption delays in Linux kernel threads on an embed-

ded ARM processor with comparably small caches and ob-

served CPDs in the range of 60µs to 120µs. Tsafrir [40]

investigated the special case in which the scheduled job is

not preempted, but cache contents are perturbed by peri-

odic clock interrupts, and found that slowdowns vary heav-

ily among workloads. None of the cited empirical studies

considered job migrations.

Once bounds on cache-related delays are known for a

given task set, they must be accounted for during schedula-

bility analysis. This is typically accomplished by inflating

task parameters to reflect the time lost to reloading cache

contents. Straightforward methods are known for common

uniprocessor schedulers [6, 11, 22] and have also been de-

rived for global schedulers [19, 34]; we use this approach in

Sec 5. A limitation of these methods is that each preemp-

tion between any two tasks is assumed to cause maximal de-

lay, an assumption that is likely unnecessarily pessimistic.

More advanced methods that yield tighter bounds by an-

alyzing per-task cache use and the instant at which each

preemption occurs have been developed for static-priority

uniprocessor schedulers [23, 30, 37]. However, similar to

WCET analysis, these methods have not yet been gener-

alized to multiprocessors since they require useful cache

contents to be predicted accurately. Stamatescu et al. [35]

propose including average memory access costs in specific

analysis, but do not report measured costs.

Several research directions orthogonal to this paper are

concerned with avoiding, or at least reducing, cache-related

delays in multiprocessor real-time systems. On an architec-

tural level, Sarkar et al. [32] have proposed a scheduler-

controlled cache management scheme that enables cache

contents to be transferred in bulk instead of relying on nor-

mal cache-consistency updates. This can be employed to

lessen migration costs by transferring useful cache contents

before a migrated job resumes [32]. Likewise, Suhendra

and Mitra [38] have considered cache locking and parti-

tioning policies to isolate real-time tasks from timing in-

terference due to shared caches. While promising, neither

technique is supported in current multicore architectures.

In work on real-time scheduling, numerous recently-

proposed schedulers aim to balance the advantages of par-

titioning and global scheduling by reducing the number of

migrations. Such hybrid approaches can be classified into

two families: in semi-partitioned schedulers [2], most jobs

are fixed to processors and only few migrate, whereas in

clustered schedulers [4, 13], all jobs may migrate, but only

among processors that share a cache. Going a step fur-

ther, cache-aware schedulers [12, 20], which make shared

caches an explicitly-managed resource, have been proposed

to both prevent interference in hard real-time systems [20]

and to encourage data reuse in soft real-time systems [12].

Work on hybrid schedulers makes strong assumptions on

the relative costs of migrations and preemptions—to fairly

evaluate the merits of said approaches thus requires sound

estimates of cache-related delays. We detail our methods

for obtaining such estimates in Sec. 3, after briefly summa-

rizing required background next.

34

2 Background

CPMD is a characteristic of modern processors and inde-

pendent of any particular task model. Given our interest

in real-time systems, our focus is the classic sporadic task

model [15, 26, 28] in which a workload is specified as a col-

lection of tasks. Each task Ti is characterized by a WCET ei

and a minimum inter-arrival time or period pi, and releases

a job for execution at most once every pi time units.

Such a job J is preempted if its execution is temporarily

paused before it is completed, e.g., in favor of another job

with higher priority. Suppose J is preempted at time tp on

processor P and resumes execution at time tr on processor

R. J is said to have incurred a preemption if P = R, and

a migration otherwise. In either case, we call tr − tp the

preemption length. A job may be preempted multiple times.

Scheduling. Let m denote the number of processors.

There are two fundamental approaches to scheduling spo-

radic tasks on multiprocessors [15]: with global scheduling,

processors are scheduled by selecting jobs from a single,

shared queue, whereas with partitioned scheduling, each

processor has a private queue and is scheduled indepen-

dently using a uniprocessor scheduling policy. Clustered

scheduling [4, 13] is a generalization of both approaches:

tasks are partitioned onto m/c clusters of c processors each,

which are then scheduled globally (with respect to the pro-

cessors in each cluster). We use the earliest-deadline-first

(EDF) policy in each category, i.e., in this paper, we con-

sider partitioned EDF (P-EDF, c = 1), clustered EDF (C-

EDF, 1 < c < m), and global EDF (G-EDF, c = m).

Caches. Modern processors employ a hierarchy of fast

cache memories that contain recently-accessed instructions

and operands to alleviate high off-chip memory latencies.

Caches are organized in layers (or levels), where the fastest

(and usually smallest) caches are denoted level-1 (L1)

caches, with deeper caches (L2, L3, etc.) being successively

larger and slower. A cache contains either instructions or

data, and may contain both if it is unified. In multiproces-

sors, shared caches serve multiple processors, in contrast to

private caches, which serve only one.

Caches operate on blocks of consecutive addresses

called cache lines with common sizes ranging from 8 to 128

bytes. In direct mapped caches, each cache line may only

reside in one specific location in the cache. In fully associa-

tive caches, each cache line may reside at any location in the

cache. In practice, most caches are set associative, wherein

each line may reside at a fixed number of locations.

The set of cache lines accessed by a job is called the

working set (WS) of the job; workloads are often character-

ized by their working set sizes (WSSs). A cache line present

in a cache is useful if it is going to be accessed again. If a

job references a cache line that cannot be found in a level-X
cache, then it suffers a level-X cache miss. This can occur

for several reasons. Compulsory misses are triggered the

first time a cache line is referenced. Capacity misses result

if the WSS of the job exceeds the size of the cache. Further,

in direct mapped and set associative caches, conflict misses

arise if useful cache lines were evicted to accommodate

mapping constraints of other cache lines. A shared cache

must exceed the combined WS of all jobs accessing it, oth-

erwise, frequent capacity and conflict misses may arise due

to cache interference. Jobs that incur frequent level-X ca-

pacity and conflict misses even if executing in isolation are

said to be thrashing the level-X cache.

Cache affinity describes the effect that a job’s overall

cache miss rate tends to decrease with increasing execution

time (unless it thrashes all cache levels)—after an initial

burst of compulsory misses, most useful cache lines have

been brought into a cache and do not cause further misses.

This explains CPD: when a job resumes execution after a

preemption, it is likely to suffer additional capacity and con-

flict misses as the cache was perturbed [27]. Migrations

may further cause affinity for some levels to be lost com-

pletely (depending on cache sharing), thus adding compul-

sory misses to the penalty.

A job’s memory references are cache-warm after cache

affinity has been established; conversely, cache-cold refer-

ences imply a lack of cache affinity.

In this paper, we restrict our focus to cache-consistent

shared-memory machines: when updating a cache line that

is present in multiple caches, inconsistencies are avoided

by a cache consistency protocol, which either invalidates

outdated copies or propagates the new value.

Schedulability. In a hard real-time system, each job

must complete by its specified deadline, whereas bounded

deadline tardiness is permissible in a soft real-time sys-

tem [19]. In the design of a real-time system, a validation

procedure—or schedulability test—must be used to deter-

mine a priori whether all timing constraints will be met.

As discussed in Sec. 1, current WCET analysis is limited

to yield bounds assuming non-preemptive execution [42,

43]. Hence, schedulability tests must be augmented to re-

flect system overheads such as CPMD [6, 11, 19, 22, 28,

34]. In particular, under each of the aforementioned EDF

variants, it is sufficient to inflate each task’s execution cost

by the maximum delay caused by one preemption or mi-

gration [19, 28]. Formally, let Dc denote a bound on the

maximum CPMD incurred by any job, and let, for each

task Ti, e′i = ei + Dc denote the inflated execution cost:

all timing constraints will be met if the task system passes

a schedulability test assuming an execution cost of e′i for

each Ti [19, 28]. Generally speaking, CPMD can be fac-

tored into execution costs using similar scheduler-specific

formulas as long as the maximum number of preemptions

incurred or caused by a job can be bounded.

In practice, additional delay sources such as scheduling

overheads [8, 9, 14] and interrupt interference [8, 10] must

also be taken into account using similar methods, but such

35

J

t

t0

Cold

t1

Warm

t2 t3

Preemption

t4

After Preempt.

t5

Warm Delay

Figure 1: Cache-delay measurement.

considerations are beyond the scope of this paper—our fo-

cus is to empirically approximate Dc in real systems.

3 Measuring Cache-Related Delays

Recall that a job is delayed after a preemption or a migra-

tion due to a (partial) loss of cache affinity. To measure such

delays, we consider jobs that access their WS as illustrated

in Fig. 1: a job J starts executing cache-cold at time t0 and

experiences compulsory misses until time t1, when its WS

is completely loaded into cache. After t1, each subsequent

memory reference by J is cache-warm. At time t2, the job

has successfully referenced its entire WS in a cache-warm

context. From t2 onward, the job repeatedly accesses sin-

gle words of its WS (to maintain cache affinity) and checks

after each access if a preemption or migration has occurred.

Suppose that the job is preempted at time t3 and not sched-

uled until time t4. As J lost cache affinity during the inter-

val [t3, t4], the length of the interval [t4, t5] (i.e., the time

needed to reference again its entire WS) reflects the time

lost to additional cache misses.

Let dc denote the cache-related delay suffered by J . Af-

ter the WS has been fully accessed for the third time (at time

t5), dc is given by the difference dc = (t5− t4)−(t2− t1).
1

After collecting a trace dc,0, dc,1, . . . , dc,k from a suffi-

ciently large number of jobs k, maxl{dc,l} can be used to

approximate Dc (recall that Dc is a bound on the maximum

CPMD incurred by any job). Similarly, average delay and

standard deviation can be readily computed during off-line

analysis.

On multiprocessors with a hierarchy of shared caches,

migrations are categorized according to the level of cache

affinity that is preserved (e.g., a job migration between

two processors sharing an L2 cache is an L2-migration).

A memory migration does not preserve any level of cache

affinity. Migrations can be identified by recording at time

t3 the processor P on which J was executing and at time t4
the processor R on which J resumes execution.

Each sample dc,l can be obtained either directly or indi-

rectly. A low-overhead clock device can be used to directly

measure the WS access times [t1, t2] and [t4, t5], which im-

mediately yield dc. Alternatively, some platforms include

1The interval [t2, t3] is not reflected in dc since jobs are simply waiting

to be preempted while maintaining cache affinity during this interval.

hardware performance counters that can be used to indi-

rectly measure dc by recording the number of cache misses.

The number of cache misses experienced in each interval

is then multiplied by the time needed to service a single

cache miss. In this paper, we focus on the direct mea-

sure of WS access times, as reliable and precise clock de-

vices are present on virtually all (embedded) platforms. In

contrast, the availability of suitable performance counters

varies greatly among platforms.

Cache-related preemption and migration delays clearly

depend on the WSS of a job and possibly on the scheduling

policy [9] and on the task set size (TSS). Hence, to detect

such dependencies (if any), each trace dc,0, dc,1, . . . , dc,k

should ideally be collected on-line, i.e., as part of a task set

that is executing under the scheduler that is being evaluated

without altering the implemented policy. We next describe

a method that realizes this idea.

3.1 Schedule-Sensitive Method

With this method, dc samples are recorded on-line while

scheduling a proper task set under the algorithm of inter-

est. Performing these measurements without changing the

regular scheduling of a task set poses the question of how

to efficiently distinguish between a cold, warm, and post-

preemption (or migration — post-pm) WS access. In par-

ticular, detecting a post-pm WS access is subtle, as jobs run-

ning under OSs with address space separation (e.g., Linux)

are generally not aware of being preempted or migrated.

Solving this issue requires a low-overhead mechanism that

allows the kernel to inform a job of every preemption and

migration. Note that the schedule-sensitive method cru-

cially depends on the presence of such a mechanism (a suit-

able implementation is presented in Sec. 3.3 below).

Delays should be recorded by executing test cases with a

wide range of TSSs and WSSs. This likely results in traces

with a variable number of valid samples. To obtain an un-

biased estimator for the maximum delay, the same number

of samples should be used in the analysis of each trace. In

practice, this implies that only (the first) kmin from each

trace can be used, where kmin is the minimum number of

valid samples among all traces.

Since samples are collected from a valid schedule, the

advantage of this method is that it can identify dependencies

(if any) of CPMD on scheduling decisions and on the num-

ber of tasks. However, this implies that it is not possible to

control when a preemption or a migration will happen, since

these decisions depend exclusively on the scheduling algo-

rithm (which is not altered). Therefore, the vast majority

of the collected samples are likely invalid, e.g., a job may

not be preempted at all or may be preempted prematurely,

and only samples from jobs that execute exactly as shown in

Fig. 1 can be used in the analysis. Thus, large traces are re-

quired to obtain few samples. Worse, for a given scheduling

algorithm, not all combinations of WSS and TSS may be

36

able to produce the execution pattern needed in the analysis

(e.g., this is the case with G-EDF, as discussed in Sec. 4).

Hence, we developed a second method that achieves

finer control over the measurement process by artificially

triggering preemptions and migrations of a single task.

3.2 Synthetic Method

In this approach, CPMD measures are collected by a sin-

gle task that repeatedly accesses working sets of different

sizes. The task is assigned the highest priority and there-

fore it cannot be preempted by other tasks.

In contrast to the schedule-sensitive method, preemp-

tions and migrations are explicitly triggered in the synthetic

method. In particular, the destination core and the preemp-

tion length are chosen randomly (preemptions arise if the

same core is chosen twice in a row). In order to trigger pre-

emptions, L2-migrations, L3-migrations, etc. with the same

frequency (and thus to obtain an equal number of samples),

proper probabilities must be assigned to each core. Further-

more, as the task execution is tightly controlled, post-pm

WS accesses do not need to be detected, and no kernel in-

teraction is needed.

The synthetic method avoids the major drawback of the

previous approach, as it generates only valid post-pm data

samples. This allows a statistically meaningful number of

samples to be obtained rapidly. However, as preemption

and migration scheduling decision are externally imposed,

this methodology cannot determine possible dependencies

of CPMD on scheduling decisions or on the TSS.

3.3 Implementation Concerns

Both methods were implemented using LITMUSRT, a real-

time Linux extension developed at UNC [14]. The current

version of LITMUSRT is based on Linux 2.6.32.

Precise time measures of WS access times were obtained

on the x86 Intel platform used in our experiments by means

of the time-stamp counter (TSC), a per-core counter that

can be used as high-resolution clock device. The direct

measure of CPMD on a multiprocessor platform should

take into account the imperfect alignment of per-processor

clock devices (clock skew). Clock skew errors can be

avoided if WS access times are evaluated only based on

samples obtained on the same processor (e.g., in Fig. 1, t1
and t2 should be measured on the same processor, which

may differ from the processor where t4 and t5 are mea-

sured). In most OSs, time interval measurements can be

further perturbed by interrupt handling. These disturbances

can be avoided by disabling interrupts while measuring WS

access times. Although this does not prevent non-maskable

interrupts (NMIs) from being serviced, NMIs are infre-

quent events that likely only have a minor impact on CPMD

approximations. We note, however, that our methodology

currently cannot detect interference from NMIs.

Disabling interrupts under the schedule-sensitive method

is a tradeoff between accuracy and the rate at which sam-

ples are collected. On the one hand, disabling interrupts in-

creases the number of valid samples, but on the other hand,

it implicitly alters the scheduling policy by introducing non-

preemptive sections. We chose to disable interrupts to re-

duce the length of the experiments.

Within LITMUSRT, we implemented the low-overhead

kernelspace–userspace communication mechanism re-

quired by the schedule-sensitive method by sharing a sin-

gle per-task memory page (the control page) between the

kernel and each task. A task can infer whether it has been

preempted or migrated based on the control page: when it is

selected for execution, the kernel updates the task’s control

page by increasing a preemption counter and the job se-

quence number, storing the preemption length, and record-

ing on which core the task will start its execution.

4 Case Study

To verify and compare results of the two presented methods,

we measured cache-related preemption and migration de-

lays using both methodologies on an Intel Xeon L7455. The

L7455 is a 24-core 64-bit uniform memory access (UMA)

machine with four physical sockets. Each socket contains

six cores running at 2.13 GHz. All cores in a socket share

a unified 12-way set associative 12 MB L3 cache, while

groups of two cores each share a unified 12-way set asso-

ciative 3 MB L2 cache. Every core also includes an 8-way

set associative 32 KB L1 data cache and an identical L1

instruction cache. All caches have a line size of 64 bytes.

4.1 Experimental Setup

We used the G-EDF algorithm to measure CPMD with

the schedule-sensitive method, but we emphasize that the

method can be applied to other algorithms as well. For

this method, we measured the system behavior of periodic

task sets consisting of 25 to 250 tasks in steps of variable

sizes (from 20 to 30, with smaller steps where we desired

a higher resolution). Task WSSs were varied over {4, 32,

64, . . . , 2048} KB. Per-WSS write ratios of 1/2 and 1/4

were assessed.2 For each WSS and TSS, we measured

ten randomly-generated task sets using parameter ranges

from [8, 9]. Each task set was traced for 60 seconds and

each experiment was carried out once in an otherwise idle

system and once in a system loaded with best-effort cache-

polluter tasks. Each of these tasks was statically assigned to

a core and continuously thrashed the L1, L2, and L3 caches

2In preliminary tests with different write ratios, 1/2 and 1/4 showed

the highest worst-case overheads, with 1/4 performing slightly worse. All

write ratios are given with respect to individual words, not cache lines.

There are eight words in each cache line, thus each task updated every

cache line in its WS multiple times. Tests with write ratios lower than 1/8,

under which some cache lines are only read, exhibited reduced overheads.

37

number of tasks

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 10

 100

 1000

 10000

 100000

 4 16 64 256 1024 4096 16384

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
s
 (

u
s
)

working set size (kilobytes)

measured maximum overhead (25.00% writes)

(a)

 0.1

 1

 10

 100

 1000

 10000

 4 16 64 256 1024 4096 16384

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
s
 (

u
s
)

working set size (kilobytes)

measured maximum overhead (25.00% writes)

(b)

 1

 10

 100

 1000

 10000

 4 16 64 256 1024 4096 16384

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
s
 (

u
s
)

working set size (kilobytes)

measured average overhead (25.00% writes)

(c)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 16 64 256 1024 4096 16384

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
s
 (

u
s
)

working set size (kilobytes)

measured average overhead (25.00% writes)

(d)

Figure 2: CPMD approximations obtained with the synthetic method. The graphs show maximum and average CPMD (in µs) for

preemptions and different types of migrations as a function of WSS (in KB). (a) Worst-case delay under load. (b) Worst-case delay in an

idle system. (c) Average-case delay under load. (d) Average-case delay in an idle system. The error bars indicate one standard deviation.

by accessing large arrays. In total, more than 50 GB of trace

data with 600 million overhead samples were obtained dur-

ing more than 24 hours of tracing.

We used a single SCHED FIFO task running at the high-

est priority to measure CPMD with the synthetic method.

The WSS was chosen from {4, 8, 16, . . . , 8192} KB. We

further tested WSSs of 3 and 12 MB, as they correspond to

the sizes of the L2 and L3 cache respectively. In these ex-

periments, several per-WSS write ratios were used. In par-

ticular, we considered write ratios ranging over {0, 1/128,

1/64, 1/16, 1/4, 1/2, 1}. For each WSS we ran the test pro-

gram until 5,000 valid after-pm samples were collected (for

each preemption/migration category). Preemption lengths

were uniformly distributed in [0ms, 50ms]. As with the

schedule-sensitive method, experiments were repeated in an

idle system and in a system loaded with best-effort cache-

polluter tasks. More than 3.5 million valid samples were

obtained during more than 50 hours of tracing.

4.2 Results

Fig. 2 shows preemption and migration delays that were

measured using the synthetic method (the data is given nu-

merically in Appendix A). Each inset indicates CPMD val-

ues for preemptions and all different kinds of migrations

(L2, L3, memory) as a function of WSS, assuming a write

ratio of 1/4. The first column of the figure (insets (a,c))

gives delays obtained when the system was loaded with

cache-polluter tasks, while the second column (insets (b,d))

gives results that were recorded in an otherwise idle sys-

tem. The first row of the figure presents worst-case over-

heads, and the second row shows average overheads; the

error bars depict one standard deviation. Both axes are in

logarithmic scale. Note that these graphs display the differ-

ence between a post-pm and and a cache-warm WS access.

Declining trends with increasing WSSs (insets (b,c,d)) thus

indicate that the cache-warm WS access cost is increasing

more rapidly than the post-pm WS access.

Observation 1. The predictability of overhead measures is

heavily influenced by the size of L1 and L2 caches. This can

be seen in inset (c): as the WSS approaches the size of the

L2 cache (3072 KB, shared among 2 cores), the standard

deviation of average delays becomes very large (the same

magnitude of the measure itself) and therefore overhead

estimates are very imprecise. This unpredictability arises

because jobs with large WSSs suffer frequent L2- and L3-

cache misses in a system under load due to thrashing and

cache interference, and thus become exposed to memory

bus contention. Due to the thrashing cache-polluter tasks,

bus access times are highly unpredictable and L3 cache in-

terference is very pronounced. In fact, our traces show that

38

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 0 3000 6000 9000 12000 15000 18000 21000 24000

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
 (

u
s
)

preemption length (us)

post-preemption samples (WSS=64kB, 25% writes)

(a)

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 0 3000 6000 9000 12000 15000 18000 21000 24000

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
 (

u
s
)

preemption length (us)

post-L3-migration samples (WSS=64kB, 25% writes)

(b)

Figure 3: Scatter plot of observed dc samples vs. preemption

length in a system under load. (a) Samples recorded after a pre-

emption. (b) Samples recorded after an L3-migration. The plots

have been truncated at 25ms; there are no trends apparent in the

range from 25ms to 50ms.

jobs frequently incur “negative CPMD” in such cases be-

cause the “cache-warm” access itself is strongly interfered

with. This implies that, from the point of view of schedu-

lability analysis, CPMD is not well-defined for such WSSs,

since a true WCET must account for worst-case cache in-

terference and thus is already more pessimistic than CPMD,

i.e., actual CPMD effects are likely negligible compared to

the required bounds on worst-case interference.

Observation 2. In a system under load, there are no

substantial differences between preemption and migration

costs, both in the case of worst-case (inset (a)) and average-

case (inset (c)) delays. When a job is preempted or migrated

in the presence of heavy background activity, its cache lines

are likely evicted quickly from all caches and thus virtually

every post-pm access reflects the high overhead of refetch-

ing the entire WS from memory. Inset (a) shows that, in a

system under load, the worst-case delay for a 256 KB WSS

exceeds 1ms, while the cost for a 1024 KB WSS is around

5ms. Average-case delays (inset (c)) are much lower, but

still around 1ms for a 1024 KB WSS.

Observation 3. In an idle system, preemptions always

cause less delay than migrations, whereas L3- and memory

migrations have comparable costs. This behavior can be ob-

served in insets (b,d). In particular, if the WS fits into the

L1 cache (32 KB), then preemptions are negligible (around

1µs), while they have a cost that is comparable with that

of an L2 migration when the WSS approaches the size of

the L2 cache (still, they remain less than 1ms). Inset (d)

clearly shows that L2-migrations cause less delay than L3-

migrations for WSSs that exceed the L1-cache size (about

10µs for WSSs between 32 and 1024 KB). In contrast, L3-

and memory migrations have comparable costs, with a max-

imum around 3ms with 3072 KB WSS (inset (b)). Interest-

ingly, memory migrations cause slightly less delay than L3

cache migrations. As detailed below, this is most likely re-

lated to the cache consistency protocol.

Observation 4. The magnitude of CPMD is strongly re-

lated to preemption length (unless cache affinity is lost com-

pletely, i.e., in the case of memory migrations). This trend

is apparent from the plots displayed in Fig. 3. Inset (a)

shows individual preemption delay measurements arranged

by increasing preemption length, inset (b) similarly shows

L3-migration delay. The samples were collected using the

synthetic method with a 64 KB WSS and a write ratio of 1/4

in a system under load (similar trends were observed with

all WSSs ≤ 3072 KB). In both insets, CPMD converges to

around 50µs for preemption lengths exceeding 10ms. This

value is the delay experienced by a job when its WSS is

reloaded entirely from memory.3 In contrast, for preemp-

tion lengths ranging in [0ms, 10ms], average preemption

delay increases with preemption length (inset (a)), while

L3-migrations (in the range [0ms, 5ms]) progressively de-

crease in magnitude (inset (b)). The observed L3-migration

trend is due to the cache consistency protocol: if a job re-

sumes quickly after being migrated, parts of its WS are

still present in previously-used caches and thus need to be

evicted. In fact, if the job does not update its WS (i.e., if the

write ratio is 0), then the trend is not present.

Observation 5. Preemption and migration delays do not

depend significantly on the task set size. This can be ob-

served in Fig. 4, which depicts worst-case delay for the

schedule-sensitive method in a system under load as func-

tion of the TSS. The plot indicates CPMD for preemptions

and all migration types for WSSs of 1024, 512 and 256 KB

(from top to bottom).

Note that Fig. 4 is restricted to TSSs from 75 to 250

because, under G-EDF, only few task migrations occur for

small TSSs. Thus, the number of collected valid delays for

small TSSs is not statistically meaningful.

Furthermore, Fig. 4 shows that worst-case preemption

and migrations delays for the same WSS have comparable

magnitudes, thus confirming that, in a system under load,

preemption and migration costs do not differ substantially

(recall Fig. 2(a) and Observation 2).

3Due to space limitations, plots for memory and L2-migrations are

not shown. L2-migrations reveal a trend that is similar to the preemption

case, while memory migrations do not show a trend (samples are clustered

around 50µs delay regardless of preemption length).

39

number of tasks

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 60 80 100 120 140 160 180 200 220 240 260

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
 (

u
s
)

number of tasks

measured maximum overhead (25.00% writes)

Figure 4: Worst-case CPMD approximations as function of

TSS in a system under load (obtained with the schedule-sensitive

method). Lines are grouped by WSS: from top: WSS = 1024 KB,

WSS = 512 KB, WSS = 256 KB.

Interpretation. The setup used in the experiments de-

picted in Fig. 2(a,c) simulate worst-case scenarios in which

a job is preempted by a higher-priority job with a large

WSS that (almost) completely evicts the preempted job’s

WS while activity on other processors generates signifi-

cant memory bus contention. In contrast, insets (b,d) cor-

respond to situations in which the preempting job does not

cause many evictions (which is the case if it has a virtually

empty WS or its WS is already cached) and the rest of the

system is idle, i.e., insets (b,d) depict best-case scenarios.

Hence, Fig. 2(a) (resp., Fig. 2(c)) shows the observed worst-

case (resp., average) cost of reestablishing cache affinity in

a worst-case situation, whereas Fig. 2(b) (resp., Fig. 2(d))

shows the worst-case (resp., average) cost of reestablishing

cache affinity in a best-case situation.

Further note that, even though the synthetic method re-

lies on a background workload to generate memory bus

contention, the data shown in Fig. 2(a,c) also applies to sce-

narios in which the background workload is absent if the

real-time workload itself generates significant memory bus

contention.

This has profound implications for empirical compar-

isons of schedulers. If it is possible that a job’s WS is

completely evicted by an “unlucky” preemption, then this

(possibly unlikely) event must be reflected in the employed

schedulability test(s). Thus, unless it can be shown (or as-

sumed) that all tasks have only small WSSs and there is no

background workload (including background OS activity),

then bounds on CPMD should be estimated based on the

high-contention scenario depicted in Fig. 2(a,c).

Therefore, based on our data, it is not warranted to con-

sider migrations to be more costly than preemptions when

making worst-case assumptions (e.g., when applying hard

real-time schedulability tests). Further, unless memory bus

contention is guaranteed to be absent, this is the case even

when using average case overheads (e.g., when applying

soft real-time schedulability tests).

5 Impact on Schedulability

The schedulability of an algorithm with respect to a given

scenario is the fraction of task sets that can be shown to

meet their timing constraints. It estimates the probability

that a randomly chosen task set can be scheduled and is

a commonly employed method to compare scheduling al-

gorithms. For example, Baker [3] and Bertogna et al. [7]

studied schedulability as a function of system load to as-

sess various global and partitioned schedulers. As argued

in Sec. 1, schedulability studies should account for CPMD.

However, given that CPMD strongly depends on the WSS,

assuming any specific value for Dc introduces a bias on the

corresponding specific WSS. In this section, we describe a

method to integrate CPMD bounds into schedulability stud-

ies that overcomes this limitation. We start by discussing

the setup previously used in [8, 9, 10, 14], which in turn is

based on an earlier design by Baker [3], and then present

the corresponding WSS-agnostic extension.

Task set generation. A schedulability study is based on a

parametrized task set generation procedure. Said procedure

is used to repeatedly create (and test) task sets while vary-

ing the parameters over their respective domains. This en-

ables the schedulability under each of the tested algorithms

to be evaluated as a function of the task set generation pro-

cedure’s parameters.

Recall that a task Ti is defined by its WCET ei and pe-

riod pi. A task’s utilization ui = ei/pi reflects its required

processor share; a task set’s total utilization is given by∑
i ui. Our generation procedure depends on three parame-

ters: a probability distribution for choosing ui, a probability

distribution for choosing pi, and a utilization cap U .

Tasks are created by choosing ui and pi from their re-

spective distributions and computing ei. A task set is gen-

erated by creating tasks until the total utilization exceeds

U and by then discarding the last-added task (unless U is

reached exactly). Discarding the last task ensures that all

parameters stem from their respective distributions, but the

total utilization of the resulting task set may be less than U .

Alternatively, the last-added task’s utilization can be scaled

such that U is reached exactly. This procedure lends itself

to studying schedulability as a function of system load by

varying U from zero to m while assuming fixed choices for

utilization and period distributions (e.g., see [8, 9]).

Accounting for overheads. Task execution costs are com-

monly inflated to accomodate overheads caused by schedul-

ing decisions, context switches, timer ticks, job releases,

and other OS activity during the execution of one job [8, 9,

10, 14, 28]. Such system overheads must be accounted for

after a task set has been generated, since most overheads are

TSS-dependent [8, 9, 14].

40

This is in stark contrast to CPMD, which our experi-

ments revealed to be independent of TSS, as discussed in

Sec. 4 (Observation 5). Instead, bounding CPMD requires

knowledge of a task’s WSS. Thus, either a specific WSS

must be assumed throughout the study, or a WSS must be

chosen randomly during task set generation. Anticipating

realistic WSS distributions is a non-trivial challenge, hence

prior studies [8, 9, 14] focused on selected WSSs.

Implicit WSS. Instead, CPMD should be an additional pa-

rameter of the task set generation procedure, thus removing

the need for WSS assumptions. In this WSS-agnostic setup,

schedulability (i.e., the ratio of task sets deemed schedula-

ble for given parameters) is a function of two variables (U
and Dc) and can therefore be studied assuming a wide range

of values for Dc (and thus WSS).

While conceptually simple and appealing due to the

avoidance of a WSS bias, this setup poses some practical

problems. Besides squaring the number of required sam-

ples, a “literal” plotting of the results requires a 3D projec-

tion, which renders the results virtually impossible to inter-

pret (schedulability plots routinely show four to eight indi-

vidual curves, e.g., [3, 8, 9]). To overcome this, we propose

the following aggregate performance metric instead.

Weighted schedulability. Let S(U, Dc) ∈ [0, 1] denote

the schedulability for a given U and Dc under the WSS-

agnostic setup, and let Q denote a set of evenly-spaced

utilization caps (e.g., Q = {1.0, 1.1, 1.2, . . . ,m}). Then

weighted schedulability W (Dc) is defined as

W (Dc) =

∑
U∈Q U · S(U, Dc)

∑
U∈Q U

.

This metric reduces the obtained results to a two-

dimensional (and thus easier to interpret) plot without in-

troducing a fixed utilization cap. Weighting individual

schedulability results by U reflects the intuition that high-

utilization task systems have higher “value” since they are

more difficult to schedule. Note that W (0) = 1 for an opti-

mal scheduler (if other overheads are negligible).

Weighted schedulability offers the great benefit of

clearly exposing the range of CPMDs in which a particu-

lar scheduler is competitive. Recall from Sec. 1 that global

schedulers are provably superior if CPMD is negligible, but

not so if migrations are costly. At which point does parti-

tioning become the superior choice? This can be inferred

from the weighted schedulability, as is demonstrated next.

Example. Fig. 5 shows W (Dc) assuming soft timing con-

straints for four schedulers on our 24-core experimental

platform: G-EDF, P-EDF, and two C-EDF configura-

tions with clusters of two (resp., six) processors each cho-

sen based on L2 (resp., L3) cache sharing. Task param-

eters are uniformly distributed, with ui ∈ [0.5, 0.9] and

pi ∈ [3ms, 33ms]. This workload is of particular interest

since smooth video playback and interactive games fall in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000 1250 1500

w
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty
 [
s
o
ft
]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.5, 0.9]; period uniformly in [3, 33]

G-EDF
C-EDF (L3)
C-EDF (L2)

P-EDF

Figure 5: Weighted soft schedulability as a function of CPMD.

this range of periods, and high per-task utilizations can eas-

ily result from high-definition multimedia processing.

Fig. 5 clearly reveals the tradeoff between bin-packing

limitations under P-EDF and migration costs under G-

EDF. Let DG
c (resp., DP

c) denote a bound on CPMD under

G-EDF (resp., P-EDF), and let WG (resp., WP) denote

weighted schedulability under G-EDF (resp., P-EDF). In

Fig. 5, the G-EDF curve dominates the P-EDF curve. This

implies that G-EDF is a superior choice assuming equal

CPMD i.e., if DG
c = DP

c then WG(DG
c) ≥ WP (DP

c).
More interesting is the case in which migrations are

costly, i.e., DG
c > DP

c . Suppose preemptions are negli-

gible, e.g., DP
c = 0µs: at which point does P-EDF become

preferable to G-EDF? The curve for P-EDF reveals that

WP (0) ≈ 0.55; by tracing G-EDF’s curve we find that

weighted schedulability under G-EDF drops below 0.55 at

DG
c ≈ 725µs. Thus, G-EDF is preferable to P-EDF, i.e.,

WG(DG
c) > WP (DP

c), if DG
c < 725µs.

These results should be combined with the actual ob-

served CPMD: under P-EDF, jobs incur only preemptions,

whereas they may incur both migrations and preemptions

under G-EDF. In a system under load, Fig. 2(a,c) reveals

that DG
c ≈ DP

c in both the average and the worst case, and

thus G-EDF is preferable for any WSS. In contrast, in an

idle system, DG
c > DP

c , but, as shown in Fig. 2(b,d), DG
c

does not exceed 725µs for WSSs smaller than 1024 KB,

and thus G-EDF is preferable for such WSSs.

This illustrates that weighted schedulability, in combi-

nation with actual CPMD measurements, can reveal inter-

esting tradeoffs between schedulers that cannot be inferred

from overhead-oblivious schedulability studies.

6 Conclusion

We have presented two methods for measuring CPMD: the

schedule-sensitive method can detect scheduler-dependent

cache-related delays since it does not alter the scheduling

policy, while the synthetic method rapidly produces large

numbers of samples by artificially triggering preemptions

and migrations. We have discussed strengths and weak-

nesses of the two approaches, and have demonstrated their

41

efficacy by reporting average and maximum CPMD for var-

ious WSSs on a 24-core Intel UMA machine with two lay-

ers of shared caches. Our findings show that, on our plat-

form, CPMD in a system under load is only predictable for

WSSs that do not thrash the L2 cache. We further observed

that preemption and migration delays did not differ signifi-

cantly under load, which calls into question the widespread

belief that migrations are necessarily more costly than pre-

emptions. In particular, our data indicates that (on our plat-

form) preemptions and migrations differ only little in terms

of both worst-case and average-case CPMD if cache affin-

ity is lost completely in the presence of either a background

workload or other real-time tasks with large WSSs. Addi-

tionally, our experiments showed that incurred CPMD de-

pends on preemption length, but not on task set size.

We have further proposed a method for incorporating

CPMD bounds into large-scale schedulability studies with-

out biasing results towards a particular WSS choice. Based

on weighted schedulability, this method allows regions to

be identified in which a particular scheduler is competitive.

Limitations. Since our methods are based on empirical

measurements, they cannot be used to derive safe bounds

on true worst-case delays. Further, our current implemen-

tation focuses on data caches (but could be extended to

apply to instruction caches) and cannot detect if samples

were disturbed by the processing of non-maskable inter-

rupts. Nonetheless, we believe that our approach offers a

good tradeoff between experimental complexity and accu-

racy, and hope that it will enable CPMD to routinely be con-

sidered in future evaluations of multiprocessor schedulers.

Future work. We plan to validate our experiments by sub-

stituting the TSC with performance counters to directly

measure cache misses. Further, we would like to apply our

measurement methodology to embedded and NUMA plat-

forms. Repeating these experiments in the presence of fre-

quent DMA transfers by I/O devices and atomic (i.e., bus-

locking) instructions could yield further insights. Based

on the observed trends, further research into bounds on

maximum per-task preemption lengths and non-preemptive

global schedulers is warranted.

Acknowledgement. We thank Alex Mills for his valuable

and helpful suggestions regarding the data analysis.

A CPMD Data

The CPMD data corresponding to the graphs shown in

Fig. 2 is given in Tables 1–4.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical cache

model. ACM Transactions on Computer Systems, 7(2):184–215,

1989.

[2] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algo-

rithm for multiprocessor soft real-time systems. In Proceedings of

the 17th Euromicro Conference on Real-Time Systems, pages 199–

208, 2005.

[3] T. Baker. A comparison of global and partitioned EDF schedulability

tests for multiprocessors. Technical Report TR-051101, Florida State

University, 2005.

[4] T. Baker and S. Baruah. Schedulability analysis of multiprocessor

sporadic task systems. In Handbook of Real-Time and Embedded

Systems. Chapman Hall/CRC, 2007.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Propor-

tionate progress: A notion of fairness in resource allocation. Algo-

rithmica, 15(6):600–625, 1996.

[6] S. Basumallick and K. Nilsen. Cache issues in real-time systems.

In Proceedings of the 1st ACM SIGPLAN Workshop on Languages,

Compilers, and Tools for Real-Time Systems, 1994.

[7] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability

analysis of EDF on multiprocessor platforms. In Proceedings of the

17th Euromicro Conference on Real-Time Systems, pages 209–218,

2005.

[8] B. Brandenburg and J. Anderson. On the implementation of global

real-time schedulers. In Proceedings of the 30th IEEE Real-Time

Systems Symposium, pages 214–224, 2009.

[9] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability

of real-time scheduling algorithms on multicore platforms: A case

study. In Proceedings of the 29th IEEE Real-Time Systems Sympo-

sium, pages 157–169, 2008.

[10] B. Brandenburg, H. Leontyev, and J. Anderson. Accounting for in-

terrupts in multiprocessor real-time systems. In Proceedings of the

15th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, pages 273–283, 2009.

[11] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings.

Adding instruction cache effect to schedulability analysis of preemp-

tive real-time systems. In Proceedings of the 2nd IEEE Real-Time

Technology and Applications Symposium, pages 204–219, 1996.

[12] J. Calandrino. On the Design and Implementation of a Cache-Aware

Soft Real-Time Scheduler for Multicore Platforms. PhD thesis, Uni-

versity of North Carolina at Chapel Hill, 2009.

[13] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time

scheduling approach for large-scale multicore platforms. In Proceed-

ings of the 19th Euromicro Conference on Real-Time Systems, pages

247–256, 2007.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.

LITMUSRT: A testbed for empirically comparing real-time multi-

processor schedulers. In Proceedings of the 27th IEEE Real-Time

Systems Symposium, pages 111–123, 2006.

[15] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and

S. Baruah. A categorization of real-time multiprocessor scheduling

problems and algorithms. In Handbook of Scheduling: Algorithms,

Models, and Performance Analysis. Chapman and Hall/CRC, 2004.

[16] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread

cache contention on a chip multi-processor architecture. In Pro-

ceedings of the 11th International Symposium on High-Performance

Computer Architecture, pages 340–351, 2005.

[17] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time

scheduling algorithm for multiprocessors. In Proceedings of the 27th

IEEE International Real-Time Systems Symposium, pages 101–110,

2006.

[18] F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch

overheads for Linux on ARM platforms. In Proceedings of the 2007

Workshop on Experimental Computer Science, 2007.

[19] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,

University of North Carolina, Chapel Hill, North Carolina, 2006.

[20] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and

analysis for multicores. In Proceedings of the 7th ACM International

Conference on Embedded Software, pages 245–254, 2009.

42

WSS (KB) Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.

4 17.52 19.09 18.94 21.58

8 35.98 32.89 35.48 32.55

16 69.76 76.13 69.73 61.71

32 136.16 147.49 159.10 137.55

64 248.86 248.82 252.63 244.07

128 525.08 520.77 484.50 520.55

256 1,027.77 1,020.08 1,031.80 1,088.35

512 2,073.41 2,064.59 1,914.32 2,333.64

1,024 3,485.44 4,241.11 4,408.33 3,935.43

2,048 7,559.04 7,656.31 8,256.06 8,375.53

3,072 9,816.22 10,604.52 9,968.44 12,491.07

4,096 12,936.70 14,948.87 12,635.93 15,078.12

8,192 26,577.31 25,760.44 24,923.14 26,091.24

12,288 37,139.30 39,559.55 36,923.48 36,688.75

Table 1: CPMD data. Worst-case delay (in µs) in a system under load. This table corresponds to Fig. 2(a).

WSS (KB) Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.

4 0.49 3.38 4.27 3.98

8 0.45 5.99 8.08 7.27

16 0.65 11.22 15.53 13.50

32 0.79 17.28 31.01 26.10

64 0.97 17.15 60.91 51.33

128 1.10 14.95 120.47 98.25

256 19.05 30.60 241.68 199.54

512 11.46 17.88 481.52 397.67

1024 30.03 52.63 935.29 784.89

2048 239.45 235.94 1,819.50 1,567.65

3072 567.54 713.33 2,675.71 2,287.87

4096 283.65 288.22 1,523.32 1,169.90

8192 60.23 47.90 522.20 606.40

12288 107.68 109.94 472.15 690.81

Table 2: CPMD data. Worst-case delay (in µs) in an idle system. This table corresponds to Fig. 2(b).

[21] D. Hardy and I. Puaut. Estimation of cache related migration delays

for multi-core processors with shared instruction caches. In Proceed-

ings of the 17th International Conference on Real-Time and Network

Systems, pages 45–54, Paris France, 2009.

[22] L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for cache-

related preemption delay in dynamic priority schedulability analysis.

In Proceedings of the 2007 Conference on Design, Automation and

Test in Europe, pages 1623–1628, 2007.

[23] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,

C. Y. Park, M. Lee, and C. Kim. Bounding cache-related preemption

delay for real-time systems. IEEE Transactions on Software Engi-

neering, 27(9):805–826, 2001.

[24] H. Leontyev. Compositional Analysis Techniques For Multiprocessor

Soft Real-Time Scheduling. PhD thesis, University of North Carolina

at Chapel Hill, 2010.

[25] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch.

In Proceedings of the 2007 Workshop on Experimental Computer

Science, 2007.

[26] C. Liu and J. Layland. Scheduling algorithms for multiprogramming

in a hard real-time environment. Journal of the ACM, 30:46–61,

January 1973.

[27] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker. Characterizing and

modeling the behavior of context switch misses. In Proceedings

of the 17th International Conference on Parallel Architectures and

Compilation Techniques, pages 91–101, 2008.

[28] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[29] J. C. Mogul and A. Borg. The effect of context switches on cache

performance. ACM SIGPLAN Notices, 26(4):75–84, 1991.

[30] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estima-

tion of cache-related preemption delay. In Proceedings of the 1st

IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, pages 201–206, 2003.

[31] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible

preemptions. ACM Transactions on Embedded Computing Systems,

to appear, 2008.

[32] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-assisted

migration of real-time tasks in multi-core processors. In Proceed-

ings of the 2009 ACM SIGPLAN/SIGBED conference on Languages,

Compilers, and Tools for Embedded Systems, pages 80–89, 2009.

43

Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.

WSS (KB) Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

4 5.24 2.31 5.37 2.36 5.66 2.07 5.77 2.08

8 9.14 4.18 9.24 4.21 9.93 3.69 10.09 3.82

16 17.02 8.04 17.05 7.77 18.58 7.00 18.78 7.18

32 32.88 15.94 32.93 15.73 35.82 13.96 35.99 14.30

64 65.05 31.38 65.33 31.90 70.72 27.87 70.50 28.02

128 128.64 62.08 127.09 61.22 137.35 52.48 141.05 58.20

256 248.81 117.10 246.34 119.89 267.73 106.19 272.56 115.37

512 478.45 239.08 476.95 251.41 507.27 227.87 509.18 245.06

1024 739.20 515.18 733.27 624.26 772.68 544.80 810.37 641.08

2048 740.10 1,200.93 773.22 1,409.55 837.53 1,373.93 853.27 1,605.60

3072 355.76 1,781.11 400.88 2,021.39 377.96 1,974.79 483.20 2,373.09

4096 247.88 2,456.97 291.93 2,756.90 274.51 2,622.08 350.07 3,118.26

8192 212.90 4,793.77 374.45 5,230.35 436.19 5,153.05 282.28 5,797.23

12288 201.20 7,211.18 333.80 7,683.50 467.50 7,485.35 274.23 8,122.10

Table 3: CPMD data. Average-case delay (in µs) in a system under load. This table corresponds to Fig. 2(c).

Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.

WSS (KB) Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

4 0.13 0.06 2.91 0.18 3.98 0.06 3.48 0.12

8 0.11 0.06 5.31 0.39 7.75 0.07 6.54 0.15

16 0.17 0.09 10.19 0.72 15.17 0.10 12.62 0.24

32 0.26 0.10 14.41 1.24 30.11 0.14 24.82 0.38

64 0.29 0.15 14.21 1.29 59.79 0.22 49.18 0.72

128 -0.17 0.30 12.89 1.08 118.23 0.47 94.60 1.40

256 0.83 0.45 15.02 1.14 236.94 1.43 192.42 2.88

512 1.62 0.66 13.96 1.30 477.22 1.69 384.35 4.48

1024 3.85 1.45 18.28 1.70 921.61 4.79 769.80 7.93

2048 26.21 15.80 45.61 16.03 1,721.14 130.92 1,459.52 120.58

3072 74.04 42.28 104.26 49.47 1,867.61 246.62 1,501.23 229.21

4096 39.66 23.96 51.29 24.75 1,156.36 153.95 790.41 157.98

8192 1.60 9.06 0.70 9.60 468.26 14.14 482.73 66.05

12288 5.84 13.85 6.62 12.16 385.62 24.14 420.76 57.21

Table 4: CPMD data. Average-case delay (in µs) in an idle system. This table corresponds to Fig. 2(d).

[33] A. Srinivasan and J. Anderson. Optimal rate-based scheduling

on multiprocessors. Journal of Computer and System Sciences,

72(6):1094–1117, 2006.

[34] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah. The case for

fair multiprocessor scheduling. In Proceedings of the 17th Interna-

tional Symposium on Parallel and Distributed Processing, 2003.

[35] G. Stamatescu, M. Deubzer, J. Mottok, and D. Popescu. Migration

overhead in multiprocessor scheduling. In Proceedings of the 2nd

Embedded Software Engineering Conference, pages 645–654, 2009.

[36] J. Stärner and L. Asplund. Measuring the cache interference cost in

preemptive real-time systems. ACM SIGPLAN Notices, 39(7):146–

154, 2004.

[37] J. Staschulat and R. Ernst. Scalable precision cache analysis for real-

time software. ACM Transactions on Embedded Computing Systems,

6(4):25, 2007.

[38] V. Suhendra and T. Mitra. Exploring locking & partitioning for pre-

dictable shared caches on multi-cores. In Proceedings of the 45th

annual Design Automation Conference, pages 300–303, 2008.

[39] D. Thiebaut and H. S. Stone. Footprints in the cache. ACM Transac-

tions on Computer Systems, 5(4):305–329, 1987.

[40] D. Tsafrir. The context-switch overhead inflicted by hardware inter-

rupts. In Proceedings of the 2007 Workshop on Experimental Com-

puter Science, 2007.

[41] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation:

A survey. Performance Evaluation: Origins and Directions (LNCS

1769), pages 97–139, 2000.

[42] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,

F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The

worst-case execution-time problem—overview of methods and sur-

vey of tools. ACM Transactions on Embedded Computing Systems,

7(3):1–53, 2008.

[43] J. Yan and W. Zhang. WCET analysis for multi-core processors with

shared L2 instruction caches. In Proceedings of the 14th IEEE Real-

Time and Embedded Technology and Applications Symposium, pages

80–89, 2008.

44

Implementation of Overrun and Skipping in
VxWorks

Mikael Åsberg, Moris Behnam and Thomas Nolte

MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden

{mikael.asberg,moris.behnam,thomas.nolte}@mdh.se

Reinder J. Bril

Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5612 AZ Eindhoven

The Netherlands

r.j.bril@tue.nl

Abstract—In this paper we present our work towards allowing
for dependence among partitions in the context of hierarchical
scheduling of software systems with real-time requirements, and
we present two techniques for cross-partition synchronization.
We have earlier developed a Hierarchical Scheduling Framework
(HSF) in VxWorks for independent real-time tasks, and in this
paper we extend the HSF implementation with capabilities of
synchronization between tasks resident in two different par-
titions. In particular, we have implemented the overrun and
skipping mechanisms in our modular scheduling framework.
Our framework has a key characteristic of being implemented
on top of the operating system, i.e., no modifications are made
to the kernel. Such a requirement enforce some restrictions on
what can be made with respect to the implementation. The
evaluation performed indicates that, under the restrictions of not
modifying the kernel, the skipping mechanism has a much lower
implementation overhead compared to the overrun mechanism1.

I. INTRODUCTION

Advanced operating system mechanisms such as hierarchi-

cal scheduling frameworks provide temporal and spatial isola-

tion through virtual platforms, thereby providing mechanisms

simplifying development of complex embedded software sys-

tems. Such a system can now be divided into several modules,

here denoted subsystems, each performing a specific well

defined function. Development and verification of subsystems

can ideally be performed independently (and concurrently) and

their seamless and effortless integration results in a correctly

functioning final product, both from a functional as well as

extra-functional point of view.

In recent years, support for temporal partitioning has been

developed for several operating systems. However, existing

implementations typically assume independence among soft-

ware applications executing in different partitions. We have

developed such a modular scheduling framework for Vx-

Works without modifying any of its kernel source code. Our

scheduling framework is implemented as a layer on top of

the kernel. Up until now, this scheduling framework required

that tasks executing in one subsystem must be independent of

tasks executing in other subsystems, i.e., no task-level syn-

chronization was allowed across subsystems. In this paper we

present our work on implementing synchronization protocols

1The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

for our hierarchical scheduling framework, allowing for task-

level synchronization across subsystems. We implemented the

synchronization protocols in VxWorks, however, they can

naturally be extended to other operating systems as well.

We are considering, in this paper, a two level hierarchical

scheduling framework (as shown in Figure 1) where both

the local and global schedulers schedule subsystems/tasks

according to the fixed priority preemptive scheduling (FPS)

policy.

The contributions of this paper are the descriptions of how

the skipping and overrun mechanisms are implemented in

the context of hierarchical scheduling without modifying the

kernel. The gain in not altering the kernel is that it does not

require any re-compilation, there is no need to maintain/apply

kernel modifications when the kernel is updated/replaced and

kernel stability is maintained. We have evaluated the two

approaches and results indicate that, given the restriction of

not being allowed to modify the kernel, the overhead of the

skipping mechanism is much lower than the overhead of the

overrun mechanism.

The outline of this paper is as follows: Section II gives an

overview of preliminaries simplifying the understanding of this

paper. Section III presents details concerning the implemen-

tation of the skipping and overrun mechanisms. Section IV

presents an evaluation of the two methods, Section V presents

related work, and finally Section VI concludes the paper

together with outlining some future work.

II. PRELIMINARIES

This section presents some preliminaries simplifying the

presentation of the rest of the paper. Here we give an overview

of our hierarchical scheduling framework (HSF) followed by

details concerning the stack resource policy (SRP) protocol

and the overrun and skipping mechanisms for synchronization,

in the context of hierarchical scheduling.

A. HSF

The Hierarchical Scheduling Framework (HSF) enables

hierarchical scheduling of tasks with real-time constraints.

In [1] we assume that tasks are periodic and independent,

and we use periodic servers to implement subsystems. The

HSF is implemented as a two layered scheduling framework

45

as illustrated in Figure 1, where the schedulers support FPS

and EDF scheduling.

Global
scheduler

���������	
������
 ���������
������
 ���������	
������

�

Local
scheduler

Local
scheduler

Local
scheduler

���� ��������� ��������� �����

�

Fig. 1. HSF structure

Both schedulers (local and global) are activated periodically

according to task/server parameters and a one-shot timer is

used to trigger the schedulers. The next triggering (absolute)

time of the tasks/servers are stored in a Time Event Queue

(TEQ). The TEQ is essentially a priority queue, storing the

release times (in absolute values) of tasks/servers. The input

to the one-shot timer is a value derived by subtracting the

shortest time in the TEQs from the current absolute time

(since the timer input should be in relative time). Three TEQs

can be active at once, the TEQ holding server release times,

the current active servers TEQ for task release times and a

TEQ (with one node) holding the current active servers budget

expiration time. The current absolute time is updated only at

a scheduler invocation, i.e., when the one-shot timer is set, we

also set the absolute time equal to the next triggering time.

When the next event arrives, the current absolute time will

match the real time. It is important to note that if we would

like to invoke our scheduler before the event arrives, then

the current absolute time will not be correct. This fact needs

to be taken into account when implementing synchronization

protocols in our framework. The triggering of the global and

local schedulers are illustrated in Figure 2. The Handler is re-

sponsible for deriving the next triggering event (could be task

or server related). Depending on which kind of event, i.e., task

activation, server activation or budget expiration, the Handler

will either call the Global scheduler or the Local scheduler.

The Global scheduler will call Local scheduler in case of

server activation (there might be task activations that have not

been handled when the server was inactive). The VxWorks

scheduler is responsible for switching tasks in the case when

a task has finished its execution. The VxWorks scheduler will

be invoked after an interrupt handler has executed (i.e., after

Handler has finished), but only if there has been any change

to the ready queue that will affect the task scheduling.

All servers, that are ready, are added to a server ready

queue and the global scheduler always selects the highest

priority server to execute (depends also on the chosen global

scheduling algorithm). When a server is selected, all tasks that

are ready, and that belong to that subsystem, are added to the

VxWorks task ready queue and the highest priority ready task

is selected to execute.

�������

��	
����
�������

�	
����
�������

��������	
���
	�

���� ��� ������

���������������	� �������������� ������������

���	�����
�������

Fig. 2. Scheduler triggering

B. Shared resources in HSF

The presented HSF allows for sharing of logical resources

between arbitrary tasks, located in arbitrary subsystems, in a

mutually exclusive manner. To access a resource, a task must

first lock the resource, and when the task no longer needs the

resource, it is unlocked. The time during which a task holds

a lock is called a critical section. For each logical resource,

at any time, only a single task may hold its lock. A resource

that is used by tasks in more than one subsystem is denoted a

global shared resource. A resource only used within a single

subsystem is denoted a local shared resource. In this paper,

both local and global shared resources are managed by the

SRP protocol. This protocol has the strength that it can be

used with different scheduling algorithms such as FPS and

EDF scheduling, which are supported by HSF at both global

and local scheduling level.

1) Stack resource policy (SRP): To be able to use SRP in a

HSF for synchronizing global shared resources, its associated

terms resource, system and subsystem ceilings are extended

as follows:

• Resource ceiling: Each global shared resource is asso-

ciated with two types of resource ceilings; an internal

resource ceiling for local scheduling and an external

resource ceiling for global scheduling. They are defined

as the priority of the highest priority task/subsystem that

access this resource.

• System/subsystem ceiling: The system/subsystem ceil-

ings are dynamic parameters that change during execu-

tion. The system/subsystem ceiling is equal to the highest

external/internal resource ceiling of a currently locked

resource in the system/subsystem.

Under SRP, a task τk can preempt the currently execut-

ing task τi (even inside a critical section) within the same

subsystem, only if the priority of τk is greater than its

corresponding subsystem ceiling. The same reasoning can be

made for subsystems from a global scheduling point of view.

The problem that SRP solves (synchronization of access to

shared resources without deadlock) can arise at two completely

different levels, due to that subsystems share resources and

because tasks (within a subsystem) share resources. That is

why SRP is needed at both local and global level, and also

the reason why a global resource has a local and global ceiling.

2) Mechanisms to handle budget expiry while executing

within a critical section: To bound the waiting time of tasks

from different subsystems that want to access the same shared

46

resource, subsystem budget expiration should be prevented

while locking a global shared resource. The following two

mechanisms can be used to solve this problem:

• The overrun mechanism: The problem of subsystem

budget expiry inside a critical section is handled by

adding extra resources to the budget of each subsystem

to prevent the budget expiration inside a critical section.

Hierarchical Stack Resource Policy (HSRP) [2] is based

on an overrun mechanism. HSRP stops task preemption

within the subsystem whenever a task is accessing a

global shared resource. SRP is used at the global level

to synchronize the execution of subsystems that have

tasks accessing global shared resources. Two versions

of overrun mechanisms have been presented; 1) with

payback; whenever overrun happens in a subsystem Ss,

the budget of the subsystem will, in its next execution

instant, be decreased by the amount of the overrun time.

2) without payback; no further actions will be taken after

the event of an overrun.

• The skipping mechanism: Skipping is another mecha-

nism that prevent a task from locking a shared resource

by skipping (postpone the locking of the resource) its

execution if its subsystem does not have enough remain-

ing budget at the time when the task tries to lock the

resource. Subsystem Integration and Resource Allocation

Policy (SIRAP) [3] is based on the skipping mechanism.

SIRAP uses the SRP protocol to synchronize the access

to global shared resources in both local and global

scheduling. SIRAP checks the remaining budget before

granting the access to the globally shared resources; if

there is sufficient remaining budget then the task enters

the critical section, and if there is insufficient remaining

budget, the local scheduler delays the critical section

entering of the job until the next subsystem budget

replenishment (assuming that the subsystem budget in the

next subsystem budget replenishment is enough to access

the global shared resource by the task). The delay is done

by blocking that task that want to access the resource (self

blocking) during the current server period and setting the

local ceiling equal to the value of internal resource ceiling

of the resource that that task wanted to access.

Scheduling analysis of both of these two mechanisms can

be found in [2] respectively [3].

III. IMPLEMENTATION

This section compares and discusses some issues related

to the implementation of the skipping and overrun mech-

anisms. These implementations are based on our previous

implementation of the Hierarchical Scheduling Framework

(HSF) [1] in the VxWorks operating system. To support

synchronization between tasks (or subsystems) when accessing

global shared resources, advances in the implementation of

VxWorks made since [1] does not include the implementation

of the SRP protocol, and SRP is used by both both skipping

and overrun mechanisms. Therefore, our implementation of

the SRP protocol is outlined below.

A. Local synchronization mechanism

Since both skipping and overrun depend on the synchroniza-

tion protocol SRP, which is not implemented in VxWorks, we

have implemented this protocol ourselves. The implementation

of SRP is part of our previous VxWorks implementation

(HSF), hence, this SRP implementation is adjusted to fit with

hierarchical scheduling. We added two queues to the server

TCB, see Figure 3. Whenever a task wants to access a locally

shared resource (within a subsystem), it calls a corresponding

SrpLock function (Figure 4). When the resource access is

finished, it must call SrpUnlock (Figure 5).

1: struct SERVER TCB {
2: // Resource queue, sorted by ceiling
3: queue SRP RESOURCES;
4: // Blocked tasks, sorted by priority/preempt. level
5: queue SRP TASK BLOCKED QUEUE;
6: / ∗ The rest of the server TCB ∗ /

Fig. 3. Data-structures used by SRP

1: void SrpLock (int local res id) {
2: InterruptDisable();
3: LocalResourceStackInsert(local res id); // Ceiling is updated
4: InterruptEnable();
5: }

Fig. 4. Lock function for SRP

1: void SrpUnlock (int local res id) {
2: InterruptDisable();
3: LocalResourceStackRemove(local res id); // Ceiling is updated
4: if (LocalCeilingHasChanged())
5: MoveTasksFromBlockedToReady(RunningServer);
6: NewTask = GetHighestPrioReadyTask();
7: if (RunningTask.ID "= NewTask.ID)
8: RunningServer.LocalScheduler();
9: InterruptEnable();
10: }

Fig. 5. Unlock function for SRP

Lines (3, 5, 8) in Figure 5 are specific to each server,

since they have their own task ready-, blocked- and resource-

queue (stack), and a local scheduler. The same goes for line

(3) in Figure 4. Note that SrpUnlock is executed at task-

level (user-mode). Hence, we start the local scheduler by

generating an interrupt that is connected to it. When our

local scheduler (which is part of an interrupt handler) has

finished, the VxWorks scheduler will be triggered if a context

switch should occur. This is illustrated in Figure 6, where we

use the VxWorks system call sysBusIntGen to generate

an interrupt which will trigger the corresponding connected

handler, which in this case is our local scheduler.

47

����

����	
���

���
������
��

�������	���	

��������������
��

���
���

��
��	

�

���
����
����
����
��

���
�

��

Fig. 6. Local scheduler invocation

The only modification made in our local scheduler is that

it compares the local system ceiling against the task priority,

before releasing a task (putting it in the task ready queue).

B. Global synchronization mechanisms

It is important to note that from the user perspective, there

is no difference when locking a local or global resource, since

all global resources are mapped to one corresponding local

resource. When calling a lock function that implements a

global synchronization protocol (i.e., overrun or skipping), the

only information needed is the local resource ID. From this,

we can derive the global resource ID. Hence, the global syn-

chronization protocol calls the local synchronization protocol

(i.e., SRP in this case), and, it also implements the global

synchronization strategy, i.e., skipping or overrun in this case.

Both of them need to use a local synchronization protocol,

other than that, skipping is the only protocol of the two that

need direct access to the local system, i.e., the local scheduler.

The reason for this is covered in section III-E.

To support the synchronization mechanisms, additional

queues are required in the system level (resource queue and

blocked queue) to save all global resources that are in use,

and to save the blocked servers. Similar queues are required

for each subsystem (covered in section III-A) to save the local

resources that are in use within the subsystem, and to save the

blocked tasks. The resource queues are sorted, by the resource

ceilings, hence, the first node represents the system ceiling

(there is one (local) system ceiling per server and one (global)

system ceiling). The resource queues are mapped as outlined

in Figure 7.

� � � � ��

�� �� ��

�

��

�	
��
������

������

��	���
������

������

�	
��
���	��
�
�����

��	���
���	��
�
�����

����������	
����	�
��
���	
�	
	�����
�������	
����	

Fig. 7. Resource queue mapping

When a task wants to access a global shared resource, it

uses the lock function, and when the task wants to release the

resource, it calls the function unlock. The implementation

of lock and unlock depends on the type of synchroniza-

tion approach (overrun or skipping). In general, lock and

unlock change some parameters that are used by the sched-

uler, e.g., system/subsystem ceiling, server/task ready queue,

and server/task blocked queue. When a server/task is activated,

the local/global schedulers checks weather the server/task has

a higher priority than the current system/subsystem ceiling. If

yes, then the server/task is added to the ready queue, otherwise

the server/task will be added to the blocked queue. When the

unlock function is called, all tasks and servers that were

blocked, by the currently released shared resource, should be

moved from the server/task blocked queue to the ready queue,

and then the scheduler should be called to reschedule the

subsystems and tasks. For this reason, it is very important that

the lock/unlock functions should have mutual exclusion

with respect to the scheduler, to protect the shared data-

structures. In this implementation, interrupt disable in the

lock/unlock function has been used to protect shared data-

structures, noting that the interrupt disable time should be very

short.

Since the scheduler can be triggered by the unlock func-

tions (unlike the implementation in [1]), the current absolute

time for this event should be calculated by subtracting a current

timestamp value with the timestamp from the latest scheduler

invocation and adding this value to the latest evaluated ab-

solute time. The difference in time between the real current

absolute time and the calculated one is the drift caused by

both the skipping and overrun mechanisms. More of this is

discussed in the next section.

C. Time drift

Budgets and time-triggered periodic tasks are implemented

using a one-shot timer [1], which may give rise to relative jitter

[4] due to inaccuracies caused by time calculations, setting

the timer, and activities that temporarily disable interrupts.

Relative jitter (or drift) may give rise to severe problems

whenever the behavior of the system needs to remain syn-

chronized with its environment. In the implementation used

in this paper, such explicit synchronization requirements is

not assumed, however. Implementation induced relative jitter

can therefore be accommodated in the analysis as long as the

jitter can be bound. By assuming a maximum relative jitter for

every time the timer is set, and a maximum number of times

the timer is set for a given interval, the relative jitter can be

bound for periods of both budgets and time-triggered tasks

and for capacities of budgets. Now the worst-case analysis

can be adapted by making worst-case assumptions, i.e., by

using (a) maximal inter-arrival times for periods and minimal

capacities for budgets and (b) minimal-inter-arrival times (and

worst-case computation times) of tasks. For the two types of

synchronization protocols discussed in this paper, i.e., overrun

with (or without) payback and skipping, the impact of relative

jitter is similar.

48

D. Overrun mechanism implementation

Besides the data-structures needed for keeping track of

global system ceiling, line (1) in Figure 8, and the queue of

blocked servers, line (2) in Figure 8, overrun also need data-

structures to keep track of when an overrun has occurred, line

(5,7) in Figure 8.

1: queue GLOBAL RESOURCES; // Used by Overrun
2: queue SERVER BLOCKED QUEUE; // Used by Overrun
3: struct SERVER TCB {
4: // Nr of global resources that are locked
5: char nr global resources locked;
6: // F lag for keeping track if an overrun has occurred
7: char overrun;
8: / ∗ The rest of the server TCB ∗ /

Fig. 8. Data-structures used by Overrun

Figure 9 shows the OverrunLock function for the overrun

mechanism. The resource that is accessed is inserted in both

the global and local resource queue which are sorted by the

node’s resource ceilings.

1: void OverrunLock (int local res id) {
2: SrpLock(local res id);
3: InterruptDisable();
4: GlobalResourceStackInsert(local res id); // Ceiling is updated
5: RunningServer.nr global resources locked++;
6: InterruptEnable();
7: }

Fig. 9. Lock function for Overrun

In line (5) in Figure 9, the function increment

RunningServer.nr_global_resources_locked

by one, which indicate the number of shared resources that

are in use. This is important for the scheduler so it does

not terminate the server execution at the budget expiration.

When the budget of a server expires, the scheduler checks

this value. If it is greater than 0 then it does not remove the

server from the server ready queue and it sets the budget

expiration event equal to Xs, which means that the server

is overrunning its budget (i.e., there will not be a scheduler

event until OverrunUnlock is called). Also, the scheduler

indicates that the server is in overrun state by setting the

overrun flag, line (7) in Figure 8, to true. Otherwise, the

scheduler removes the server from the server ready queue.

Figure 10 shows the OverrunUnlock function. In this

function, the released resource is removed from both the local

and global resource queues and the system and subsystem

ceilings are updated, which may decrease them. If the sys-

tem/subsystem ceiling is decreased, the function checks if

there are servers/tasks in the blocked queue that are blocked

by this shared resource. It will move them to the server/task

ready queues, depending on their preemption levels and the

system/subsystem ceilings. In line (9) in Figure 10, the func-

tion checks if it should call the global scheduler, and there

1: void OverrunUnlock (int local res id) {
2: SrpUnlock(local res id);
3: InterruptDisable();
4: GlobalResourceStackRemove(local res id); // Ceiling is updated
5: if (GlobalCeilingHasChanged())
6: MoveServersFromBlockedToReady();
7: RunningServer.nr global resources locked–;
8: NewServer = GetHighestPrioReadyServer();
9: if ((RunningServer.overrun == TRUE &&
10: RunningServer.nr global resources locked == 0) ‖
11: RunningServer.ID "= NewServer.ID)
12: GlobalScheduler();
13: InterruptEnable();
14: }

Fig. 10. Unlock function for Overrun

are two cases to do this. The first case is when the server was

in overrun state, then it should be removed from the ready

queue. The second case is if the server, after releasing the

resource, is not the highest priority server, then it will be

preempted by another server. The global scheduler will be

invoked through the sysBusIntGen system call, similar to

the local scheduler in the SRP implementation. The reason is

that there will be a task switch (so the VxWorks scheduler

needs to be invoked), and of course also a server switch,

but this can be handled without the help of the VxWorks

scheduler. The global/local scheduler (in HSF) must have

knowledge about the current absolute time in order to set the

next scheduling event, so this time must be derived before

calling the scheduler.

At every new subsystem activation, the server checks if there

has been an overrun in its previous instance. If so, this overrun

time length is subtracted from the servers budget, in the case of

using overrun with payback mechanism. The global scheduler

measures the overrun time when it is called, in response to

budget expiration, and when it is called in response to the

unlock function. If the other version of overrun is used (ONP),

then the budget of the subsystem does not change.

On all server activations, the preemption level of each server

is checked against current system ceiling. If the preemption

level is lower than ceiling, then the server is inserted in the

blocked queue.

E. Skipping mechanism implementation

The skipping implementation uses the same data-structures

as overrun for keeping track of system ceiling and blocked

servers. What is further needed, in order to implement skip-

ping, is a simple FIFO (First In First Out) queue for tasks,

line (8) in Figure 11. Also, a post in the VxWorks task TCB

is needed, line (2) in Figure 11. According to the SIRAP

protocol, the time length of the critical section must be known

(and therefore also stored) so that it can be compared against

the remaining budget, in order to prevent the budget from over-

running. One disadvantage with our current implementation is

that we only allow maximum one shared global resource per

task. This implementation can easily be extended to support

49

more than one global resource per task, by adding more data-

structures to store the locking times of the resources.

1: / ∗ The rest of struct WIND TCB (V xWorks TCB) ∗ /
2: int spare4; // We keep resource locking time here
3: };
4: queue GLOBAL RESOURCES; // Used by Skipping
5: queue SERVER BLOCKED QUEUE; // Used by Skipping
6: struct SERVER TCB {
7: // Used by Skipping to queue tasks during self -blocking
8: queue TASK FIFO QUEUE;
9: / ∗ The rest of the server TCB ∗ /

Fig. 11. Data-structures used by Skipping

When calling the SkippingLock function (Figure (12), it

checks if the remaining budget is enough to lock and release

the shared resource before the budget expires (line (4) in

Figure (12)). If the remaining budget is sufficient, then the

resource will be inserted in both the global and local resource

queue, similar to the overrun mechanism mentioned earlier. If

the remaining budget is not sufficient, then the resource will

be inserted in the local resource queue and the local system

ceiling is updated, finally, the task is suspended in line (12)

in Figure (12). Note that the rest of the function, lines (13-

17), will not be executed until this task is moved to the ready

queue. When the task is executed next time, it will continue

from line (13) and insert the shared resource (line (14)) in the

global resource queue, then update the global system ceiling

and finally start executing in the critical section. Whenever a

server starts to execute, after it has been released, its local

scheduler checks if there are tasks that are suspended (by

checking the TASK_FIFO_QUEUE), if any, it moves them (in

FIFO order) to the ready queue. In this way, skipping affects

the local scheduler while overrun does not.

1: void SkippingLock (local res id) {
2: InterruptDisable();
3: RemainBudget = CalcRemainBudget(RunningServer);
4: if (RemainBudget ≥ RunningTask.spare4) {
5: GlobalResourceStackInsert(local res id); // Ceiling is updated
6: SrpLock(local res id);
7: }
8: else { // Budget is not enough, block the task
9: SrpLock(local res id);
10: BlockedQueueInsert(RunningTask);
11: InterruptEnable();
12: TaskSuspend(RunningTask); // This call will block...
13: InterruptDisable(); // ...cont. here when task is awakened
14: GlobalResourceStackInsert(local res id); // Ceiling is updated
15: }
16: InterruptEnable();
17: }

Fig. 12. Lock function for Skipping

The SkippingUnlock function is similar to the

OverrunUnlock function (Figure 10), but with two differ-

ences. The first one is that skipping does not need to keep

count of the number of locked global resources, and second,

skipping will call the scheduler only if there is a server in

the ready queue that has higher priority than the currently

running server. In case of nested critical sections, the task call

SkippingLock/SkippingUnlock functions only when

it access and release the outermost shared resource, and the

ceiling of the outermost shared resource equals to the highest

ceiling of the nested shared resources.

1: void SkippingUnlock (int local res id) {
2: SrpUnlock(local res id);
3: InterruptDisable();
4: GlobalResourceStackRemove(local res id); // Ceiling is updated
5: if (GlobalCeilingHasChanged())
6: MoveServersFromBlockedToReady();
7: NewServer = GetHighestPrioReadyServer();
8: if (RunningServer.ID != NewServer.ID)
9: GlobalScheduler();
10: InterruptEnable();
11: }

Fig. 13. Unlock function for Skipping

If the global system ceiling has changed then the servers, for

which preemption level is higher than global system ceiling,

are put in the server ready queue. If the new global system

ceiling causes a higher priority server to be inserted in the

ready queue, then current running server is removed, and the

global scheduler is called.

IV. EVALUATION

In order to compare the runtime overhead of both synchro-

nization mechanisms, we generated 8 systems according to

the setup illustrated in Figure 14. In this setup, a system Si

contains 5 servers with 8 tasks each, and each system has 2

global resources (2-6 tasks will access the global resources).

We monitored both skipping and overrun with payback.

���������

������ ������ ������ ������ ������
 ! " # $

���� ���� ���� ���� ���� ���� ���� ����
 ! " # $ % & '

����	������

���������
����������
����

��

� �

!

Fig. 14. Experimental setup

The metrics we used are the number of calls to the cor-

responding lock and unlock functions as well as the number

of calls to the scheduler. The measurements were recorded

in 600 time units (tu), and the range of tasks periods were

scaled from 40 to 100 tu and the range of subsystem periods

were 5-20 tu (we scaled the periods of subsystem and tasks in

order to remove the effect of scheduling overhead). The task

utilization was set to 15% per system.

50

Protocol System

S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8

calls to lock/unlock # calls to Scheduler

Skipping 306 335 248 275 181 224 202 236 8 5 7 4 5 5 10 6
Overrun 304 335 247 275 181 225 203 236 47 13 40 16 36 17 30 25

TABLE I
EXPERIMENTAL RESULTS

Table I shows the results of running systems S1 to S8. Each

of these systems (Si) had different task/server parameters,

different amount of resources and different resource users

(depending on the generation of the systems). It is clear that

the number of scheduler calls under the skipping mechanism is

lower compared to using the overrun mechanism, which makes

the runtime overhead for the skipping mechanism lower than

the corresponding overhead when using the overrun mech-

anism. The difference between the corresponding unlock

functions under skipping and under overrun is also the reason

why the number of calls to the scheduler differs. For the

overrun mechanism, the unlock function calls to the scheduler

when the server unlocks the shared resource after overrun,

while there is no such case in skipping, i.e., there is a higher

risk that the scheduler is called in overrun, than in skipping

(since there is two cases in overrun and one case in skipping).

This explains the recorded results with respect to the number

of scheduler calls.

V. RELATED WORK

Related work in the area of hierarchical scheduling origi-

nated in open systems [5] in the late 1990’s, and it has been

receiving an increasing research attention [6], [5], [7], [8], [9],

[10], [11], [12]. However, the main focus of the research was

on the schedulability analysis of independent tasks, and not

much work has been conducted on the implementation of the

proposed theories.

Among the few implementation work, Kim et al. [13]

propose the SPIRIT uKernel that is based on a two-level

hierarchical scheduling framework simplifying integration of

real-time applications. The SPIRIT uKernel provides a separa-

tion between real-time applications by using partitions. Each

partition executes an application, and uses the Fixed Priority

Scheduling (FPS) policy as a local scheduler to schedule the

application’s tasks. An off-line scheduler (timetable) is used

to schedule the partitions (the applications) on a global level.

Each partition provides kernel services for its application and

the execution is in user mode to provide stronger protection.

Parkinson [14] uses the same principle and describes the

VxWorks 653 operating system which was designed to support

ARINC653. The architecture of VxWorks 653 is based on

partitions, where a Module OS provides global resource and

scheduling for partitions and a Partition OS implemented using

VxWorks microkernel provides scheduling for application

tasks.

The work presented in this paper differs from the above

last two works in the sense that it implements a hierarchi-

cal scheduling framework in a commercial operating system

without changing the OS kernel.
The implementation of a HSF in VxWorks without changing

the kernel has been presented in [1] assuming the tasks are

independent. In this paper, we extend this implementation by

enabling sharing of logical resources among tasks located in

the same and/or different subsystem(s). More recently, [15]

implemented a two-level fixed priority scheduled HSF based

on a timed event management system in the commercial real-

time operating system µC/OS-II, however, the implementation

is based on changing the kernel of the operating system, unlike

the implementation in this paper.
In order to allow for dependencies among tasks, many

theoretical works on synchronization protocols have been

introduced for arbitrating accesses to shared logical resources,

addressing the priority inversion problem, e.g., the Stack

Resource Policy (SRP) [16]. For usage in a HSF, additional

protocols have been proposed, e.g., the Hierarchical Stack

Resource Policy (HSRP) [2], the Subsystem Integration and

Resource Allocation Policy (SIRAP) [3], and the Bounded-

delay Resource Open Environment (BROE) [17] protocols.

The work in this paper concerns the former two, targeting

systems implementing FPPS schedulers.

VI. CONCLUSION

In this paper we have presented our work on implement-

ing synchronization protocols for hierarchical scheduling of

tasks without doing any modification to the operating system

kernel. We have presented two techniques for synchroniza-

tion; overrun and skipping, and we have implemented the

two techniques in our hierarchical scheduling framework for

VxWorks [1]. The evaluation of these two techniques indicates

that, when the synchronization protocol is implemented, skip-

ping requires far less overhead when compared to the overrun

mechanism.
Future work includes management of memory and interrupts

towards a complete operating system virtualizer implemented

as a layer on top of an arbitrary operating system kernel.

REFERENCES

[1] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
hierarchical scheduling on top of VxWorks,” in Proceedings of the

International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT’08), July 2008, pp. 63–72.
[2] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority

pre-emptive systems,” in Proceedings of the IEEE International Real-

Time Systems Symposium (RTSS’06), December 2006, pp. 257–267.
[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization

protocol for hierarchical resource sharing in real-time open systems,”
in Proceedings of the ACM and IEEE International Conference on

Embedded Software (EMSOFT’07), October 2007, pp. 278–288.

51

[4] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour, A

Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Mono-

tonic Analysis for Real-Time Systems. Kluwer Academic Publishers,
1993.

[5] Z. Deng and J.-S. Liu, “Scheduling real-time applications in an open en-
vironment,” in 18th IEEE Int. Real-Time Systems Symposium (RTSS’97),
Dec. 1997.

[6] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in RTSS’05, December 2005, pp. 389–398.

[7] X. Feng and A. Mok, “A model of hierarchical real-time virtual
resources,” in 23th IEEE Int. Real-Time Systems Symposium (RTSS’02),
Dec. 2002.

[8] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open environment for
real-time applications,” in 20th IEEE International Real-Time Systems

Symposium (RTSS’99), Dec. 1999.
[9] G. Lipari and S. K. Baruah, “Efficient scheduling of real-time multi-task

applications in dynamic systems,” in 6th IEEE Real-Time Technology

and Applications Symposium (RTAS’00), May-Jun. 2000.
[10] G. Lipari and E. Bini, “Resource partitioning among real-time ap-

plications,” in 15th Euromicro Conference on Real-Time Systems

(ECRTS’03), Jul. 2003.
[11] S. Matic and T. A. Henzinger, “Trading end-to-end latency for com-

posability,” in 26th IEEE International Real-Time Systems Sympo-

sium(RTSS’05), December 2005, pp. 99–110.
[12] I. Shin and I. Lee, “Periodic resource model for compositional real-time

guarantees,” in 24th IEEE International Real-Time Systems Symposium

(RTSS’03), Dec. 2003.
[13] D. Kim, Y. Lee, and M. Younis, “Spirit-ukernel for strongly partitioned

real-time systems,” in Proc. 7th International Conference on Real-Time

Computing Systems and Applications (RTCSA 2000), 2000.
[14] L. K. P. Parkinson, “Safety critical software development for

integrated modular avionics,” in Wind River white paper. URL

http://www.windriver.com/whitepapers/, 2007.
[15] M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and

J. J. Lukkien, “Virtual timers in hierarchical real-time systems,” Proc.

WiP session of the RTSS, pp. 37–40, Dec. 2009.
[16] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-Time

Systems, vol. 3, no. 1, pp. 67–99, March 1991.
[17] N. Fisher, M. Bertogna, and S. Baruah, “The design of an edf-

scheduled resource-sharing open environment,” in Proceedings of the

28th IEEE International Real-Time Systems Symposium (RTSS’07),
December 2007, pp. 83–92.

52

Schedulable Device Drivers: Implementation and

Experimental Results

Nicola Manica∗, Luca Abeni∗, Luigi Palopoli∗, Dario Faggioli† and Claudio Scordino‡

∗University of Trento

Trento - Italy

Email:{nicola.manica, luca.abeni, luigi.palopoli}@unitn.it
†Scuola Superiore Sant’Anna

Pisa - Italy

Email:d.faggioli@sssup.it
‡Evidence Srl

Pisa - Italy

Email:claudio@evidence.eu.com

Abstract—An important issue when designing real-time sys-
tems is to control the kernel latencies introduced by device
drivers. This result can be achieved by transforming the interrupt
handlers into schedulable entities (threads). This paper shows
how to schedule such threads (using resource reservations) so
that both the performance of real-time tasks and the device
throughput can be controlled. In particular, some tools based on
a kernel tracer (Ftrace) are used to collect timing information
about the IRQ threads, and a novel reservation-based scheduler
for Linux (SCHED_DEADLINE) is used to schedule them. An
implementation of the proposed technique is validated through
an extensive set of experiments, using different kinds of resources
and of realistic applications.

I. INTRODUCTION

One of the prominent issues in the design of modern real-

time operating systems is accounting for interference of device

drivers on the real-time tasks. Indeed, the interference possibly

generated by a device driver (which contributes to the so called

“Kernel latencies”) introduces some unbounded blocking times

that can compromise the schedulability of task sets deemed

schedulable by the formal analysis techniques (because the

worst case blocking times are unknown, hence it is not possible

to account for them in the formal analysis).

A straightforward strategy to address this problem is to give

real-time tasks higher priorities than device drivers. However,

this is not possible on general purpose systems, where interrupt

handlers and device drivers are not schedulable entities (and

are executed with a higher priority than all the user-space

tasks). For this reason, recent developments in the Linux

kernel allow transforming the interrupt handlers (both Interrupt

Service Routines — ISRs — and Bottom Halves) into kernel

threads, the so called IRQ threads (note that in the past

similar solutions have been mainly used in µkernel based

systems [1], [2] or in proprietary real-time kernels such as

LynxOS). This functionality was originally developed for the

Preempt-RT real-time kernel [3], [4], and enables a control

on the amount of interference from device drivers suffered by

real-time tasks [5], [6], [7].

Once interrupt handlers have been transformed into schedu-

lable entities, the problem remains open of identifying the

best scheduling algorithm that can be used to serve the newly

introduced threads. For example, Manica et al. [8], [9] have

provided a clear evidence that using resource reservations [10]

to schedule the interrupt handlers (IRQ threads, in Preempt-

RT) allows the designer to find appropriate trade-offs between

the response time of real-time tasks and the device throughput

(this is important when the device is used by real-time tasks).

However, to the best of our knowledge, most experiments and

tests with advanced scheduling solutions have been performed

only using prototypical schedulers or experimental Operating

Systems [11], [12]. Only recently has a Linux scheduler

based on resource-reservation has been proposed to the kernel

community [13]. Such a scheduler exports an API that can

be easily used to schedule kernel threads implementing the

device drivers. Additionally, most of the previous work has

focused on network devices [14], [15], [16], [5], [9] paying

little or no attention to other types of devices (e.g., disks).

Finally, another limitation of previous results is that they are

mostly collected on artificial task sets.

This paper takes a step forward to show that the results

collected with experiments based on prototypical schedulers

can be repeated: 1) with a scheduler likely to become main

line in the near future, 2) using different kinds of resources, 3)

with realistic applications rather than with artificial task sets.

As a last contribution, a set of tools based on the Ftrace ker-

nel tracing facility is used to collect the stochastic distribution

of the execution time and of the inter-arrival time of device

drivers. This way it is possible to apply design techniques

that enable an appropriate dimensioning of the scheduling

parameters.

The paper is organised as follows: Section II recalls the

scheduling algorithm used in this work, briefly describes an

implementation of such an algorithm, and explains how to

correctly assign the scheduling parameters to IRQ threads;

Section III describes the tracing tools used for analysing the

scheduler behaviour and to collect information about the IRQ

53

threads; Section IV presents some experimental results, and

Section V concludes the paper.

II. SCHEDULING THE IRQ THREADS

This section briefly recalls some basic concepts about

resource reservations, and about assigning proper reser-

vation parameters to the interrupt threads. It also intro-

duces the reservation-based scheduler for Linux (named

SCHED_DEADLINE) that has been used for scheduling the

interrupt threads.

A. Reservation-Based Scheduling

The basic idea of reservation-based scheduling is that each

task is reserved an amount Q of CPU time (named maximum

budget) every T time units (T is called reservation period).

Such a strategy can be implemented by using various schedul-

ing algorithms. The particular reservation algorithm used in

this paper is the Constant Bandwidth Server (CBS) [17],

which, contrary to different scheduling algorithms of the same

kind, is well behaved with both regular and periodic tasks and

with aperiodic and dynamically changing tasks.

The CBS algorithm assigns each task a scheduling deadline,

and schedules processes and threads using an Earliest Deadline

First (EDF) policy (i.e., the task with the earliest scheduling

deadline is selected first for execution). When a task wakes

up, the CBS checks if its current scheduling deadline can be

used; otherwise, a new scheduling deadline is generated (as

d = t + T , where t is the wakeup time). The scheduling

deadline is then postponed by T (d = d + T) every time

that the task executes for Q time units (if having a work

conserving algorithm is not important, the task is removed

from the runqueue until time d − T).

An interesting feature of the reservation-based schedulers is

that they provide temporal isolation among tasks. This means

that the temporal behaviour of a task is not affected by the

behaviour of the other tasks in the system: if a task requires

a large execution time, it cannot affect the schedulability of

the other tasks, or monopolise the processor. This is a basic

property needed for scheduling real-time tasks on general-

purpose operating systems.

B. The Linux SCHED DEADLINE Policy

In the recent versions, the official Linux kernel has in-

troduced a new scheduling framework that replaces the old

O(1) scheduler. This framework contains an extensible set

of scheduling classes. Each scheduling class implements a

specific algorithm and schedules tasks with a specific policy.

Currently, two scheduling classes are available in the Linux

kernel:

• sched_fair, which implements the “Completely Fair

Scheduler” (CFS) algorithm, and schedules tasks having

SCHED_OTHER or SCHED_BATCH policies. Tasks are

run at precise weighted speeds, so that each task receives

a “fair” amount of processor share.

• sched_rt, which implements a POSIX fixed-

priority real-time scheduler, and handles tasks having

SCHED_FIFO or SCHED_RR policies.

SCHED_NORMAL

Task

SCHED_IDLE

Task

SCHED_BATCH

Task

SCHED_RR

Task

SCHED_FIFO

Task

sched_rt

SCHED_DEADLINE

Task

sched_deadlinesched_fair (CFS)

Linux scheduler

Figure 1. Linux scheduler with SCHED DEADLINE.

As explained in previous papers [13], using these scheduling

policies with tasks characterised by temporal constraints might

be problematic, mainly because the standard API used in

general purpose kernels like Linux does not allow to associate

temporal constraints (e.g., deadlines) to the tasks. In fact,

although it allows to assign a share of processor time to a

task, there is no way to specify that the task must finish the

execution of a job before a given time. Using CFS, moreover,

the time elapsed between two consecutive executions of a task

is not deterministic and cannot be bound, since it depends on

the number of tasks running in the system at that time.

For these reasons, very recently, a new scheduling class

based on resource reservations has been implemented and pro-

posed to the kernel community1. The project, formerly known

as SCHED_EDF, changed name to SCHED_DEADLINE after

the request of the kernel community.

This class adds the possibility of scheduling tasks us-

ing the CBS algorithm, without changing the behaviour of

tasks scheduled using the existing policies. Figure 1 de-

picts schematically the Linux scheduler extended with the

SCHED_DEADLINE scheduling class (note that scheduling

classes have increasing priorities from left to right).

The implementation does not make any restrictive assump-

tion on the characteristics of the tasks. Thus, it can handle

periodic, sporadic and aperiodic tasks. It is aligned with the

current mainstream kernel, and it relies on standard Linux

mechanisms to natively support multicore platforms and to

provide hierarchical scheduling through a standard API.

a) Main Characteristics of the Implementation: In the

implementation, red-black trees are used for ready queues to

enable efficient handling of events such as earliest deadline

task scheduling, new task activation, task blocking/unblocking,

etc. One run-queue per each CPU is used to avoid contention

and achieve high scalability even on large systems. Moreover,

it is enriched with the following features:

• support for bandwidth reclaiming, to make the scheduler

work conserving without affecting guarantees;

• capability of synchronising tasks with the scheduler;

• support for resource sharing similar to priority inheritance

(already present in the kernel for fixed priority real-time

tasks);

1SCHED_DEADLINE. The code is open and available at http://gitorious.
org/sched deadline.

54

• support for standard Linux mechanisms for debugging

and tracing the scheduler behaviour and for specifying

per-user policies and limitations;

• capability of sending signals to the tasks on budget

overruns and scheduling deadline misses;

• support for bandwidth management throughout admission

control, both system-wide and for separate groups of

tasks.

b) User Level API: An user-level application can exploit

the services provided by the SCHED_DEADLINE scheduling

class by means of some new system calls and a new data

structure that accommodates additional scheduling parameters.

The new data structure is called sched_param_ex and

comprises the following fields:

• temporal parameter of the task — i.e., sched_runtime

and sched_deadline which will be Q and T of its

reservation, respectively;

• sched_flag for controlling some aspects of the sched-

uler behaviour. More precisely, (i) whether or not a

task wants to be notified about budget overruns and/or

scheduling deadline misses and (ii) whether or not a task

wants to exploit some kind of bandwidth reclaiming;

• some other fields left there for backward compati-

bility or future extensions (sched_priority and

sched_period).

The most important system calls added are:

• sched_setscheduler_ex (and a couple of others),

that manipulates sched_param_ex;

• sched_wait_interval to synchronise the task with

the scheduler. This means a task can ask to be put to

sleep until either its next deadline or whenever it will be

possible to receive its full budget again.

The security model adopted is very similar to the one

already in use in the kernel for fixed priority real-time tasks

— i.e., it is based on user permissions and capabilities and it

can be affected by standard UNIX security mechanism, like

rlimits. Controls exist for managing the fraction of CPU

time usable by the whole EDF scheduler as well as to a group

of EDF tasks, but they are not described here for space reasons.

C. Assigning the Reservation Parameters

The reservation parameters (Q,T) can be dimensioned by

performing a deterministic or a stochastic analysis of the

interrupt behaviour [9]. The deterministic case is simpler to

analyse, and allows to dimension the reservation so that no

interrupt is lost (at the cost of some overestimation of the

reserved CPU time). First of all, if P is the minimum inter-

arrival time between two consecutive interrupts and C is the

maximum amount of time needed to serve an interrupt, then

Q and T must be assigned according to Equation 1

Q

T
≥

C

P
(1)

In other words, the fraction of CPU time reserved to the IRQ

thread should be greater than or equal to the fraction of CPU

time needed by the IRQ thread for executing.

However, some hardware devices have an upper bound Nc

on the number of pending interrupts (interrupts that have

not been processed yet), and if an interrupt fires when Nc

interrupts requests are already pending, then the interrupt is

lost even if Equation 1 is respected. As discussed in our

previous work [9], this problem ban be addressed by producing

the following condition that has to be respected to avoid losing

interrupts:

T − Q

P
< Nc (2)

The same paper also presented a stochastic analysis instru-

mental to the correct dimensioning of the CBS parameters: in

this case, instead of considering the worst-case times P and

C, the interrupt inter-arrival times and the execution times of

the interrupt handlers are modelled as stochastic variables. As

a result, the probability to drop an interrupt can be computed.

Both approaches require a precise characterisation of the

workload generated by IRQ threads. Hence, the need for the

tracing mechanism described in the next section.

III. INFERRING THE IRQ PARAMETERS

According to Section II-C, if the probability distributions

of the inter-arrival and execution times of an IRQ thread are

known, then it is possible to schedule such thread with a

(Q,T) reservation so that no interrupt is lost (note that if

no interrupt is lost then the device can achieve its maximum

throughput). Hence, to assign the maximum budget Q and the

reservation period T to an IRQ thread it is necessary to know

the IRQ parameters (that is, the probability distributions of

the inter-interrupt times and of the times needed to serve an

interrupt).

Such probability distributions can be measured by using the

Ftrace tracer provided by the Linux kernel and by properly

parsing its traces. In the proposed approach, this is done

through a set of tools organised in a pipeline, as shown in

Figure 2 (more details about the used tracing tools are available

in a technical report [18]).

A. The Tracing Pipeline

The kernel traces produced by Ftrace can be used to extract

various information about tasks’ timings, so that their temporal

behaviour can be inferred.

The first stage of the pipeline (the trace parser) transforms

the textual traces exported by Ftrace in an internal format,

which is used by the other tools in the pipeline. This step is

needed because Ftrace exports traces in the form of text files,

whose format can change from one kernel version to another,

containing redundant and unneeded information (this happens

because the Ftrace format has been designed to be easily

readable by humans). Hence, the textual traces produced by

Ftrace are parsed and transformed in a more compact, kernel-

independent, binary format which is used as input by the next

stages of the pipeline. Such stages are composed by a second

set of tools that can:

55

Figure 2. General architecture of the tool

• parse the internal format to gather statistics about ex-

ecution times, inter-arrival times, response times, and

utilisation;

• generate a chart displaying the CPU scheduling;

• infer some of the tasks temporal properties, identifying

(for example) periodic tasks.

In this context, the presented tools are used to extract the

probability distributions of the execution and inter-arrival

times of the IRQ threads.

The various tools composing the pipeline communicate

through standard Unix FIFOs (named pipes) and can be

combined in different ways, to collect different kinds of

information. For example, a tool which periodically displays

important statistics for selected tasks (similarly to the standard

“top” utility) can be inserted into the pipeline. In this

work, the collected values are generally saved to files to be

processed off-line later, but in other situations they can also

be summarised by some statistics that are saved instead of the

raw sequence of values, to save some disk space.

Since connecting the different tools in a correctly working

pipeline (creating all the needed FIFOs, etc.) can sometimes

be difficult, some helper scripts have been developed.

B. Examples

The first possible usage of the proposed tools is to visually

analyse the scheduler’s behaviour, to check its correctness or

to understand the reason for unexpected results. An example

about this usage will be presented in Section IV. If, instead, a

statistics module is used in the last stage of the pipeline, it is

also possible to collect some information for performance eval-

uation. For example, some statistics for some periodic tasks

have been collected and shown in Table I. The Cumulative

Distribution Functions (CDFs) of the response times for the

three tasks, as measured using a different output module, are

displayed in Figure 3. Note that all the results presented up

to now can be obtained by just changing the final stage of the

processing pipeline.

As explained, in this paper the presented tools are used

to collect timing information about IRQ threads. However,

before performing such measurements, it is important to test

the reliability of this information. For this purpose, some

experiments have been performed by considering the network

IRQ threads: a stream of periodic UDP packets has been sent

between two computers, measuring the inter-packet times in

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

P
 {

R
e
s
p
o
n
s
e
 T

im
e
 >

 t
}

t

Task 1
Task 2
Task 3

Figure 3. CDFs of the response times for 3 periodic tasks.

Table II
INTER-PACKET TIMES AS MEASURED IN THE SENDER. TIMES ARE IN µs.

Test Average Std Dev Max Min

T1 1190 29 1569 1040
T5 5198 22 5278 5058
T10 10195 22 10277 10062
T50 50207 27 50298 50081
T100 100207 25 100290 100093

the sender (Table II) and in the receiver (Table III). Note that,

as expected, the values in Table III almost match the values

in Table II: the only noticeable difference is test T1, in which

the inter-packet times on the receiver have a large maximum

value and 0 as a minimum value. This is probably due to some

delayed scheduling of the receiver task. After these initial

measurements, the proposed tools have been used to extract

the inter-arrival times of the network IRQ thread, summarised

in Table IV. By comparing Table II and Table IV, it is possible

to verify that the average inter-activation times of the network

IRQ thread in the receiver are consistent with the average

inter-packet times in the sender. The maximum times also

match, while the minimum times present some differences.

In particular, in tests T1, T5 and T100 the minimum inter-

arrival time for the network IRQ thread in receiver is much

smaller than the minimum inter-packet time in the sender. A

more detailed analysis revealed that this is probably due to

some non UDP packets (ICMP or ARP) which are not directly

generated by the test program in the sender machine (hence,

they are not periodic and they are not listed in Table II). In any

case, the comparison between Table II and Table IV seems to

confirm the correctness of the collected data.

Some information about the IRQ thread execution times

(needed to perform some kind of performance analysis of the

system) are shown in Table V, and some examples of distri-

bution functions obtained using these tools will be presented

in Section IV.

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed approach has been tested

by an extensive set of experiments. In particular, the per-

56

Table I
STATISTICS COLLECTED FOR SOME PERIODIC TASKS. TIMES ARE IN µs.

Task
Execution Time Inter-Arrival Time Response Time

Avg Std Dev Max Min Avg Std Dev Max Min Avg Std Dev Max Min

Task 1 2991 273 8953 2956 5993 303 10720 11 3182 555 5986 2960

Task 2 553 66 6025 544 2997 10 3002 2991 556 229 6027 546

Task 3 2941 51 5859 2919 7993 24 9049 6938 3683 397 7285 2927

Table III
INTER-PACKET TIMES AS MEASURED IN THE RECEIVER. TIMES ARE IN µs.

Test Average Std Dev Max Min

T1 1207 1011 14336 0
T5 5212 1019 6144 4096
T10 10210 271 12288 8192
T50 50229 1023 51200 49152
T100 100204 530 100352 98304

Table IV
INTER-ARRIVAL TIMES FOR THE NETWORK IRQ THREAD. TIMES ARE IN

µs.

Test Average Std Dev Max Min

T1 1210 32 1424 59
T5 5222 117 5385 63
T10 10264 60 10353 10093
T50 50832 627 50353 50082
T100 100424 9342 100313 76

formance of the Linux SCHED_DEADLINE policy and the

influence of the scheduling parameters have been evaluated

when the new scheduling class is used to:

• schedule real-time tasks sets

• schedule IRQ threads

• schedule hybrid task sets composed of both real-time

tasks and IRQ threads.

The next subsections will report the results obtained for each

of these cases.

A. Using SCHED DEADLINE

To see the new SCHED_DEADLINE policy in action, con-

sider a periodic task (with period 5ms) and two greedy tasks

(task which never block, and try to consume all the CPU

time) scheduled by two CBSs (1ms, 10ms) and (1ms, 4ms).
Figure 4 shows a segment of the schedule produced by the

tools presented in Section III.

On the other hand, Figure 5 shows how the CBS sched-

uler implemented by SCHED_DEADLINE is more effective

in handling multiple time sensitive applications than the

fixed priority policy SCHED_FIFO provided by the stan-

dard Linux kernel. A simple video player based on GTK2

is used as a real-time task, and two player’s instances re-

produce the “Big Buck Bunny”3 trailer either (i) with two

different SCHED_FIFO priority or (ii) within two CBSs,

(12.5ms, 40ms) and (25ms, 40ms).
Since the frame rate of the video is 25 frames per second

(fps), the expected time interval between two consecutive

2http://www.gtk.org
3http://www.bigbuckbunny.org

Table V
STATISTICS ABOUT THE EXECUTION TIMES OF THE IRQ THREAD. TIMES

ARE IN µs.

Test Average Std Dev Max Min

T1 15 5 63 9
T5 19 1 68 18
T10 14 1 29 13
T50 16 2 28 15
T100 21 3 23 12

frames (named Inter-Frame Time - IFT - from now on) is

supposed to be 1000/25 = 40ms. In this experiment, two

instances of the video player are executed in parallel, using

different scheduling algorithms and priorities. As it clearly

emerges from the figure, when SCHED_FIFO is used, the

player execute with higher priority correctly reproduces the

stream, and the IFTs are constant around 40ms (average

39573.0µs, standard deviation 4725.1); however, the low

priority instance has poor performance, to the point where

playback stops completely at frame 310 (this is the meaning

of the peak in the graph) and starts again only when the other

instance finished.

When the reservation-based approach enabled by

SCHED_DEADLINE is used, instead, both the instances

are able to proceed and the performance they achieve are

proportional to the fraction of CPU time they can use. This is

shown in the right side of the figure and by the fact that IFT

average and standard deviation are, respectively, 39082.0µs,

5735.3 for (25, 40) and 39517.0µs, 19455.0 for (12.5, 40).

B. Controlling the Device Throughput

The next set of experiments has been performed to check

the effects of scheduling the disk IRQ thread with a (Q,T)
reservation, for different values of Q and T .

First of all, the disk throughput has been measured by using

the hdparm command and disabling the disk caches. The

results of this experiment showed that the disk throughput only

depends on the fraction of CPU time Q/T reserved to the disk

IRQ thread, and is not affected by the specific values of Q
and T . This result seems to contradict the condition expressed

by Equation 2, and is probably due to the fact that the disk

controller has a large buffer (i.e., Nc is very large).

Figure 6 shows the disk throughput as a function of

Q/T (confirming that the throughput is proportional to the

fraction of CPU time reserved to the IRQ thread), while

Figures 7 and 8 show the probability distributions of the

interrupt inter-arrival and execution times. According to such

probability distributions, the maximum utilisation of the disk

57

CPU 0

Ohter tasks

Periodic

Greedy1

2
5
0

5
0
0

7
5
0

1
0
0
0

1
2
5
0

1
5
0
0

1
7
5
0

2
0
0
0

2
2
5
0

2
5
0
0

2
7
5
0

3
0
0
0

3
2
5
0

3
5
0
0

3
7
5
0

4
0
0
0

4
2
5
0

4
5
0
0

4
7
5
0

5
0
0
0

5
2
5
0

5
5
0
0

5
7
5
0

6
0
0
0

6
2
5
0

6
5
0
0

6
7
5
0

7
0
0
0

7
2
5
0

7
5
0
0

7
7
5
0

8
0
0
0

8
2
5
0

8
5
0
0

8
7
5
0

9
0
0
0

9
2
5
0

9
5
0
0

9
7
5
0

1
0
0
0
0

1
0
2
5
0

1
0
5
0
0

1
0
7
5
0

1
1
0
0
0

1
1
2
5
0

1
1
5
0
0

1
1
7
5
0

1
2
0
0
0

1
2
2
5
0

1
2
5
0
0

1
2
7
5
0

1
3
0
0
0

1
3
2
5
0

1
3
5
0
0

1
3
7
5
0

1
4
0
0
0

1
4
2
5
0

1
4
5
0
0

1
4
7
5
0

1
5
0
0
0

1
5
2
5
0

1
5
5
0
0

1
5
7
5
0

1
6
0
0
0

1
6
2
5
0

1
6
5
0
0

1
6
7
5
0

1
7
0
0
0

1
7
2
5
0

1
7
5
0
0

1
7
7
5
0

1
8
0
0
0

1
8
2
5
0

1
8
5
0
0

1
8
7
5
0

1
9
0
0
0

Greedy2

Figure 4. SCHED_DEADLINE serving a periodic task and two CPU hungry (greedy) tasks.

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

low RT priority

 100 200 300 400 500 600 700 800

high RT priority

 100 200 300 400 500 600 700 800

CBS (12.5, 40)

 100 200 300 400 500 600 700 800

CBS (25, 40)

Figure 5. Inter-frame times for two instances of the video player when executing under SCHED_FIFO (with different priorities) or SCHED_DEADLINE.
(within different reservations)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Reserved fraction of CPU time (Q/T)

Figure 6. Disk throughput (as measured by hdparm) when the disk IRQ
thread is scheduled by a CBS, as a function of the reserved fraction of CPU
time.

IRQ thread is about 0.41096, while the average utilisation

is about 0.0021833. By comparing these data with results

shown in Figure 6, it is possible to see that deterministic

analysis is too pessimistic and highly overestimates the needed

amount of time: in fact, hdparm measures the maximum

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2000 4000 6000 8000 10000

P
{I

n
te

r-
A

rr
iv

a
l
=

 t
}

t (microseconds)

Figure 7. PMF of the inter-arrival times for the disk IRQ thread.

throughput4 when Q/T = 0.003, which is only a little bit

more than the average utilisation. By looking at Figures 7

and 8 again, it is clear that the worst case conditions (leading

to the 0.41096 utilisation) are due to a long tail in the execution

times probability distribution and to a small amount of small

4When running hdparm with the disk IRQ thread scheduled with the
maximum fixed priority, the throughput resulted to be about 75MB/s.

58

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

P
{E

x
e
c
u
ti
o
n
 T

im
e
 =

 t
}

t (microseconds)

Figure 8. PMF of the execution times for the disk IRQ thread.

inter-arrival times with low probability, hence they are very

unlikely. This explains why a fraction of reserved CPU time

which is very close to the average utilisation is sufficient

for achieving full utilisation. This consideration motivates

future investigations on the application of stochastic analysis

technique [9]. This research activity is currently under way.

Note that in this experiment the utilisation of disk IRQ

thread is quite low, and only a small fraction of the CPU time

had to be reserved to it to control the hard-disk performance.

Such a low CPU utilisation caused by the disk IRQ thread

is due to the usage of DMA when performing disk accesses.

Such a mechanism (the DMA) allows to reduce the amount

of CPU time needed by the IRQ thread, but can cause some

other kind of interference (that cannot be modelled as a

task in schedulability analysis) on real-time tasks due to bus

contention. By disabling the DMA, all the interference is

due to the IRQ thread, and can be properly accounted for

in the schedulability analysis. Hence, the experiments have

been repeated with DMA disabled (these experiments also

allows to better understand what happens when the IRQ thread

consumes more time); the results are reported in Table VI.

Each line in the table is the average of the results of 20

repeated tests on a UP machine when DMA is disabled; the

average utilisation for the disk IRQ thread is about 0.66, with

a minimum utilisation of 0.57 and a maximum of 0.93. As

expected, the throughput without DMA is much lower than the

throughput achieved when using DMA, and it proportionally

grows with the fraction of CPU time reserved to the interrupt

thread. The maximum throughput (100% of the throughput

measured when the disk IRQ thread is scheduled with a fixed

priority) is achieved when Q/T = 0.95. Again, the throughput

seems to only depend on the Q/T ratio, and not on the

reservation period T : in other words, the average throughput

achieved when using a (2ms, 100ms) reservation is the same

achieved when using a (20ms, 1000ms) reservation.

After evaluating the “raw” disk performance through

hdparm, the next experiments have been run to evaluate

the performance of more complex read operations, involving

Table VI
DISK IO-THROUGHPUT WHEN IRQ THREAD IS SCHEDULED WITH

DEADLINE SCHEDULER.

Test Average

(2ms, 100ms) 1.9858%
(4ms, 100ms) 4.23484%
(6ms, 100ms) 6.38374%

(20ms, 1000ms) 2.16843%
(40ms, 1000ms) 4.46488%
(60ms, 1000ms) 6.49811%
(10ms, 100ms) 10.6726%
(20ms, 100ms) 21.5825%
(40ms, 100ms) 41.8182%
(60ms, 100ms) 62.4476%
(80ms, 100ms) 82.5952%
(90ms, 100ms) 92.9371%
(95ms, 100ms) 100%

(100ms, 1000ms) 11.778%
(200ms, 1000ms) 23.261%
(400ms, 1000ms) 44.4056%
(600ms, 1000ms) 65%
(800ms, 1000ms) 84.5455%
(900ms, 1000ms) 93.007%
(950ms, 1000ms) 100%

Table VII
TIME NEEDED TO PERFORM A FILE COPY, WHEN THE DISK IRQ THREAD IS

SCHEDULED WITH DIFFERENT PARAMETERS.

Test Average Std Dev Max Min

No Reservations 16.89s 0.12s 17.05s 16.67s
(30ms, 100ms) 52.85s 0.87s 55.22s 52.36s
(40ms, 100ms) 39.52s 0.61s 41.25s 39.27s
(50ms, 100ms) 31.49s 0.12s 31.74s 31.40s
(60ms, 100ms) 26.23s 0.03s 26.30s 26.19s
(70ms, 100ms) 22.58s 0.20s 23.14s 22.47s
(80ms, 100ms) 19.77s 0.19s 20.31s 19.69s
(90ms, 100ms) 17.59s 0.04s 17.66s 17.55s

multiple system calls and file system access. The operation

involved is a simple cat of a large file (about 44MB)

redirecting output to /dev/null. The total time for the op-

eration has been measured, disabling disk caches and DMA.

Several runs have been repeated, and the results are reported

in Table VII. The experiments were performed in a pretty

old machine, and the operation lead to a very big interrupt

workload, loading the CPU up to about 100% of the CPU

time. The first line of the table reports the time needed for

the operation when the default scheduler is used (that is,

SCHED_RT is used for IRQ threads) in a machine with no

other load. In the following lines SCHED_DEADLINE is used

and the time falls down as the reserved fraction of CPU grows.

Note that by modifying the amount of reserved CPU time it

is possible to control the amount of time needed for executing

the cat command. In particular, the throughput (computed as

the ratio between the file size and the time needed to cat it)

is proportional to Q/T , as shown in Figure 9.

Finally, the time needed to read a large file has been

analysed by measuring the system time, the user time, and

the total time used by the task performing the read operation

(disabling the disk caches so that the experiment is more

deterministic and repeatable). The size of the file involved

in this experiment was about 80MB. As expected, the total

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Reserved fraction of CPU time

Minimum
Average

Maximum

Figure 9. Throughput when reading a large file, as a function of the reserved
CPU time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.02 0.2 0.4

T
im

e
 (

m
s
)

Q/T

T = 50
T = 100
T = 200

Figure 10. Total time needed to read a large file.

time needed to read the file resulted to be much larger than

the sum of the system time and the user time, because the

task is often blocked waiting data from the disk (so, the task

performing the read operation spends most of the time in the

wait state. Most of the CPU time is consumed by the disk

IRQ thread, and is not visible in the statistics of the user

task performing the read operation). Moreover, the amount

of user time and system time used by the task resulted to be

very small, and did not depend on the reservation parameters

(the user time was around 2.5ms, and the system time was

around 100ms). On the other hand, the total time (shown in

Figure 10) resulted to be proportional to T/Q (because the

disk throughput is proportional to Q/T), and (again), disk

interrupts did not suffer by Equation 2.

C. Latency/Throughput Trade-Offs

Finally, some experiments have been performed to show

how the proposed approach allows one to control both the

device throughput and the real-time performance of user-space

tasks. The video player presented above has been used as a

Table VIII
NETWORK THROUGHPUT ACHIEVED BY USING DIFFERENT RESERVATION

PARAMETERS FOR THE VIDEO PLAYER AND FOR THE NETWORK HARD

IRQ.

Test Player CBS net IRQ CBS Throughput

Test1 (29ms, 40ms) (9ms, 100ms) 59.75Mbps
Test2 (28ms, 40ms) (12ms, 100ms) 65.43Mbps
Test3 (26ms, 40ms) (13ms, 100ms) 70.83Mbps
Test4 (25ms, 40ms) (14ms, 100ms) 76.14Mbps
Test5 (20ms, 40ms) (18ms, 100ms) 88.55Mbps

real-time task, and the network device has been considered

(using netperf to generate network load and to measure

the network throughput [9]).

An instance of netperf has then been activated concur-

rently with the video player, and the experiment has been

repeated scheduling the video player as SCHED_OTHER and

as SCHED_FIFO with a priority higher than the network IRQ

threads. The results, displayed in Figure 11, show that when

the player executes alone it is able to correctly reproduce the

video (the inter-frame times are constant around 40ms), while

when some concurrent network load is created, the inter-frame

times increases by a large amount (and video playback is not

continuous). Finally, if the player is scheduled with a priority

higher than the priority of the network IRQ threads, then it

is again able to work correctly, but in this case the network

throughput measured by netperf drops from 88Mbps to

about 58Mbps.

A trade-off between real-time performance for the player

and high network throughput can be found by using

reservation-based scheduling. To this purpose, the tool pre-

sented in Section III can be used to collect the probability

distributions of the execution and inter-arrival times of the

network IRQ threads, and these data can be used as shown in

Section II-C.

Based on such analysis, the reservation parameters shown in

Table VIII have been used, obtaining the network throughput

shown in the last column of the table. The evolution of the

inter-frame times in the player for the most interesting cases is

shown in Figure 12. As it is possible to perceive by looking at

the table and at the figure, resource reservations really allow

to find latency/throughput trade-offs, as previously claimed:

• if the player is reserved enough CPU time (29ms every

period of 40ms), then the inter-frame times are stable and

near to 40ms (see the right side of Figure 12). However,

in this case it is possible to reserve only a small fraction of

the CPU time to the network IRQ thread, and the network

throughput is low (about 60Mbps);

• if enough CPU time is reserved to the network IRQ

thread (18ms every 100ms), then the maximum network

throughput can be achieved). But in this case it is possible

to reserve only 20ms of CPU time every 40ms to the

player, and the inter-frame times increase (see the left side

of Figure 12). Note, however, that the maximum inter-

frame times are still under 80ms (compare this situation

with the middle of Figure 11);

60

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

Player Alone

 100 200 300 400 500 600 700 800

Player + netperf

 100 200 300 400 500 600 700 800

Player with RT priority
 + netperf

Figure 11. Inter-frame times for the video player when executed alone and concurrently with netperf, with different priorities.

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

CBS (20, 40)

 100 200 300 400 500 600 700 800

CBS (25, 40)

 100 200 300 400 500 600 700 800

CBS (29, 40)

Figure 12. Inter-frame times for a video player when executed alone and concurrently with netperf, using different kinds of reservations.

• some compromises can be found: for example, scheduling

the player with a (25ms, 40ms) reservation and the

network IRQ thread with a (14ms, 100ms) reservation

it is possible to have reasonable inter-frame times with a

good network throughput (about 86% of the maximum).

V. CONCLUSIONS AND FUTURE WORK

This paper reported the results of some experiences with

device drivers scheduling in real-time systems. In particular,

some of the presented experiments show how recent develop-

ments in the Linux kernel can be exploited to schedule the

IRQ threads so that both their interference on real-time tasks

and the device throughput can be controlled.

The proposed solution is based on the Linux Preempt-RT

kernel (which transforms interrupt handlers into schedulable

entities), a new reservation-based scheduler, and some tools

based on Ftrace that can be used to infer the timing information

needed to correctly assign the scheduling parameters.

As a future work, the effectiveness and usability of the

stochastic analysis for IRQ threads will be investigated by con-

sidering different workloads and resources. This will probably

require to simplify the Markov model used in the stochastic

analysis, so that it can be applied more easily.

ACKNOWLEDGEMENTS

This work has been partially supported by the European

Commission under the ACTORS project (FP7-ICT-216586).

This project has also been supported by the “Provincia

Autonoma di Trento”5 by means of the PAT/CRS Project RoSE

(http://imedia.disi.unitn.it/RoSE).

REFERENCES

[1] H. Haertig, R. Baumgartl, M. Borriss, C. joachim Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schnberg, and J. Wolter, “DROPS - OS
support for distributed multimedia applications,” in In Proceedings of the

Eighth ACM SIGOPS European Workshop, Sintra, Portugal, September
1998.

[2] H. Haertig and M. Roitzsch, “Ten years of research on L4-based real-
time systems,” in Proceedings of the Eighth Real-Time Linux Workshop,
Lanzhou, China, 2006.

[3] S. Rostedt, “Internals of the rt patch,” in Proceedings of the Linux

Symposium, Ottawa, Canada, June 2007.

[4] L. Henriques, “Threaded IRQs on Linux PREEMPT-RT,” in Proceedings

of Fifth International Workshop on Operating Systems Platforms for

Embedded Real-Time Applications (OSPERT), Dublin, Ireland, June
2009.

5Translation of the original statement: “Lavoro eseguito con il contributo
della Provincia autonoma di Trento”.

61

[5] M. Lewandowski, M. Stanovich, T. Baker, K. Gopalan, and Wang,
“Modeling device driver effects in real-time schedulability analysis:
Study of a network driver,” in Proceedings of the IEEE Real-Time

and Embedded Technology and Applications Symposium, Bellevue, WA,
2007.

[6] T. Baker, A. Wang, and M. J. Stanovich, “Fitting linux device drivers into
an analyzable scheduling framework,” in Proceedings of the Workshop

on Operating Systems Platforms for Embedded Real-time Applications,
Pisa, Italy, July 2007.

[7] G. Modena, L. Abeni, and L. Palopoli, “Providing qos by scheduling
interrupt threads,” in Work in Progress of the 14th IEEE Real-Time and

Embedded Technology and Applications Symposium, (RTAS 2008), St.
Louis, MO, April 2008.

[8] L. Abeni, N. Manica, and L. Palopoli, “Reservation-based scheduling
for irq threads,” in Proceedings of the 11th Real-Time Linux Workshop,
Dresden, Germany, September 2009.

[9] N. Manica, L. Abeni, and L. Palopoli, “Reservation-based interrupt
scheduling,” in Proceedings of the 16th IEEE Real-Time and Embedded

Technology and Applications Symposium, (RTAS 2010), Stockholm,
Sweden, April 2010.

[10] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in
Proceedings of the SPIE/ACM Conference on Multimedia Computing

and Networking, January 1998.
[11] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,

R. Fairbairns, and E. Hyden, “The design and implementation of an
operating system to support distributed multimedia applications,” IEEE

Journal on Selected Areas in Communications, vol. 14, no. 7, pp. 1280–
1297, 1996.

[12] R. Black, P. Barham, A. Donnelly, and N. Stratford, “Protocol imple-
mentation in a vertically structured operating system,” in Proceedings

of the 22nd Annual Conference on Local Computer Networks, 1997.
[13] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF

scheduling class for the Linux kernel,” in Proceedings of the Eleventh

Real-Time Linux Workshop, Dresden, Germany, September 2009.
[14] K. Jeffay and G. Lamastra, “A comparative study of the realization of

rate-based computing services in general purpose operating systems,” in
Proceedings of the Seventh IEEE International Conference on Real-Time

Computing Systems and Applications (RTCSA), Cheju Island, South
Korea, 2000, pp. 81–90.

[15] S. Ghosh and R. Rajkumar, “Resource management of the OS network
subsystem,” in Proceedings of the Fifth IEEE International Symposium

on Object-Oriented Real-Time Distributed Computing, 2002.(ISORC

2002), 2002, pp. 271–279.
[16] Y.Zhang and R. West, “Process-aware interrupt scheduling and account-

ing,” in Proceedings of the 27th IEEE International Real-Time Systems

Symposium, Rio de Janeiro, Brazil, December 2006.
[17] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard

real-time systems,” in Proceedings of the IEEE Real-Time Systems

Symposium, Madrid, Spain, December 1998.
[18] P. Rallo, N. Manica, and L. Abeni, “Inferring temporal behaviours

through kernel tracing,” DISI - University of Trento, Tech. Rep. DISI-
10-021, April 2010.

62

Evaluating Android OS for Embedded Real-Time Systems

Cláudio Maia, Luı́s Nogueira, Luı́s Miguel Pinho

CISTER Research Centre

School of Engineering of the Polytechnic Institute of Porto

Porto, Portugal

Email:{crrm,lmn,lmp}@isep.ipp.pt

Abstract—Since its official public release, Android has cap-
tured the interest from companies, developers and the general
audience. From that time up to now, this software platform
has been constantly improved either in terms of features or
supported hardware and, at the same time, extended to new
types of devices different from the originally intended mobile
ones. However, there is a feature that has not been explored
yet - its real-time capabilities.

This paper intends to explore this gap and provide a basis
for discussion on the suitability of Android in order to be used
in Open Real-Time environments. By analysing the software
platform, with the main focus on the virtual machine and its
underlying operating system environments, we are able to point
out its current limitations and, therefore, provide a hint on
different perspectives of directions in order to make Android
suitable for these environments.

It is our position that Android may provide a suitable
architecture for real-time embedded systems, but the real-time
community should address its limitations in a joint effort at
all of the platform layers.

Keywords-Android, Open Real-Time Systems, Embedded
Systems

I. INTRODUCTION

Android [1] was made publicly available during the fall

of 2008. Being considered a fairly new technology, due

to the fact that it is still being substantially improved and

upgraded either in terms of features or firmware, Android

is gaining strength both in the mobile industry and in other

industries with different hardware architectures (such as the

ones presented in [2] and [3]). The increasing interest from

the industry arises from two core aspects: its open-source

nature and its architectural model.

Being an open-source project, allows Android to be fully

analysed and understood, which enables feature compre-

hension, bug fixing, further improvements regarding new

functionalities and, finally, porting to new hardware. On the

other hand, its Linux kernel-based architecture model also

adds the use of Linux to the mobile industry, allowing to take

advantage of the knowledge and features offered by Linux.

Both of these aspects make Android an appealing target to

be used in other type of environments.

Another aspect that is important to consider when using

Android is its own Virtual Machine (VM) environment.

Android applications are Java-based and this factor entails

the use of a VM environment, with both its advantages and

known problems.

Nevertheless, there are features which have not been

explored yet, as for instance the suitability of the platform

to be used in Open Real-Time environments. Taking into

consideration works made in the past such as [4], [5], either

concerning the Linux kernel or VM environments, there

is the possibility of introducing temporal guarantees allied

with Quality of Service (QoS) guarantees in each of the

aforementioned layers, or even in both, in a way that a

possible integration may be achieved, fulfilling the temporal

constraints imposed by the applications. This integration

may be useful for multimedia applications or even other

types of applications requiring specific machine resources

that need to be guaranteed in an advanced and timely

manner. Thus, taking advantage of the real-time capabilities

and resource optimisation provided by the platform.

Currently, the Linux kernel provides mechanisms that

allow a programmer to take advantage of a basic preemptive

fixed priority scheduling policy. However, when using this

type of scheduling policy it is not possible to achieve real-

time behaviour. Efforts have been made in the implemen-

tation of dynamic scheduling schemes which, instead of

using fixed priorities for scheduling, use the concept of

dynamic deadlines. These dynamic scheduling schemes have

the advantage of achieving full CPU utilisation bound, but

at the same time, they present an unpredictable behaviour

when facing system overloads.

Since version 2.6.23, the standard Linux kernel uses the

Completely Fair Scheduler (CFS), which applies fairness in

the way that CPU time is assigned to tasks. This balance

guarantees that all the tasks will have the same CPU share

and that, each time that unfairness is verified, the algo-

rithm assures that task re-balancing is performed. Although

fairness is guaranteed, this algorithm does not provide any

temporal guarantees to tasks, and therefore, neither Android

does it, as its scheduling operations are delegated to the

Linux kernel.

Android uses its own VM named Dalvik, which was

specifically developed for mobile devices and considers

memory optimisation, battery power saving and low fre-

quency CPU. It relies on the Linux kernel for the core

operating system features such as memory management and

63

scheduling and, thus, also presents the drawback of not

taking any temporal guarantees into consideration.

The work presented in this paper is part of the Cooper-

atES (Cooperative Embedded Systems) project [6], which

aims at the specification and implementation of a QoS-

aware framework, defined in [7], to be used in open and

dynamic cooperative environments. Due to the nature of the

environments, the framework should support resource reser-

vation in advance and guarantee that the real-time execution

constraints imposed by the applications are satisfied.

In the scope of the project, there was the need of eval-

uating Android as one of the possible target solutions to

be used for the framework’s implementation. As a result of

this evaluation, this paper discusses the potential of Android

and the implementation directions that can be adopted in

order to make it possible to be used in Open Real-Time

environments. However, our focus is targeted to soft real-

time applications and therefore, hard-real time applications

were not considered in our evaluation.

The remainder of this paper is organised as follows: Sec-

tion II briefly describes the Android’s architecture. Section

III presents a detailed evaluation along with some of the

Android internals and its limitations when considering real-

time environments. The different perspectives of extension

are detailed in Section IV. Finally, Section V concludes this

paper.

II. ANDROID’S ARCHITECTURE

Android is an open-source software architecture provided

by the Open Handset Alliance [8], a group of 71 technology

and mobile companies whose objective is to provide a

mobile software platform.

The Android platform includes an operating system,

middleware and applications. As for the features, Android

incorporates the common features found nowadays in any

mobile device platform, such as: application framework

reusing, integrated browser, optimised graphics, media sup-

port, network technologies, etc.

The Android architecture, depicted in Figure 1, is com-

posed by five layers: Applications, Application Framework,

Libraries, Android Runtime and finally the Linux kernel.

The uppermost layer, the Applications layer, provides the

core set of applications that are commonly offered out of

the box with any mobile device.

The Application Framework layer provides the framework

Application Programming Interfaces (APIs) used by the

applications running on the uppermost layer. Besides the

APIs, there is a set of services that enable the access to

the Android’s core features such as graphical components,

information exchange managers, event managers and activity

managers, as examples.

Below the Application Framework layer, there is another

layer containing two important parts: Libraries and the

Android Runtime. The libraries provide core features to

Figure 1. Android Architecture

the applications. Among all the libraries provided, the most

important are libc, the standard C system library tuned for

embedded Linux-based devices; the Media Libraries, which

support playback and recording of several audio and video

formats; Graphics Engines, Fonts, a lightweight relational

database engine and 3D libraries based on OpenGL ES.

Regarding the Android Runtime, besides the internal core

libraries, Android provides its own VM, as previously stated,

named Dalvik. Dalvik [9] was designed from scratch and it

is specifically targeted for memory-constrained and CPU-

constrained devices. It runs Java applications on top of it

and unlike the standard Java VMs, which are stack-based,

Dalvik is an infinite register-based machine. Being a register-

machine, it presents two advantages when compared to

stack-based machines. Namely, it requires 30% less instruc-

tions to perform the same computation as a typical stack

machine, causing the reduction of instruction dispatch and

memory access; and less computation time, which is also

derived from the elimination of common expressions from

the instructions. Nevertheless, Dalvik presents 35% more

bytes in the instruction stream than a typical stack-machine.

This drawback is compensated by the consumption of two

bytes at a time when consuming the instructions.

Dalvik uses its own byte-code format name Dalvik Ex-

ecutable (.dex), with the ability to include multiple classes

in a single file. It is also able to perform several optimi-

sations during dex generation when concerning the internal

storage of types and constants by using principles such as

minimal repetition; per-type pools; and implicit labelling.

By applying these principles, it is possible to have dex files

smaller than a typical Java archive (jar) file. During install

time, each dex file is verified and optimisations such as byte-

swapping and padding, static-linking and method in-lining

are performed in order to minimise the runtime evaluations

and at the same time to avoid code security violations.

The Linux kernel, version 2.6, is the bottommost layer

and is also a hardware abstraction layer that enables the

64

interaction of the upper layers with the hardware layer

via device drivers. Furthermore, it also provides the most

fundamental system services such as security, memory man-

agement, process management and network stack.

III. SUITABILITY OF ANDROID FOR OPEN REAL-TIME

SYSTEMS

This section discusses the suitability of Android for

open embedded real-time systems, analyses its architecture

internals and points out its current limitations. Android

was evaluated considering the following topics: its VM

environment, the underlying Linux kernel, and its resource

management capabilities.

Dalvik VM is capable of running multiple independent

processes, each one with a separate address space and

memory. Therefore, each Android application is mapped to

a Linux process and able to use an inter-process commu-

nication mechanism, based on Open-Binder [10], to com-

municate with other processes in the system. The ability

of separating each process is provided by Android’s archi-

tectural model. During the device’s boot time, there is a

process responsible for starting up the Android’s runtime,

which implies the startup of the VM itself. Inherent to this

step, there is a VM process, the Zygote, responsible for the

pre-initialisation and pre-loading of the common Android’s

classes that will be used by most of the applications. Af-

terwards, the Zygote opens a socket that accepts commands

from the application framework whenever a new Android

application is started. This will cause the Zygote to be

forked and create a child process which will then become

the target application. Zygote has its own heap and a set

of libraries that are shared among all processes, whereas

each process has its own set of libraries and classes that

are independent from the other processes. This model is

presented in Figure 2. The approach is beneficial for the

system as, with it, it is possible to save RAM and to speed

up each application startup process.

Android applications provide the common synchronisa-

tion mechanisms known to the Java community. Technically

speaking, each VM instance has at least one main thread and

may have several other threads running concurrently. The

threads belonging to the same VM instance may interact and

synchronise with each other by the means of shared objects

and monitors. The API also allows the use of synchronised

methods and the creation of thread groups in order to ease

the manipulation of several thread operations. It is also pos-

sible to assign priorities to each thread. When a programmer

modifies the priority of a thread, with only 10 priority levels

being allowed, the VM maps each of the values to Linux nice

values, where lower values indicate a higher priority. Dalvik

follows the pthread model where all the threads are treated

as native pthreads. Internal VM threads belong to one thread

group and all other application threads belong to another

group. According to source code analysis, Android does

Figure 2. Zygote Heap

not provide any mechanisms to prevent priority inversion

neither allows threads to use Linux’s real-time priorities

within Dalvik.

Threads may suspend themselves or be suspended either

by the Garbage Collector (GC), debugger or the signal

monitor thread. The VM controls all the threads through

the use of a internal structure where all the created threads

are mapped. The GC will only run when all the threads

referring to a single process are suspended, in order to avoid

inconsistent states.

The GCs have the difficult task of handling dynamic mem-

ory management, as they are responsible for deallocating the

memory allocated by objects that are no longer needed by

the applications. Concerning Android’s garbage collection

process, as the processes run separately from other processes

and each process has its own heap and a shared heap - the

Zygote’s heap - Android runs separate instances of GCs in

order to collect memory that is not being used anymore.

Thus, each process heap is garbage collected independently,

through the use of parallel mark bits that sign which objects

shall be removed by the GC. This mechanism is particularly

useful in Android due to the Zygote’s shared heap, which in

this case is kept untouched by the GC and allows a better

use of the memory.

Android uses the mark-sweep algorithm to perform

garbage collection. The main advantage provided by the

platform is that there will be a GC running per process,

which wipes all the objects from the application heap of a

specific process. This way, GCs belonging to other processes

will not impact the GC running for a specific process. The

main disadvantage arises from the algorithm used. As this

algorithm implies the suspension of all the threads belonging

to an application, this means that no predictability can be

achieved as that specific process will be freezed while being

garbage collected.

Android’s VM relies on the Linux kernel to perform all

the scheduling operations. This means that all the threads

running on top of the VM will be, by default, scheduled with

65

SCHED OTHER, and as such will be translated into the fair

scheme provided by the kernel. Therefore, it is not possible

to indicate that a particular task needs to be scheduled using

a different scheduling scheme.

Interrupt/event handling plays another important role

when concerning real-time systems, as it may lead to in-

consistent states if not handled properly. Currently, Android

relies on the Linux kernel to dispatch the interrupt/event via

device drivers. After an interrupt, the Java code responsible

for the event handling will be notified in order to perform

the respective operation. The communication path respects

the architecture layers and inter-process communication may

be used to notify the upper event handlers.

Currently, Dalvik does not support Just-in-Time (JIT)

compilation, although a prototype has already been made

available in the official repositories, which indicates that

this feature will be part of one of the next versions. Other

features that are also being considered as improvements are:

a compact and more precise garbage collector and the use

of ahead-of-time compilation for specific pieces of code.

As previously stated, Android relies on the Linux kernel

for features such as memory management, process manage-

ment and security. As such, all the scheduling activities are

delegated by the VM to the kernel.

Android uses the same scheduler as Linux, known as

Completely Fair Scheduler (CFS). CFS has the objective of

providing balance between tasks assigned to a processor.

For that, it uses a red-black binary tree, as presented in

Figure 3, with self-balancing capabilities, meaning that the

longest path in the tree is no more than twice as long as

the shortest path. Other important aspect is the efficiency of

these types of trees, which present a complexity of O(logn),
where n represents the number of elements in the tree. As

the tree is being used for scheduling purposes, the balance

factor is the amount of time provided to a given task. This

factor has been named virtual runtime. The higher the task’s

virtual runtime value, the lower is the need for the processor.

In terms of execution, the algorithm works as follows: the

tasks with lower virtual runtime are placed on the left side

of the tree, and the tasks with the higher virtual runtime

are placed on the right. This means that the tasks with the

highest need for the processor will always be stored on the

left side of the tree. Then, the scheduler picks the left-most

node of the tree to be scheduled. Each task is responsible for

accounting the CPU time taken during execution and adding

this value to the previous virtual runtime value. Then, it is

inserted back into the tree, if it has not finished yet. With this

pattern of execution, it is guaranteed that the tasks contend

the CPU time in a fair manner.

Another aspect of the fairness of the algorithm is the

adjustments that it performs when the tasks are waiting for

an I/O device. In this case, the tasks are compensated with

the amount of time taken to receive the information they

needed to complete its objective.

Figure 3. Red-Black Tree example

Since the introduction of the CFS, the concept of schedul-

ing classes was also introduced. Basically, these classes

provide the connection between the main generic sched-

uler functionalities and the specific scheduler classes that

implement the scheduling algorithms. This concept allows

several tasks to be scheduled differently by using different

algorithms for this purpose. Regarding the main scheduler,

it is periodic and preemptive. Its periodicity is activated

by the frequency of the CPU clock. It allows preemption

either when a high priority task needs CPU time or when

an interrupt exists. As for task priorities, these can be

dynamically modified with the nice command and currently

the kernel supports 140 priorities, where the values ranging

from 0 to 99 are reserved for real-time processes and the

values ranging from 100 to 139 are reserved for normal

processes.

Currently, the Linux kernel supports two scheduling real-

time classes, as part of the compliance with the POSIX

standard [11], SCHED RR and SCHED FIFO. SCHED RR

may be used for a round robin scheduling policy and

SCHED FIFO for a first-in, first-out policy. Both policies

have a high impact on the system’s performance if bad pro-

gramming applies. However, most of the tasks are scheduled

with SCHED OTHER class, which is a non real-time policy.

The task scheduling plays one of the most important

roles concerning the real-time features presented by a par-

ticular system. Currently, Linux’s real-time implementation

is limited to two scheduling real-time classes, both based

on priority scheduling. Another important aspect to be

considered in the evaluation is that most of the tasks are

scheduled by CFS. Although CFS tries to optimise the time

a task is waiting for CPU time, this effort is not enough as

it is not capable of providing guaranteed response times.

One important aspect that should be remarked is that

although the Linux kernel supports the real-time classes

aforementioned, these classes are only available for native1

Android applications. Normal Android applications can only

take advantage of the synchronisation mechanisms described

1A native application in Android is an application that can run on top
of the Linux kernel without the need of the VM.

66

earlier in this paper.

Regarding synchronisation, Android uses its own im-

plementation of libc - named bionic. bionic has its own

implementation of the pthread library and it does not support

process-shared mutexes and condition variables. However,

thread mutexing and thread condition variables are supported

in a limited manner. Currently, inter-process communication

is handled by Open-Binder. In terms of real-time limitations,

the mechanisms provided by the architecture do not solve

the old problems related with priority inversion. Therefore,

synchronisation protocols such as priority ceiling and inher-

itance are not implemented.

In terms of interrupt/event handling, these are performed

by the kernel via device drivers. Afterwards, the kernel is

notified and then is responsible for notifying the application

waiting for that specific interrupt/event. None of the parts

involved in the handling has a notion of the time restrictions

available to perform its operations. This behaviour becomes

more serious when considering interrupts. In Linux the

interrupts are the highest priority tasks, and therefore, this

means that a high priority task can be interrupted by the

arrival of an interrupt. This is considered a big drawback,

as it is not possible to make the system totally predictable.

Resource management implies its accounting, reclama-

tion, allocation, and negotiation [12]. Concerning resource

management conducted at the VM level, CPU time is

controlled by the scheduling algorithms, whereas memory

can be controlled either by the VM, if we consider the heaps

and its memory management, or by the operating system

kernel. Regarding memory, operations such as accounting,

allocation and reallocation can be performed. All these

operations suffer from an unbounded and non-deterministic

behaviour, which means that it is not possible to define and

measure the time allowed for these operations. The network

is out of scope of our analysis and thus was not evaluated.

At the kernel level, with the exception of the CPU and

memory, all the remaining system’s hardware is accessed via

device drivers, in order to perform its operations and control

the resources’ status.

Nevertheless, a global manager that has a complete

knowledge of the applications’ needs and system’s status

is missing. The arbitration of resources among applications

requires proper control mechanisms if real-time guarantees

are going to be provided. Each application has a resource

demand associated to each quality level it can provide.

However, under limited resources not all applications will

be able to deliver their maximum quality level. As such,

a global resource manager is able to allocate resources to

competing applications so that a global optimisation goal of

the system is achieved [7].

IV. POSSIBLE DIRECTIONS

This section discusses four possible directions to incor-

porate the desired real-time behaviour into the Android

architecture. The first approach considers the replacement of

the Linux operating system by one that provides real-time

features and, at the same time, it considers the inclusion of

a real-time VM. The second approach respects the Android

standard architecture by proposing the extension of Dalvik as

well as the substitution of the standard operating system by a

real-time Linux-based operating system. The third approach

simply replaces the Linux operating system for a Linux

real-time version and real-time applications use the kernel

directly. Finally, the fourth approach proposes the addition

of a real-time hypervisor that supports the parallel execution

of the Android platform in one partition while the other

partition is dedicated to the real-time applications.

Regarding the first approach, depicted in Figure 4, this

approach replaces the standard Linux kernel with a real-time

operating system. This modification introduces predictability

and determinism in the Android architecture. Therefore, it

is possible to introduce new dynamic real-time schedul-

ing policies through the use of scheduling classes; predict

priority inversion and to have better resource management

strategies. However, this modification entails that all the

device drivers supported natively need to be implemented

in the operating system with predictability in mind. This

task can be painful, specially during the integration phase.

Nevertheless, this approach also leaves space for the imple-

mentation of the required real-time features in the Linux

kernel. Implementing the features in the standard Linux

kernel requires time, but it has the advantage of providing

a more seamless integration with the remaining components

belonging to the architectures involved.

The second modification proposed, within the first ap-

proach, is the inclusion of a real-time Java VM. This modi-

fication is considered advantageous as, with it, it is possible

to have bounded memory management; real-time scheduling

within the VM, depending on the adopted solution; better

synchronisation mechanisms and finally to avoid priority

inversion. These improvements are considered the most

influential in achieving the intended deterministic behaviour

at the VM level. It is important to note that the real-time

VM interacts directly with the operating system’s kernel for

features such as task scheduling or bounded memory man-

agement. As an example, if one considers task scheduling,

the real-time VM is capable of mapping each task natively

on the operating system where it will be scheduled. If the

operating system supports other types of scheduling policies

besides the fixed priority-based scheduler, the VM may use

them to schedule its tasks. This means that most of the

operations provided by real-time Java VMs are limited to

the integration between the VM’s supported features and

the supported operating system’s features.

Other advantage from this approach is that it is not

necessary to keep up with the release cycles of Android,

although some integration issues may arise between the

VM and the kernel. The impact of introducing a new VM

67

Figure 4. Android full Real-Time

in the system is related to the fact that all the Android

specificities must be implemented as well as dex support in

the interpreter. Besides this disadvantage, other challenges

may pose such as the integration between both VMs. This in-

tegration possibly entails the formulation of new algorithms

to optimize scheduling and memory management in order to

be possible to have an optimal integrated system as a whole

and also to treat real-time applications in the correct manner.

The second proposed approach, presented in Figure 5,

also introduces modifications in the architecture both in the

operating system and virtual machine environments. As for

the operating system layer, the advantages and disadvantages

presented in the first approach are considered equal, as the

principle behind it is the same. The major difference lies

on the extension of Dalvik with real-time capabilities based

on the Real-Time Specification for Java (RTSJ) [13]. By

extending Dalvik with RTSJ features we are referring to

the addition of the following API classes: RealTimeThread,

NoHeapRealTimeThread, as well as the implementation of

generic objects related to real-time scheduling and memory

management such as Scheduler and MemoryAreas. All of

these objects will enable the implementation of real-time

garbage collection algorithms, synchronization algorithms

and finally, asynchronous event handling algorithms. All

of these features are specifically related to the RTSJ and

must be considered in order to be possible to have de-

terminism and predictability. However, its implementation

only depends on the extent one wishes to have, meaning

that a full compliant implementation may be achieved if

the necessary implementation effort is applied in the VM

extensions and the operating system’s supported features.

This extension is beneficial for the system as with it, it

is possible to incorporate a more deterministic behaviour

at the VM level without the need of concerning about the

particularities of Dalvik. Nevertheless, this approach has the

disadvantage of having to keep up with the release cycles

of the Android, more specially the VM itself, if one wants

Figure 5. Android Extended

to add these extensions to all the available versions of the

platform.

Two examples of this direction are [14] and [15]. The

work in [14] states that the implementation of a resource

management framework is possible in the Android platform

with some modifications in the platform. Although the re-

sults presented in this work are based on the CFS scheduler,

work is being done to update the scheduler to a slightly

modified version of EDF [16], that incorporates reservation-

based scheduling algorithms as presented in [17].

The work reported in [15] is being conducted in the

scope of CooperatES project [6], where a proof of concept

of a QoS-aware framework for cooperative embedded real-

time systems has already been developed for the Android

platform. Other important aspect of this work is the im-

plementation of a new dynamic scheduling strategy named

Capacity Sharing and Stealing (CSS) [18] in the Android

platform.

Both works show that it is possible to propose new

approaches based on the standard Linux and Android ar-

chitectures and add real-time behaviour to them in order

to take advantage of resource reservation and real-time

task scheduling. With both of these features, any of these

systems is capable of guaranteeing resource bandwidth to

applications, within an interval of time, without jeopardising

the system.

The third proposed approach, depicted in Figure 6, is also

based in Linux real-time. This approach takes advantage of

the native environment, where it is possible to deploy real-

time applications directly over the operating system. This

can be advantageous for applications that do not need the

VM environment, which means that a minimal effort will

be needed for integration, while having the same intended

behaviour. On the other hand, applications that need a VM

environment will not benefit from the real-time capabilities

of the underlying operating system.

Finally, the fourth approach, depicted in Figure 7, em-

68

Figure 6. Android partly Real-Time

ploys a real-time hypervisor that is capable of running

Android as a guest operating system in one of the partitions

and real-time applications in another partition, in a parallel

manner. This approach is similar to the approach taken by

the majority of the current real-time Linux solutions, such

as RTLinux [19] or RTAI [20]. These systems are able to

run real-time applications in parallel to the Linux kernel,

where the real-time tasks have higher priority than the Linux

kernel tasks, which means that hard real-time can be used.

On the other hand, the Linux partition tasks are scheduled

using the spare time remaining from the CPU allocation.

The main drawback from this approach is that real-time

applications are limited to the features offered by the real-

time hypervisor, meaning that they can not use Dalvik or

even most of the Linux services. Other limitation known

lies on the fact that if a real-time application hangs, all the

system may also hang.

V. CONCLUSION

At first glance, Android may be seen as a potential target

for real-time environments and, as such, there are numerous

industry targets that would benefit from an architecture with

such capabilities. Taking this into consideration, this paper

presented the evaluation of the Android platform to be used

as a real-time system. By focusing on the core parts of the

system it was possible to expose the limitations and then,

to present four possible directions that may be followed to

add real-time behaviour to the system.

Android was built to serve the mobile industry purposes

and that fact has an impact on the way that the architecture

might be used. However, with some effort, as proven by the

presented approaches, it is possible to have the desired real-

time behaviour on any Android device. This behaviour may

suit specific applications or components by providing them

the ability of taking advantage of temporal guarantees, and

therefore, to behave in a more predictable manner.

Figure 7. Android with a Real-Time Hypervisor

However, this effort must be addressed at the different

layers of the architecture, in a combined way, in order to

allow for potential extensions to be useful for the industry.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees

for their helpful comments. This work was supported by

FCT (CISTER Research Unit - FCT UI 608 and Cooper-

atES project - PTDC/ EIA/ 71624/ 2006) and RESCUE -

PTDC/EIA/65862/2006, and by the European Commission

through the ArtistDesign NoE (IST-FP7-214373).

REFERENCES

[1] Android, “Home page,” Jan. 2010. [Online]. Available:
http://www.android.com/

[2] Android-x86, “Android-x86 project,” Jan. 2010. [Online].
Available: http://www.android-x86.org/

[3] G. Macario, M. Torchiano, and M. Violante, “An in-vehicle
infotainment software architecture based on google android,”
in SIES. Lausanne, Switzerland: IEEE, July 2009, pp. 257–
260.

[4] RTMACH, “Linux/rk,” Mar. 2010. [Online]. Available:
http://www.cs.cmu.edu/∼rajkumar/linux-rk.html

[5] A. Corsaro, “jrate home page,” Mar. 2010. [Online].
Available: http://jrate.sourceforge.net/

[6] CooperatES, “Home page,” Jan. 2010. [Online]. Available:
http://www.cister.isep.ipp.pt/projects/cooperates/

[7] L. Nogueira and L. M. Pinho, “Time-bounded distributed qos-
aware service configuration in heterogeneous cooperative en-
vironments,” Journal of Parallel and Distributed Computing,
vol. 69, no. 6, pp. 491–507, June 2009.

69

[8] O. H. Alliance, “Home page,” Jun. 2010. [Online]. Available:
http://www.openhandsetalliance.com/

[9] D. Bornstein, “Dalvik vm internals,” Mar. 2010. [Online].
Available: http://sites.google.com/site/io/dalvik-vm-internals

[10] P. Inc., “Openbinder 1.0,” Mar. 2010. [Online]. Available:
http://www.angryredplanet.com/∼hackbod/openbinder/

[11] IEEE, “Ieee standard 1003.1,” Mar. 2010. [Online]. Available:
http://www.opengroup.org/onlinepubs/009695399/

[12] M. T. Higuera-Toledano and V. Issarny, “Java embedded
real-time systems: An overview of existing solutions,” in
Proceedings of the Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2000). Washington, DC, USA: IEEE Computer Society,
2000, pp. 392–399.

[13] R.-T. S. for Java, “Rtsj 1.0.2,” Jan. 2010. [Online]. Available:
http://www.rtsj.org/specjavadoc/book index.html

[14] R. Guerra, S. Schorr, and G. Fohler, “Adaptive resource
management for mobile terminals - the actors approach,” in
Proceedings of 1st Workshop on Adaptive Resource Manage-
ment (WARM10), Stockholm, Sweden, April 2010.

[15] C. Maia, L. Nogueira, and L. M. Pinho, “Experiences on
the implementation of a cooperative embedded system frame-
work,” CISTER Research Centre, Porto, Portugal, Tech. Rep.,
June 2010.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, 1973.

[17] D. Faggioli, M. Trimarchi, and F. Checconi, “An imple-
mentation of the earliest deadline first algorithm in linux,”
in Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC09). New York, NY, USA: ACM, 2009,
pp. 1984–1989.

[18] L. Nogueira and L. M. Pinho, “Capacity sharing and stealing
in dynamic server-based real-time systems,” in Proceedings
of the 21th IEEE International Parallel and Distributed
Processing Symposium, Long Beach,CA,USA, March 2007,
p. 153.

[19] W. R. Systems, “Real-time linux,” Jun. 2010. [Online].
Available: http://www.rtlinuxfree.com/

[20] P. d. M. Dipartimento di Ingegneria Aerospaziale, “Realtime
application interface for linux,” Jun. 2010. [Online].
Available: https://www.rtai.org/

70

Extending a HSF-enabled Open-Source Real-Time

Operating System with Resource Sharing

Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Moris Behnam
Real-Time Systems Design Group

Mälardalen Real-Time Research Centre

P.O. Box 883, SE-721 23 Västerås, Sweden

Abstract—Hierarchical scheduling frameworks (HSFs) provide
means for composing complex real-time systems from well-
defined, independently analyzed subsystems. To support resource
sharing within two-level, fixed priority scheduled HSFs, two syn-
chronization protocols based on the stack resource policy (SRP)
have recently been presented, i.e. HSRP [1] and SIRAP [2]. This
paper describes an implementation to provide such HSFs with
SRP-based synchronization protocols. We base our implementa-
tions on the commercially available real-time operating system
µC/OS-II, extended with proprietary support for periodic tasks,
idling periodic servers and two-level fixed priority preemptive
scheduling. Specifically, we show the implementation of SRP as
a local synchronization protocol, and present the implementation
of both HSRP and SIRAP. Moreover, we investigate the system
overhead induced by the synchronization primitives of each
protocol. Our aim is that these protocols can be used side-by-
side within the same HSF, so that their primitives can be selected
based on the protocol’s relative strengths1.

I. INTRODUCTION

The increasing complexity of real-time systems demands

a decoupling of (i) development and analysis of individual

applications and (ii) integration of applications on a shared

platform, including analysis at the system level. Hierarchical

scheduling frameworks (HSFs) have been extensively investi-

gated as a paradigm for facilitating this decoupling [3]. In such

open environments [4], an application that is validated to meet

its timing constraints when executing in isolation will continue

meeting its timing constraints after integration (or admission)

on a shared platform. Temporal isolation between applications

is provided by allocating a budget to each subsystem. In this

paper we assume a one-to-one relation between applications

and subsystems.

To accommodate resource sharing between fixed-priority

scheduled subsystems, two synchronization protocols have

been proposed based on the stack resource policy (SRP) [5],

i.e. HSRP [1] and SIRAP [2]. A HSF extended with such a

protocol makes it possible to share logical resources between

arbitrary tasks, which are located in arbitrary subsystems, in

a mutually exclusive manner. A resource that is used in more

than one subsystem is denoted as a global shared resource.

A resource that is only shared within a single subsystem

is a local shared resource. If a task that accesses a global

1The work in this paper is supported by the Dutch HTAS-VERIFIED
project, see http://www.htas.nl/index.php?pid=154

shared resource is suspended during its execution due to the

exhaustion of the corresponding subsystem’s budget, excessive

blocking periods can occur which may hamper the correct

timeliness of other subsystems [6]. To prevent the depletion

of a subsystem’s budget during a global resource access

SIRAP uses a skipping mechanism. Contrary, HSRP uses

an overrun mechanism (with or without payback), i.e. the

overrun mechanism reacts upon a budget depletion during a

global resource access by temporarily increasing the budget

with a statically determined amount for the duration of that

resource access. The relative strengths of HSRP and SIRAP

heavily depend on system characteristics [7], which makes

it attractive to support both within the same HSF. In this

paper we present the implementation of the synchronization

primitives for both synchronization protocols to support global

(i.e. inter-subsystem) resource sharing by extending a HSF-

enabled µC/OS-II operating system. The choice of operating

system is in line with our industrial and academic partners.

A. Problem Description

Most off-the-shelf real-time operating systems, including

µC/OS-II, do not provide an implementation for SRP nor

hierarchical scheduling. We have extended µC/OS-II with

support for periodic tasks, idling periodic servers [8] and two-

level fixed priority preemptive scheduling (FPPS). Although

global resource sharing protocols within HSFs are extensively

investigated for ideal system models, implementations are

lacking within real-time operating systems. Moreover, the run-

time overhead of these protocols is unknown and not included

in these models. These overheads become relevant during

deployment of such a resource sharing open environment.

B. Contributions

The contribution of this paper is fivefold. First, we present

an implementation of SRP within µC/OS-II as a local (i.e.

intra-subsystem) resource access protocol. We aim at a modu-

lar design, so that one can choose between the original priority

inheritance implementation, or our SRP implementation. We

show that our SRP implementation improves the existing

µC/OS-II implementation for mutual exclusion by lifting

several limitations and simplifying the implementation. We

restrict this implementation to single unit resources and single

processor platforms. Second, we present an implementation

71

for HSRP [1] and SIRAP [2] to support global (i.e. inter-

subsystem) resource sharing within a two-level fixed priority

hierarchically scheduled system. We aim at unified interfaces

for both protocol implementations to ease the integration of

HSRP and SIRAP within the same HSF. Third, we compare

the system overhead of the primitives of both synchronization

protocols. Fourth, we show how HSRP and SIRAP can be

integrated side-by-side within the same HSF. Inline with

µC/OS-II we allow to enable or disable each protocol exten-

sion during compile time. Finally, we show that our protocol

implementations follow a generic design, i.e. the µC/OS-II

specific code is limited.

C. Overview

The remainder of this paper is as follows. Section II

describes the related work. Section III presents background

information on µC/OS-II. Section IV summarizes our basic

µC/OS-II extensions for periodic tasks, idling periodic servers

and a two-level fixed priority scheduled HSF based on a

timed event management system [9, 10]. Section V describes

SRP at the level of local resource sharing, including its im-

plementation. Section VI describes common terminology and

implementation efforts for SRP at the level of global resource

sharing. Section VII and VIII describe the implementation of

global SRP-based synchronization protocols, i.e. SIRAP and

subsequently HSRP. In Section IX we compare both protocol

implementations. Section X discusses the challenges towards

a system supporting both protocols side-by-side. Finally, Sec-

tion XI concludes the paper.

II. RELATED WORK

In literature, several implementations are presented to

provide temporal isolation between dependent applications.

De Niz et al. [11] support resource sharing between reser-

vations based on PCP in their fixed priority scheduled

Linux/RK resource kernel. Buttazzo and Gai [12] implemented

a reservation-based earliest deadline first (EDF) scheduler

for the real-time ERIKA Enterprise kernel, including SRP-

based synchronization support. However, both approaches

are not applicable in open environments [4], because they

lack a distinct support for local and global synchronization.

Contrary, Behnam et al. [13] implemented a HSF on top of

the real-time operating system VxWorks, but do not support

synchronization between applications. Although resource shar-

ing between applications within HSFs has been extensively

investigated in literature, e.g. [1, 2, 7, 14, 15, 16, 17], none

of the above implementations provide such synchronization

primitives. In this paper we describe the implementation

of such synchronization primitives by further extending our

HSF-enabled µC/OS-II operating system. Looking at existing

industrial real-time systems, FPPS is the de-facto standard of

task scheduling. Having such support will simplify migration

to and integration of existing legacy applications into the HSF,

avoiding unbridgeable technology revolutions for engineers. In

the remainder of this section we provide a brief overview of

both local and global synchronization protocols.

A. Local synchronization

The priority inversion problem [18] can be prevented by the

priority inheritance protocol (PIP). PIP makes a task inherit

the highest priority of any other tasks that are waiting on

a resource the task uses. A disadvantage of PIP is that it

suffers from the chained blocking and deadlock problem [18].

As a solution, Sha et al. [18] proposed the priority ceiling

protocol (PCP). An easier to implement alternative to PCP

is the highest locker protocol (HLP). HLP uses an off-line

computed ceiling to raise a task’s priority when it accesses

a resource. In case of HLP a task is already prevented from

starting its execution when a resource is accessed by another

task sharing this resource, whereas PCP postpones increasing

of priorities until a blocking situation occurs. As an alternative

to PCP, Baker [5] presented the stack resource policy (SRP).

SRP has an easier implementation and induces less context

switching overhead compared to PCP, and supports dynamic

priority scheduling policies. Because of its wide applicability,

ease of implementation and its apparent improvements of the

existing synchronization protocol, we have decided to extend

µC/OS-II with SRP, as presented in this paper.

B. Global synchronization

Recently, three SRP-based synchronization protocols for

inter-subsystem resource sharing between tasks have been

presented. Their relative strength depends on various system

parameters [15]. BROE [14] considers resource sharing under

EDF scheduling. Most commercial operating systems, includ-

ing µC/OS-II, do not implement an EDF scheduler. Both

HSRP [1] and SIRAP [2] assume FPPS. In order to deal

with resource access while a subsystem’s budget depletes,

HSRP uses a run-time overrun mechanism [1]. The original

analysis of HSRP [1] does not allow for integration in open

environments due to the lacking support for independent

analysis of subsystems. Behnam et al. [16] lifted this lim-

itation, enabling the full integration of HSRP within HSFs.

Alternatively, SIRAP uses a skipping approach to prevent

budget depletion inside a critical section [2]. Recently, both

synchronization protocols are analytically compared and their

impact on the total system load for various system parameters

is analyzed using simulations [7]. In this paper we implement

both protocols within µC/OS-II, and compare the efficiency

of the corresponding primitives.

III. µC/OS-II: A BRIEF OVERVIEW

The µC/OS-II operating system is maintained and supported

by Micrium [19], and is applied in many application domains,

e.g. avionics, automotive, medical and consumer electronics.

Micrium provides the full µC/OS-II source code with accom-

panying documentation [20]. The µC/OS-II kernel provides

preemptive multitasking, and the kernel size is configurable

at compile time, e.g. services like mailboxes and semaphores

can be disabled.

72

A. µC/OS-II Task Scheduling

The number of tasks that can run within µC/OS-II is

64 by default, and can be extended to 256 by altering the

configuration. Each group of 8 tasks is assigned a bit in the

ready-mask, updated during run-time to indicate whether a task

is ready to run within this group. The ready-mask allows for

optimized fixed priority scheduling by performing efficient bit

comparison operations to determine the highest priority ready

task to run, as explained in more detail in [20, Section 3].

B. µC/OS-II Synchronization Protocol

The standard µC/OS-II distribution supports synchroniza-

tion primitives by means of mutexes [20]. However, it is not

clearly stated which synchronization protocol they implement.

Lee and Kim [21] attempted to identify the protocol by

analyzing the source code. The presence of a ceiling in

the mutex interface suggested the implementation of HLP.

However, we have analyzed the behavior in Figure 1 of two

tasks that reserve two resources in opposite order2. Since we

observe a deadlock, µC/OS-II does not seem to implement

HLP or an other deadlock avoidance protocol.

0 50 100

Task1

Task2

Idle

Legend:

active

holding

mutex

Fig. 1. The mutex implementation in µC/OS-II suffers from the deadlock
problem, inherited from the PIP definition. The task-set T contains tasks τ1
and τ2, where τ1 has the highest priority. τ1 first locks resource R1 and
subsequently R2, has a computation time2 C1 = 10 + 5 + 5 + 5 + 5, and
a phasing ϕ1 = 10. τ2 first locks resource R2 and subsequently R1, has a
computation time C2 = 5+10+25+10+5, and no phasing (i.e. ϕ2 = 0).

µC/OS-II only supports a single task on each priority-level,

independent of its execution state, because a priority is also

used as a task identifier. A priority-level is assigned to each

resource on creation of the resource. The priority-level is

used to raise the priority of a task when it blocks a higher

priority task, which is named priority calling in the µC/OS-II

terminology. Because of the assignment of a unique priority to

each resource, the transparent character of PIP is lost. In the

original PIP a priority is dynamically raised to the priority of

the task that is pending on a resource, which does not require

any off-line calculated information. Literature [21] outlines an

implementation of PIP within µC/OS-II lifting the limitation

on reserving a priority level.

2The fragmented computation time Ci denotes the task’s consumed
time units before/after locking/unlocking a resource, e.g. the scenario
C1,1 − Lock(R1) − C1,2 − Lock(R2) − C1,3 − Unlock(R2) − C1,4 −

Unlock(R1)− C1,5 is denoted as C1,1 + C1,2 + . . .+ C1,5.

IV. BASIC µC/OS-II EXTENSIONS RECAPITULATED

In this paper, we consider a HSF with two-level FPPS,

where a system S is composed of a set of subsystems, each

of which is composed of a set of tasks. A server is allocated

to each subsystem Ss ∈ S . A global scheduler is used to

determine which server should be allocated the processor at

any given time. A local scheduler determines which of the

chosen server’s tasks should actually execute. Given such

a HSF mapped on a single processor, we assume that a

subsystem is implemented by means of an idling periodic

server [8]. However, the proposed approach is expected to

be easily adaptable to other server models. A server has a

replenishment period Ps and a budget Qs, which together

define a timing interface Ss(Ps, Qs) associated with each

subsystem Ss. We say that tasks assigned to a server consume

processor time relative to the server’s budget to signify that

the consumed processor time is accounted to (and subtracted

from) that budget.

Most real-time operating systems, including µC/OS-II, do

not include a reservation-based scheduler, nor provide means

for hierarchical scheduling. Although some real-time operating

systems provide primitives to support periodic tasks, e.g.

RTAI/Linux [22], µC/OS-II does not. In the remainder of

this section we outline our realization of such extensions

for µC/OS-II, which are required basic blocks to enable the

integration of global synchronization.

A. Timed Event Management

Real-time systems need to schedule many different timed

events (e.g. programmed delays, arrival of periodic tasks

and budget replenishment) [9]. On contemporary computer

platforms, however, the number of hardware timers is usually

limited, meaning that events need to be multiplexed on the

available timers. Facing these challenges led to the invention

of RELTEQ [9].

The basic idea behind RELTEQ is to store the arrival times

of events relative to each other, by expressing the arrival time

of an event relative to the arrival time of the previous event.

The arrival time of the head event is relative to the current

time, as shown in Figure 2. While RELTEQ is not restricted

to any specific hardware timer, in this paper we assume a

periodic timer. At every tick of the periodic timer the time of

the head event in the queue is decremented.

Two operations can be performed on an event queue: new

events can be inserted and the head event can be popped. When

a new event ei with absolute time ti is inserted, the event

queue has to be traversed, accumulating the relative times of

the events until a later event ej is found, with ti < tj , where ti
and tj are both absolute times. When such an event is found,

then (i) ei is inserted before ej , (ii) its time is set relative to

the previous event, and (iii) the arrival time of ej is set relative

to ei. If no later event was found, then ei is appended at the

end of the queue, and its time is set relative to the previous

event.

In [10] we proposed a technique to extend RELTEQ with

the aim to minimize the overhead of handling events belonging

73

12 4 5 5 10

e
1

e
2

e
3

e
4

e
5

absolute time1002

event time

1006 1011 1016 1026990

now

Fig. 2. Example of the RELTEQ event queue.

to inactive servers. To support hierarchical scheduling, we

introduced a server queue for each server to keep track of the

events local to the server. At any time at most one server can

be active; all other servers are inactive. A stopwatch queue

keeps track of the time passed since the last server switch,

which provides a mechanism to synchronize the server queues

with the global time upon a server context switch. Finally,

we introduced the notion of a virtual event, which are timed

events relative to the consumed budget, e.g. budget depletion.

An additional server event queue that is not synchronized

with global time upon a server context-switch implements the

infrastructure to support virtual events.

B. Periodic Task Scheduling

The implemented RELTEQ extensions within µC/OS-II

easily allow the support for periodic tasks. Because different

µC/OS-II services can influence the state of a task, we do

not directly alter the task’s state. Instead, a periodic task is

characterized by an infinite loop which executes its periodic

workload and subsequently pends on a semaphore. The event

handler corresponding to RELTEQ’s activation event releases

the pending task and inserts a new event for the next period.

C. Simplified Server Scheduling

Extending the standard µC/OS-II scheduler with basic HSF

support requires the identification and realization of the fol-

lowing concepts:
1) Applications: An application can be modeled as a set of

tasks. Since µC/OS-II tasks are bundled in groups of eight to

accommodate efficient fixed priority scheduling, as explained

in Section III-A, a server can naturally be represented by a

multiple of eight tasks.
2) Idling Periodic Servers: A realization of the idling

periodic server is very similar to the implementation of a

periodic task using our RELTEQ extensions [10], with the

difference that the server structures do not require additional

semaphores. An idling task is contained in all servers at the

lowest local priority.
3) Two-level FPPS-based HSF: Similar to the existing

µC/OS-II task scheduling approach, we introduce an additional

bit-mask to represent whether a server has capacity left. When

the scheduler is called it determines the highest priority server

with remaining capacity, and hides all tasks from other servers

for the local scheduler. Subsequently, the local scheduler

determines the highest priority ready task within the server.

V. STACK RESOURCE POLICY IMPLEMENTATION

As a supportive step towards global synchronization, first

the SRP protocol is summarized, followed by the implemen-

tation description of the SRP primitives. Note that in its

original formulation SRP introduces the notion of preemption-

levels. In this paper we consider FPPS, which allows to unify

preemption-levels with task priorities.

A. SRP Recapitulated

The key idea of SRP is that when a task needs a resource

that is not available, it is blocked at the time it attempts

to preempt, rather than later. Therefore a preemption test is

performed during runtime by the scheduler: A task is not

permitted to preempt until its priority is the highest among

those of all ready tasks and its priority is higher than the

system ceiling.
1) Resource Ceiling: Each resource is assigned a static,

off-line calculated ceiling, which is defined as the maximum

priority of any task that shares the resource.
2) System Ceiling: The system ceiling is defined as the

maximum of the resource ceilings of all currently locked

resources. When no resources are locked the system ceiling

is zero, meaning that it does not block any tasks from

preempting. When a resource is locked, the system ceiling

is adjusted dynamically using the resource ceiling. A run-time

mechanism for tracking the system ceiling can be implemented

by means of a stack.

B. SRP Data and Interface Description

Each resource accessed using an SRP-based mutex is rep-

resented by a Resource structure. This structure is defined

as follows:

typedef struct resource{

INT8U ceiling;

INT8U lockingTask;

void* previous;

} Resource;

The Resource structure stores properties which are used

to track the system ceiling, as explained in the next subsection.

The corresponding mutex interfaces are defined as follows:
1) Create a SRP mutex:

Resource* SRPMutexCreate(INT8U ceiling,

INT8U *err);

2) Lock a SRP mutex:
void SRPMutexLock(Resource* r, INT8U *err);

3) Unlock a SRP mutex:
void SRPMutexUnlock(Resource* r);

C. SRP Primitive and Data-structure Implementation

Nice properties of the SRP are its simple locking and

unlocking operations. Moreover, SRP allows to share a single

stack between all tasks within an application. In turn, during

run-time we need to keep track of the system ceiling and the

scheduler needs to compare the highest ready task priority with

the system ceiling.
1) Tracking the System Ceiling: We use the Resource

data-structure to implement a system ceiling stack. ceiling

stores the resource ceiling and lockingTask stores the

identifier of the task currently holding the resource. The

previous pointer is used to maintain the stack structure, i.e.

it points to the previous Resource structure on the stack.

The ceiling field of the Resource on top of the stack

represents the current system ceiling.

74

2) Resource Locking: When a task tries to lock a resource

with a resource ceiling higher than the current system ceiling,

the corresponding resource ceiling is pushed on top of the

system ceiling stack.

3) Resource Unlocking: When unlocking a resource, the

value on top of the system ceiling stack is popped if the

corresponding resource holds the current system ceiling. The

scheduler is called to allow for scheduling ready tasks that

might have arrived during the execution of the critical section.

4) Scheduling: When the µC/OS-II scheduler is called it

calls a function which returns the highest priority ready task.

Accordingly to SRP we extend this function with the following

rule: when the highest ready task has a priority lower than or

equal to the current system ceiling, the priority of the task

on top of the resource stack is returned. The returned priority

serves as a task identifier.

D. Evaluation

To show that our SRP-based implementation improves on

the standard mutex implementation we have simulated the

same task set as in Figure 1. The resulting trace in Fig-

ure 3 shows that our SRP implementation successfully handles

nested critical sections, whereas the priority inheritance imple-

mentation causes a deadlock of the involved tasks.

0 50 100

Task1

Task2

Idle

Legend:

active

holding

mutex

Fig. 3. Using the SRP mutexes the deadlock problem for nested resources
is resolved. The task parameters are equal to the example in Section III-B.

Moreover, our implementation reduces the amount of source

code: µC/OS-II’s PIP implementation consists of 442 lines of

code (excluding comments) versus 172 lines of code for our

SRP implementation. Additionally, SRP avoids keeping track

of the waiting tasks, i.e. it is more processor time and memory

space efficient, and lifts the limitation to reserve a priority for

each resource.

VI. GLOBAL SRP-BASED SYNCHRONIZATION

Both HSRP and SIRAP can be used for independent de-

velopment of subsystems and support subsystem integration

in the presence of globally shared resources [2, 16]. Besides,

both protocols use SRP to synchronize global resource access,

and therefore parts of their implementations are common, as

described in this section.

A. Definitions

Lifting SRP to a two-level HSF requires to extend our notion

of a ceiling compared to the original SRP.

1) Resource ceiling: With every global resource two types

of resource ceilings are associated; a global resource ceiling

for global scheduling and a local resource ceiling for local

scheduling. These ceilings are defined according the SRP.
2) System/subsystem ceiling: The system/subsystem ceil-

ings are dynamic parameters that change during execution. The

system/subsystem ceiling is equal to the highest global/local

resource ceiling of a currently locked resource in the sys-

tem/subsystem. Under SRP, a task can only preempt the cur-

rently executing task (even when accessing a global resource)

if its priority is higher than its subsystem ceiling. A similar

condition for preemption holds for subsystems.

B. Extending the SRP Data Structures

Each global resource accessed using an SRP-based mutex

is represented by a Resource structure. Additionally, the

resource is represented by a localResource structure

defined as follows:

typedef struct {

struct resource* globalResource;

INT8U localCeiling;

INT8U localLockingTask;

void* previous;

} localResource;

The localResource structure stores properties which

are used to track the subsystem ceiling, as explained in the

next subsection.

C. Tracking the Subsystem/System Ceiling

Similar to the SRP implementation we need to maintain a

stack for the global and local resource ceilings. The global

stack is represented by the stack implementation described in

Section V-C. A global mutex creates a normal SRP mutex and

passes the system ceiling as a ceiling, i.e.

Pseudo-code 1 Resource∗ GlobalMutexCreate(INT8U globalCeiling);

1: InitializeLocalResourceData();
2: return SRPMutexCreate(globalCeiling, 0);

To keep track of local subsystem ceilings, we need to

maintain a separate subsystem ceiling stack for each sub-

system. We use the localResource data-structure to im-

plement a subsystem ceiling stack. The globalResource

points to the corresponding resource block at the global

level. localCeiling stores the local resource ceiling

and localLockingTask stores the identifier of the task

currently holding the resource. The previous pointer is

used to maintain the stack structure, i.e. it points to the

previous localResource structure on the stack. The

localCeiling field of the localResource on top of

the stack represents the current subsystem ceiling.

D. Scheduling

Extending the scheduler with a preemption rule is similar

to the SRP implementation. When the scheduler selects the

next server to be activated, its associated subsystem priority

must exceed the current system ceiling. Similarly, the priority

of the selected task must exceed the subsystem ceiling.

75

VII. SIRAP IMPLEMENTATION

This section presents the SIRAP implementation using the

SRP infrastructure described in Section VI. First, we summa-

rize SIRAP, followed by its realization within µC/OS-II.

A. SIRAP Recapitulated

SIRAP uses SRP to synchronize access to globally shared

resources [2], and uses a skipping approach to prevent budget

depletion inside a critical section. If a task wants to enter

a critical section, it enters the critical section at the earliest

time instant so that it can complete the critical section before

the subsystem budget expires. If the remaining budget is not

sufficient to lock and release a resource before expiration,

(i) the task blocks itself, and (ii) the subsystem ceiling is raised

to prevent other tasks in the subsystem to execute until the

resource is released.

B. SIRAP Data and Interface Description

The SIRAP interfaces for locking and unlocking globally

shared resources are defined as follows:
1) Lock SIRAP mutex:

void SIRAP_Lock(Resource* r, INT16U holdTime);

2) Unlock SIRAP mutex:
void SIRAP_Unlock(Resource* r);

The lock operation contains a parameter holdTime, which

is accounted in terms of processor cycles and allocated to the

calling task’s budget. Efficiently filling in this parameter in

terms of system load requires the programmer to correctly

obtain the resource holding time [2, 23]. Since this provides

an error-prone way of programming, we discuss an alternative

approach in Section X.

C. SIRAP Primitive Implementation

SIRAP’s locking and unlocking are building on the SRP

implementation. Note that kernel primitives are assumed to

execute non-preemptively, unless denoted differently (i.e. in

SIRAP’s lock operation).

1) Resource Locking: The lock operation first updates

the subsystem’s local ceiling according to SRP to prevent

other tasks within the subsystem from interfering during the

execution of the critical section. In order to successfully lock a

resource there must be sufficient remaining budget within the

server’s current period. The remaining budget Qremaining is

returned by a function that depends on the virtual timers mech-

anism, see Section IV-A. SIRAP’s skipping approach requires

the knowledge of the resource holding times (holdT ime) [23]

when accessing a resource. If Qremaining is not sufficient, the

task will spinlock until the next replenishment event expires.

To avoid a race-condition between a resource unlock and

budget depletion, we require that Qremaining is strictly larger

than holdT ime before granting access to a resource. The lock

operation in pseudo-code is shown in Source 2.

When the server’s budget is replenished, all tasks spin-

locking on a resource are unlocked as soon as the task is

rescheduled. Although after budget replenishment a repeated

test on the remaining budget is superfluous [2], we claim that

Pseudo-code 2 void SIRAP lock(Resource∗ r, INT16U holdTime);

1: updateSubsystemCeiling();
2: while holdT ime >= Qremaining do

3: enableInterrups;
4: disableInterrups;
5: end while

6: SRPMutexLock(r, 0);

spinlocking efficiently implements the skipping mechanism.

A disadvantage of this implementation is that it relies on

the assumption of a idling periodic server3. For any budget-

preserving server, e.g. the deferrable server [25], the skipping

mechanism by means of a spinlock is unacceptable, because

a task consumes server budget during spinlocking.

An alternative implementation would be to suspend a task

when the budget is insufficient and resume a task when the

budget is replenished. Firstly, this alternative approach induces

additional overhead within the budget replenishment event

due to the resumption of the blocked task. Secondly, µC/OS-

II requires at any time a schedulable ready task, which is

optionally a special idle task at the lowest priority. However,

the system/subsystem ceilings prevent the idle task to be

switched in. We could choose to make an exception for the

idle task, but this breaks the property of SRP allowing to share

stack space among tasks [5]. We consider further elaboration

on these issues out of the scope of this paper.

2) Resource Unlocking: Unlocking a resource simply

means that the system/subsystem ceiling must be updated and

the SRP mutex must be released. Note that the latter command

will also cause rescheduling.

Pseudo-code 3 void SIRAP unlock(Resource∗ r);

1: updateSubsystemCeiling();
2: SRPMutexUnlock(r);

VIII. HSRP IMPLEMENTATION

This section presents the HSRP implementation. First, we

summarize HSRP, followed by its realization within µC/OS-II.

A. HSRP Recapitulated

HSRP uses SRP to synchronize access to globally shared

resources [1], and uses an overrun mechanism to prevent ex-

cessive blocking times due to budget depletion inside a critical

section. When the budget of a subsystem expires and the

subsystem has a task τi that is still locking a globally shared

resource, this task τi continues its execution until it releases the

locked resource. When a task accesses a global resource the

local subsystem ceiling is raised to the highest local priority,

i.e. for the duration of the critical section the task executes

non-preemptively with respect to other tasks within the same

subsystem. Two alternatives of the overrun mechanism are

presented: (i) overrun with payback, and (ii) overrun without

3A polling server [24] also works under this assumption, but does not adhere
to the periodic resource model [3], and therefore increases the complexity
to integrate SIRAP and HSRP within a single HSF [7]. We leave the
implementation for alternative server models as future work.

76

payback. The payback mechanism requires that when a over-

run happens in a subsystem Ss, the budget of this subsystem

is decreased with the consumed amount of overrun in its next

execution instant. Without payback no further actions are taken

after an overrun has occurred. We do not further investigate

the relative strengths of both alternatives, since these heavily

depend on the chosen system parameters [7]. In this section

we show an implementation supporting both HSRP versions.

B. HSRP Data and Interface Description

The HSRP interfaces for locking and unlocking globally

shared resources are defined as follows:
1) Lock HSRP mutex:

void HSRP_Lock(Resource* r);

2) Unlock HSRP mutex:
void HSRP_Unlock(Resource* r);

Contrary to SIRAP, the lock operation lacks the holdT ime

parameter. Instead, HSRP uses a static amount of overrun

budget, Xs, assigned to each server within the system.

C. HSRP Primitive Implementation

HSRP’s locking and unlocking are building on the SRP

implementation. Additionally, we need to adapt the bud-

get depletion event handler to cope with overrun. This re-

quires to keep track of the number of resources locked

(lockedResourceCounter) within subsystem Ss. The server

data-structure is extended with four additional fields for book-

keeping purposes, i.e. lockedResourceCounter, inOverrun,

consumedOverrun and paybackEnabled. The consumption

of overrun budget ends when the normal budget is replen-

ished [17], which requires an adaption of the budget replenish-

ment event. Optionally, we implement an payback mechanism

in the budget replenishment event. These event handlers are

provided by RELTEQ as presented in Section IV-A.
1) Resource Locking: The lock operation first updates the

subsystem’s local ceiling to the highest local priority to prevent

other tasks within the subsystem from interfering during the

execution of the critical section. The lock operation in pseudo-

code can be denoted as follows:

Pseudo-code 4 void HSRP lock(Resource∗ r);

1: updateSubsystemCeiling();
2: Ss.lockedResourceCounter ++;
3: SRPMutexLock(r, 0);

2) Resource Unlocking: Unlocking a resource means that

the system/subsystem ceiling must be updated and the SRP

mutex must be released. Additionally, in case that overrun

budget, Xs, is consumed and no other global resource is

locked within the same subsystem, we need to inform the

scheduler that overrun has ended. Optionally, the amount of

consumed overrun budget is stored to support payback upon

the next replenishment. The unlock operation in pseudo-code

is is shown in Pseudo-code 5.

The command setSubsystemBudget(0) performs two ac-

tions: (i) the server is blocked to prevent the scheduler from

rescheduling the server, and (ii) the budget depletion event is

removed from RELTEQ’s virtual event queue.

Pseudo-code 5 void HSRP unlock(Resource∗ r);

1: updateSubsystemCeiling();
2: Ss.lockedResourceCounter −−;
3: if Ss.lockedResourceCounter == 0 and Ss.inOverrun then

4: if Ss.paybackEnabled then

5: Ss.consumedOverrun = Xs −Qremaining ;
6: end if

7: setSubsystemBudget(0);
8: end if

9: SRPMutexUnlock(r);

3) Budget Depletion: We extend the event handler corre-

sponding to a budget depletion by a conditional enlargement

of the budget of the size Xs, with Xs > 0, i.e. in pseudo code:

Pseudo-code 6 on budget depletion:

1: if Ss.lockedResourceCounter > 0 then

2: setSubsystemBudget(Xs);
3: Ss.inOverrun = true;
4: end if

Note that setSubsystemBudget(Xs) inserts a new event

in RELTEQ’s virtual event queue. Furthermore, we postpone

server inactivation.

4) Budget Replenishment: When a server is still consuming

overrun budget while its normal budget is replenished, the

overrun state of this server is reset. Additionally, to support the

optionally enabled payback mechanism, we replace the budget

replenishment line in the corresponding event handler. The

replenished budget is decreased with the consumed overrun

budget in the previous period, i.e. in pseudo code:

Pseudo-code 7 on budget replenishment:

1: if Ss.inOverrun then
2: if Ss.paybackEnabled then

3: Ss.consumedOverrun = Xs −Qremaining ;
4: end if

5: Ss.inOverrun = false

6: end if

7: setSubsystemBudget(Qs − Ss.consumedOverrun);
8: Ss.consumedOverrun = 0;

IX. COMPARING SIRAP AND HSRP

In this section we compare both implementations for HSRP

and SIRAP. First, we present a brief overview of our test

platform. Next, we compare the implementations of HSRP

and SIRAP and demonstrate their effectiveness by means of an

example system. Finally, we investigate the system overhead

of the synchronization protocol’s corresponding primitives.

A. Experimental Setup

In our experiments we use the cycle-accurate OpenRISC

simulator provided by the OpenCores project [26]. Within this

project an open-source hardware platform is developed. The

hardware architecture comprises a scalar processor and basic

peripherals to provide basic functionality [27]. The OpenRISC

simulator allows simple code analysis and system performance

evaluation. Recently, we created a port for µC/OS-II to the

77

Fig. 4. Example trace for HSRP using the overrun and payback mechanisms.

OpenRISC platform, and extended the toolchain with visu-

alization tools, which make it possible to plot a real-time

system’s behaviour [28, 29].

B. Protocol Comparison

To demonstrate the behavioural difference between HSRP

and SIRAP, consider an example system comprised of two

subsystems (see Table I) each with two tasks (see Table II)

sharing a single global resource R1. Note that the subsys-

tem/task with the lowest number has the highest priority and

that the computation times of tasks are denoted similarly as in

Section III-B2. The local resource ceilings of R1 are chosen

to be equal to the highest local priority for SIRAP, while for

HSRP this is the default setup.

TABLE I
EXAMPLE SYSTEM: SUBSYSTEM PARAMETERS

Subsystem Period (Ps) Budget (Qs) Max. blocking (Xs)

Server 1 50 20 15

Server 2 60 20 15

Inherent to the protocol, HSRP immediately grants access

to a shared resource and allows the task to overrun its server’s

budget for the duration of the critical section, see Figure 4.

Server 2 replenishes its budget with Xs at time 40. At time

50 task 4 releases R1 and the remainder of Xs is discarded.

Fig. 5. Example trace for SIRAP using the skipping mechanism. Note that
skipping occurs as normal task activation in the execution behaviour of a task.

TABLE II
EXAMPLE SYSTEM: TASK PARAMETERS

Server Task Period Computation time Phasing

Server 1 Task 1 100 10 10

Server 1 Task 2 150 5+15+5 -

Server 2 Task 3 100 10 10

Server 2 Task 4 200 5+15+5 -

The normal budget of server 2 is reduced with its consumed

overrun at the next replenishment (time 60).

Contrary, SIRAP postpones resource access when the bud-

get is insufficient, as illustrated in Figure 5. SIRAP’s spinlock-

ing implementation is visualized as a longer normal execution

time compared to HSRP, e.g. see the execution of task 2 in

time interval (10, 20]. Figure 6 shows the behaviour of the

example system when server 1 selects the SIRAP protocol

and server 2 selects the HSRP (with payback).

C. Measurements and Results

In this section we investigate the overhead of the syn-

chronization primitives of HSRP and SIRAP. Current analysis

techniques do not account for overhead of the corresponding

synchronization primitives, although these overheads become

of relevance upon deployment of such a system. All our

measurements are independent of the number of subsystems

78

Fig. 6. Example trace combining SIRAP (server 1) and HSRP with payback (server 2) to access a single shared resource.

and tasks within a system.

As we can observe in our implementation, SIRAP induces

overhead locally within a subsystem, i.e. the spinlock adds

to the budget consumption of the particular task that locks

the resource. HSRP introduces overhead that interferes at the

global system level, i.e. the overrun mechanism requires the

manipulation of event queues. The overheads introduced by the

implementation of these protocols is summarized in Table III.

A nice analogy of the implementation with respect to the

schedulability analysis [7] is that HSRP has an overrun term

at the global analysis level, while SIRAP accounts for self-

blocking at the local analysis level.

TABLE III
OVERVIEW OF THE SYNCHRONIZATION PRIMITIVE’S IMPLEMENTATION

COMPLEXITY FOR HSRP’S AND SIRAP’S RUN-TIME MECHANISMS.

Event HSRP SIRAP

Lock resource - spinlock

Unlock resource overrun completion -

Budget depletion overrun -

Budget replenishment overrun completion, spinlock-completion
payback (optionally)

SIRAP’s overhead consists at least of a single test for

sufficient budget in case the test is passed. The overhead

is at most two of such tests in case the initial test fails,

i.e. one additional test is done after budget replenishment

before resource access is granted. All remaining tests during

spinlocking are already included as self-blocking terms in the

local analysis [7]. The number of CPU instructions executed

for a single test is 10 instructions on our test platform.

The best-case HSRP overhead is null in addition to the

normal number of CPU instructions that are spent to increase

and decrease the subsystem and system ceilings. The worst-

case HSRP overhead occurs at overrun. When the budget

depletes, it is replenished with the maximum allowed overrun

budget, which takes 383 instructions4. Overrun completion can

occur due to two alternative scenarios: (i) a task unlocks a

resource while consuming overrun budget, or (ii) the normal

budget is replenished while the subsystem consumes overrun

budget. The system overhead for both cases is 966 CPU

instructions. When the payback mechanism is enabled, one

additional computation is done to calculate the number that

needs to be paid back at the next server replenishment, i.e.

a system overhead of 5 instructions. As expected, we can

conclude that especially ending overrun in HSRP’s unlock

operation is expensive.

4Our current setup only uses a dedicated virtual event queue for each server
to keep track of a subsystem’s budget, and the queue manipulations therefore
have constant system overhead. In case multiple virtual events are stored in
this queue, the system overhead for inserting and removing events becomes
linear in its length [10].

79

D. Evaluation

The synchronization protocol implementations are com-

posed of (i) variable assignments, (ii) (sub)system ceiling

stack manipulations, (iii) RELTEQ operations [9, 10], (iv) a

mechanism to allow non-preemptive execution (enable/disable

interrupts) and (v) scheduler extensions. The first three build-

ing blocks are not specifically bound to µC/OS-II. The latter

two are µC/OS-II specific. Especially, the extension of the

scheduler by SRP’s preemption rules is eased by µC/OS-II’s

open-source character.

X. DISCUSSION

In the previous section we compared the system overhead

of the HSRP and SIRAP primitives. Complementary, earlier

results have shown that these protocols induce different system

loads depending on the chosen (sub)system parameters [7].

To optimize the overall resource requirements of a system,

we would like to enable both protocols side-by-side within

the same HSF, as demonstrated in Figure 6. Enabling this

integration puts demands on the implementation and the

schedulability analysis. From the implementation perspective,

an unification of the primitive interfaces is requires. However,

the choice for a particular protocol at different levels in the

system impacts the complexity of the analysis.

A. Uniform Analysis

The synchronization protocols guarantee a maximal block-

ing time with respect to other subsystems under the assump-

tions that (i) the analysis at the local and global level is

correctly performed; (ii) the obtained parameters are filled in

correctly; and (iii) the subsystem behaves according to its pa-

rameters. In order to allow SIRAP and HSRP to be integrated

side-by-side at the level of subsystems within a single HSF,

we need to unify the (global) schedulability analysis of both

protocols. Initial results based on our implementation suggests

that this integration step is fairly straightforward. The analysis

of this integration is left as future work.

B. Uniform Interfaces

Assuming the system analysis supports integration of HSRP

and SIRAP within the same HSF at the level of subsystems,

one might choose a different synchronization protocol per

subsystem depending on its characteristics. Enabling this inte-

gration requires that an application programmer (i) can ignore

which synchronization protocol is selected by the system, and

(ii) cannot exploit the knowledge of the selected protocol. The

primitive interfaces therefore need to be unified.

The interface description of SIRAP differs from HSRP,

because it requires to explicitly check the remaining budget

before granting access to a resource, hence the occurrence of

the holdT ime parameter in its lock interface (see Section VII).

However, the integration of HSRP and SIRAP at the level of

subsystems only requires that the maximum critical sections

length, Xs, within subsystem Ss is known. Assuming Xs is

available from the analysis, we can easily store this infor-

mation within the server-structure. This relaxes the amount

of run-time information and allows to remove the holdT ime

parameter from SIRAP’s lock operation, although at the cost

of budget over-provisioning due to larger self-blocking times.

XI. CONCLUSION

This paper describes the implementation of two alternative

SRP-based synchronization protocols within a two-level fixed

priority scheduled HSF to support inter-application synchro-

nization. In such systems, several subsystems execute on a

shared processor where each subsystem is given a virtual share

of the processor and is responsible for local scheduling of tasks

within itself. We specifically demonstrated a feasible imple-

mentation of these synchronization protocols within µC/OS-II.

First, we presented an implementation of SRP within

µC/OS-II that optimizes its existing synchronization primitives

by a reduced amount of source code, a simplified implemen-

tation, and optimized run-time behaviour. Next, we presented

the implementation of SIRAP using a run-time skipping mech-

anism, and HSRP using a run-time overrun mechanism (with

or without payback). We discussed the system overhead of

the accompanying synchronization primitives, and how these

primitives can be integrated within a single HSF.

We aim at using these protocols side-by-side within the

same HSF, so that their primitives can be selected based on

the relative strengths of the protocol, which depend on system

characteristics [7]. We showed that enabling the full integration

of both synchronization protocols at the level of subsystems

is relatively straightforward.

Our current research focuses on an appropriate selection

criterium that minimizes the system overhead based on the

subsystem parameters. In the future we would like to in-

vestigate less restrictive ways of combining synchronization

protocols within HSFs in a predictable manner, e.g. per task,

resource or resource access, by extending the existing analysis

techniques and corresponding tooling. Finally, we would like

to further investigate (i) trade-offs between different design

and implementation alternatives of HSFs with appropriate

synchronization protocols, and (ii) their applicability to a wider

range of server models.

REFERENCES

[1] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in Proc. RTSS, Dec. 2006, pp. 257–270.

[2] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems,” in
Proc. EMSOFT, Oct. 2007, pp. 279–288.

[3] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. RTSS, Dec. 2003, pp. 2–13.

[4] Z. Deng and J.-S. Liu, “Scheduling real-time applications in an open
environment,” in Proc. RTSS, Dec. 1997, pp. 308–319.

[5] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time

Syst., vol. 3, no. 1, pp. 67–99, 1991.
[6] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline

scheduling environment,” Real-Time Syst., vol. 9, no. 1, pp. 31–67, 1995.
[7] M. Behnam, T. Nolte, M. Åsberg, and R. Bril, “Overrun and skipping

in hierarchically scheduled real-time systems,” in Proc. RTCSA, Aug.
2009, pp. 519–526.

[8] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Proc. RTSS, Dec. 2005, pp. 389–398.

[9] M. Holenderski, W. Cools, R. J. Bril, and J. J. Lukkien, “Multiplexing
real-time timed events,” in Proc. ETFA, July 2009.

80

[10] M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien, “Virtual timers in hierarchical real-time systems,” Proc.

WiP session of the RTSS, pp. 37–40, Dec. 2009.
[11] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing

in reservation-based systems,” in Proc. RTSS, Dec. 2001, pp. 171–180.
[12] G. Buttazzo and P. Gai, “Efficient implementation of an EDF scheduler

for small embedded systems,” in Proc. OSPERT, July 2006.
[13] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards

hierarchical scheduling on top of VxWorks,” in Proc. OSPERT, July
2008, pp. 63–72.

[14] N. Fisher, M. Bertogna, and S. Baruah, “The design of an EDF-
scheduled resource-sharing open environment,” in Proc. RTSS, Dec.
2007, pp. 83–92.

[15] M. Behnam, T. Nolte, M. Åsberg, and I. Shin, “Synchronization proto-
cols for hierarchical real-time scheduling frameworks,” in Proc. CRTS,
Nov. 2008, pp. 53–60.

[16] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Scheduling of semi-
independent real-time components: Overrun methods and resource hold-
ing times.” in Proc. ETFA, Sep. 2008, pp. 575–582.

[17] R. J. Bril, U. Keskin, M. Behnam, and T. Nolte, “Schedulability analysis
of synchronization protocols based on overrun without payback for
hierarchical scheduling frameworks revisited,” in Proc. CRTS, 2009.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[19] Micrium, “RTOS and tools,” March 2010. [Online]. Available:
http://micrium.com/

[20] J. J. Labrosse, Microc/OS-II. R & D Books, 1998.
[21] J.-H. Lee and H.-N. Kim, “Implementing priority inheritance semaphore

on uC/OS real-time kernel,” in Proc. WSTFES, May 2003, pp. 83–86.
[22] M. Bergsma, M. Holenderski, R. J. Bril, and J. J. Lukkien, “Extending

RTAI/Linux with fixed-priority scheduling with deferred preemption,”
in Proc. OSPERT, June 2009, pp. 5–14.

[23] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and
resource hold times,” in Proc. WPDRTS, March 2007, pp. 1–8.

[24] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task scheduling for
hard-real-time systems,” Real-Time Syst., vol. 1, no. 1, pp. 27–60, 1989.

[25] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments,” IEEE Trans. Comput., vol. 44, no. 1, pp. 73–91, 1995.

[26] OpenCores. (2009) OpenRISC overview. [Online]. Available: http:
//www.opencores.org/project,or1k

[27] M. Bolado, H. Posadas, J. Castillo, P. Huerta, P. Sánchez, C. Sánchez,
H. Fouren, and F. Blasco, “Platform based on open-source cores for
industrial applications,” in Proc. DATE, 2004, p. 21014.

[28] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, visualizing and measuring the behavior of
real-time systems,” in Proc. WATERS, July 2010.

[29] “Simulating uC/OS-II inside the OpenRISC simulator,” March 2010.
[Online]. Available: http://www.win.tue.nl/∼mholende/ucos/

81

Implementation and Evaluation of the Synchronization Protocol Immediate

Priority Ceiling in PREEMPT-RT Linux

Andreu Carminati, Rômulo Silva de Oliveira, Luís Fernando Friedrich, Rodrigo Lange

Federal University of Santa Catarina (UFSC)

Florianópolis, Brazil

{andreu,romulo,lange}@das.ufsc.br

{fernando}@inf.ufsc.br

Abstract

In general purpose operating systems, such as the main-

line Linux, priority inversions occur frequently and are not

considered harmful, nor are avoided as in real-time sys-

tems. In the current version of the kernel PREEMPT-RT,

the protocol that implements the priority inversion control

is the Priority Inheritance. The objective of this paper is to

propose the implementation of an alternative protocol, the

Immediate Priority Ceiling, for use in drivers dedicated to

real-time applications, for example. This article explains

how the protocol was implemented in the real-time kernel

and compares tests on the protocol implemented and Prior-

ity Inheritance, currently used in the real-time kernel.

1 Introduction

In real-time operating systems such as

Linux/PREEMPT-RT [7, 8], task synchronization mech-

anisms must ensure both the maintenance of internal

consistency in relation to resources or data structures, and

determinism in waiting time for these. They should avoid

unbounded priority inversions, where a high priority task

is blocked indefinitely waiting for a resource that is in

possession of a task with lower priority.

In general purpose systems, such as mainline Linux,

priority inversions occur frequently and are not considered

harmful, nor are avoided as in real-time systems. In the

current version of the kernel PREEMPT-RT, the protocol

that implements the priority inversion control is the Priority

Inheritance (PI) [9].

The objective of this paper is to propose the implemen-

tation of an alternative protocol, the Immediate Priority

Ceiling (IPC) [5, 9], for use in drivers dedicated to real-time

applications, for example. In this scenario, an embedded

Linux supports an specific known application that does not

change task priorities after its initialization. It is not the

objective of this paper to propose a complete replacement

of the existing protocol, as mentioned above, but an

alternative for use in some situations. The work in this

article only considered uniprocessor systems.

This paper is organized as follows: section 2 presents

the current synchronization scenario of the mainline kernel

and PREEMPT-RT, section 3 explains about the Immediate

Priority Ceiling protocol, section 4 explains how the proto-

col was implemented in the Linux real-time kernel, section

5 compares tests made upon the protocol implemented and

Priority Inheritance implemented in the real-time kernel and

section 6 presents an overhead analysis between IPC and PI.

2 Mutual Exclusion in the Linux Kernel

Since there is no mechanism in the mainline kernel that

prevents the appearance of priority inversions, situations

like the one shown in Figure 1 can occur very easily, where

task T2, activated at t = 1, acquires the shared resource.

Then, task T0 is activated at t = 2 but blocks because

the resource is held by T2. T2 resumes execution, and is

preempted by T1, which is activated and begins to run from

t = 5 to t = 11. But task T0 misses the deadline at t = 9, and

the resource required for its completion was only available

at t = 12 (after the deadline).

In the real-time kernel PREEMPT-RT exists the im-

plementation of PI (Priority Inheritance). As mentioned

above, it is a mechanism used to accelerate the release of

resources in real-time systems, and to avoid the effect of

indefinite delay of high priority tasks that can be blocked

waiting for resources held by tasks of lower priority.

82

Figure 1. Priority inversion

In the PI protocol, a high priority task that is blocked

on some resource, gives its priority to the low priority task

(holding that resource), so will release the resource without

suffering preemptions by tasks with intermediate priority.

This protocol can generate chaining of priority adjustments

(a sequence of cascading adjustments) depending on the

nesting of critical sections.

Figure 2 presents an example of how the PI protocol can

help in the problem of priority inversion. In this example,

task T2 is activated at t = 1 and acquires a shared resource,

at t = 1. Task T0 is activated and blocks on the resource

held by T2 at t = 4. T2 inherits the priority from T0 and

prevents T1 from running, when activated at t = 5. At t =

6, task T2 releases the resource, its priority changes back

to its normal priority, and task T0 can conclude without

missing its deadline.

Some of the problems [11] of this protocol are the

number of context switches and blocking times larger than

the largest of the critical sections [9] (for the high priority

task), depending on the pattern of arrivals of the task set

that shares certain resources.

Figure 3 is an example where protocol PI does not pre-

vent the missing of the deadline of the highest priority task.

In this example, there is the nesting of critical sections,

where T1 (the intermediate priority) has the critical sections

of resources 1 and 2 nested. In this example, task T0, when

blocked on resource 1 at t = 5, gives his priority to task T1,

which also blocks on resource 2 at t = 6. T1 in turn gives

its priority to task T2, which resumes its execution and re-

leases the resource 2, allowing T1 to use that resource and

to release the resource 1 to T0 at t = 10. T0 resumes its

Figure 2. Priority inversion resolved by PI

execution but it misses its deadline, which occurs at t = 13.

In this example, task T0 was blocked by a part of the time

of the external critical section of T1 plus a part of the time

of the critical section of T2. In a larger system the blocking

time of T0 in the worst case would be the sum of many crit-

ical sections, mostly associated with resources not used by

T0.

Figure 3. Priority inversion not resolved by PI

3 The Immediate Priority Ceiling Protocol

The Immediate Priority Ceiling (IPC) [2] synchro-

nization protocol for fixed priority tasks, is a variation of

Priority Ceiling Protocol [9, 1] or Highest Locker Priority.

This protocol is an alternative mechanism for unbounded

priority inversion control, and prevention of deadlocks in

83

uniprocessor systems.

In the PI protocol, the priority is associated only to

tasks. In IPC, the priority is associated with both tasks

and resources. A resource protected by IPC has a priority

ceiling, and this priority is the highest priority of all task

priorities that access this resource.

According to [3], the maximum block time of a task

under fixed priority using shared resource protected by

IPC protocol is the larger critical section of the sys-

tem whose priority ceiling is higher than the priority of

the task in question and is also used by a lower priority task.

What happens in IPC can be considered as preventive

inheritance, where the priority is adjusted immediately

when occurs a resource acquisition, and not when the

resource becomes necessary to a high priority task, as

in PI (you can think of PI as the IPC, but with dynamic

adjustment of the ceiling). This preventive priority setting

prevents low priority tasks from being preempted by tasks

with intermediate priorities, which have priorities higher

than low priority tasks and lower than the resource priority

ceiling.

Figure 4 shows an example similar to that shown in

Figure 3, but this time using IPC. In this example, the high

priority task does not miss its deadline, because when task

T2 acquires resource 2 at t = 1, its priority is raised to the

ceiling of the resource (priority of T1), preventing task T1,

activated at t = 2, from starting its execution. At t = 3.5,

task T0 is activated and begins its execution. The task is

no longer blocked because resource 1 is available. Task T0

does not miss its deadline.

Figure 4. Priority inversion resolved by IPC

4 Description of the Implementation

The Immediate Priority Ceiling Protocol was imple-

mented based on the code of rt_mutexes already in the patch

PREEMPT-RT. The rt_mutexes are mutexes that implement

the Priority Inheritance protocol. The kernel version used

for implementation was the 2.6.31.6 [10] with PREEMPT-

RT patch rt19. Although rt_mutexes are implemented in

PREEMPT-RT for both uniprocessor and multiprocesors,

our implementation of IPC considers only the uniprocessor

case.

The implementation was made primarily for use in

device-drivers (kernel space), as shown in Figure 5, where

there is an example of tasks sharing a critical section

protected by IPC and accessed through an ioctl system call

to a device-driver.

Figure 5. Diagram of interaction between the
IPC protocol and tasks

The type that represents the IPC protocol was defined

as struct ipc_mutex, and it is presented in code 1. In this

structure, wait_lock is the spinlock that protects the access

to the structure, wait_list is an ordered (by priorities) list

that stores pending lock requests, on_task_entry serves to

manage the locks acquired (and, consequently, control of

priorities), owner stores a pointer to the task owner of the

mutex (or null pointer if the mutex is available) and finally

the ceiling, which stores the priority ceiling of the mutex.

Code 1 Data structure that represents a IPC mutex

struct ipc_mutex {

atomic_spinlock_t wait_lock;

struct plist_head wait_list;

struct plist_node on_task_entry;

struct task_struct *owner;

int ceiling;

...

};

The proposed implementation presents the following

84

API of functions and macros:

• DEFINE_IPC_MUTEX(mutexname, priority):

This macro is provided for the definition of a static

IPC mutex, where mutexname is the identifier of the

mutex and priority is the ceiling of the mutex, or a

value in the range of 0 to 99 (according to the specifi-

cation of static priorities for real-time tasks on Linux).

The current version can only create mutexes with

priorities set at compile time, thus, the priority ceiling

should be assigned by the designer of the application.

This is not a too restrictive assumption when an

embedded Linux runs a known application that does

not change task priorities after its initialization.

• void ipc_mutex_lock(struct ipc_mutex * lock):

Mutex acquisition function. In uniprocessor systems

this is a nonblocking function because, according to

the IPC protocol, if a task requests a resource, it is

because this resource is available (the owner is null).

In multiprocessor systems this function can generate

blocks, because the resource can be in use on other

processor (the owner field differs from zero). In this

article, only the uniprocessor version will be taken

into consideration. The main role of this function is to

manage the priority of the calling task along with the

resource blocking, taking into account all ipc_mutexes

acquired so far.

• void ipc_mutex_unlock(struct ipc _mutex * lock):

Effects the release of the resource and the adjustment

of the priority of the calling task. In multiprocessor

systems, this function also makes the job of selecting

the next task (by the wait_list) that will use the

resource. What also occurs in multiprocessor systems

is the effect "next owner pending" (also present in the

original implementation of priority inheritance) also

known as steal lock, where the task of highest priority

can acquire the mutex again, even though it has been

assigned to another task that did not take possession

of it.

One major difference between the proposed implemen-

tation and the already existent in the PREEMPT-RT is that

the latter one enables the following optimizations:

• PI can perform atomic lock: if a task attempts to

acquire a mutex that is available, this operation can

be performed atomically (operation atomic compare

and exchange) by what is known as fast path. But

this is only possible for architectures that have this

type of atomic operation. Otherwise if the lock is

not available and/or the architecture does not have

exchange and compare instruction, the lock will not

be atomic (slow path).

• PI can perform atomic unlock: when a task releases a

mutex which has no tasks waiting, this operation can

be performed atomically.

As mentioned earlier, these optimizations are possible

only for PI mutexes. In the case of IPC, there will always

be a need for verification and a possible adjustment of

priority.

5 Implementation Analysis

We developed a device-driver that has the function

of providing the critical sections necessary to perform

the tests. This device-driver exports a single service as

a service call ioctl (more specifically unlocked_ioctl,

because the ioctl is protected by traditional Big Kernel

Lock, which certainly would prevent the proper execu-

tion of the tests). It multiplexes the calls of the three

tasks in their correspondent critical sections. This device-

driver provides critical sections to run with both IPC and PI.

In order to carry out tests for the analysis of the im-

plementation it was used a set of sporadic tasks executed

in user space. The interval between activations, the

resources used and the size of the critical section within the

device-driver used by each task are presented in Table 1.

All critical sections are executed within the function ioctl,

within Linux kernel. A high-level summary of actions

performed by each task (in relation to resources used) is

presented in Table 2.

Table 1 shows the intervals between activations

expressed with a pseudo-randomness, ie, with values

uniformly distributed between minimum and maximum

values. This randomness was included to improve the

distribution of results because, with fixed periods, arrival

patterns were being limited to a much more restricted

set. Table 1 also presents the sizes of the critical sections

of each task. Other information shown in Table 1 is the

number of activations performed for each task. For the

high priority task, there were 1000 monitored activations

(latency, response time, critical section time, lock time,

etc). For other tasks there was no restriction on the number

of activations.

85

The high priority task has one of the highest priorities of

the system. The other tasks were regarded as medium and

low priorities. But they also have absolute high priorities.

All tasks have been configured with the scheduling policy

SCHED_FIFO, which is one of the policies for real-time

[4] available in Linux.

Even with the use of a SMP machine for testing, all

tasks were set at only one CPU (CPU 0). The tests were

conducted using both IPC and PI for comparison purposes.

Task T0/High T1/Med. T2/Low

Priority 70 65 60

Activation

interval

rand in

[400,800]

ms

rand in

[95,190]

ms

rand in

[85,170]

ms

Resource R1 R1,R2 R2

Critical

section

size

aprox. 17

ms

aprox.

2x17 ms

aprox. 17

ms

Table 1. Configuration of the set of tasks

Task T0/High T1/Med. T2/Low

Action 1 Lock(R1) Lock(R1) Lock(R2)

Action 2 Critical

Sec.

Critical

Sec.

Critical

Sec.

Action 3 Unlock(R1) Lock(R2) Unlock(R2)

Action 4 Critical

Sec.

Action 5 Unlock(R2)

Action 6 Unlock(R1)

Table 2. Actions realized by tasks

Mutex R1 has been configured with priority ceiling

70 (which is the priority of task T0) and R2 has been

configured with priority ceiling 65 (which is the priority of

task T1).

5.1 Results of the Use of the PI mutex

With priority inheritance, the high priority task had ac-

tivation latencies as can be seen in the histogram of Figure

6 appearing in the interval [20000, 30000] nanoseconds

(range where the vertical bar is situated in the histogram).

Because of finding the resource busy with a certain fre-

quency (as illustrated in Figure 7, waiting time for the

resource), the task was obligated to perform volunteer

context switch for propagation of its priority along the

chain of locks.

Figure 6. Histogram of activation latencies

(high priority task using PI)

Figure 7. Blocking time (high priority task us-
ing PI)

Regarding the response time (as can be seen in the

histogram of Figure 8) it was consistent with the blocking

time sustained, with a maximum of nearly 3 times the size

of the critical section, in accordance with the task set. It can

be seen in Table 3 the worst-case response time observed

is 64,157,591 ns. The theoretical worst-case response time

for this test would be, with an appropriate synchronized

activation, 68 ms, or 17 ms own critical section of task T0

added to 34 ms of task T1 and 17 ms of task T2. In this

test, there is a good approximation of the theoretical limit.

5.2 Results of the Use of the IPC mutex

Using IPC, it can be noted in the histogram of Figure

9 that the task of highest priority presented, with low

86

Figure 8. Histogram of response time (high

priority task using PI)

Protocol: PI IPC

Average re-

sponse time:

22,798,549 ns 21,014,311 ns

Std dev: 11,319,355 ns 8,723,159 ns

Max: 64,157,591 ns 50,811,328 ns

Table 3. Average response times and stan-
dard deviations

frequency, varying values of activation latency (seen in the

tail of the histogram). Waiting times set by the resource

appear in Figure 10, which is expected according to the

definition of the protocol implemented. A tail appears in

the histogram of response time (Figure 11) due to activation

latency (higher values, but with only a few occurrences).

Figure 9. Histogram of activation latencies

(high priority task using IPC)

As it can be seen in Table 3, the worst-case response

Figure 10. Blocking time (high priority task

using IPC)

Figure 11. Histogram of response time (high
priority task using IPC)

time observed is (maximum) 50,811,328 ns. In this test, the

theorical limit is 51 ms, ie, 17 ms own critical section of

task T0 added to 34 ms of task T1. Also in this test there is

a good approximation of the theorical limit.

5.3 Comparison between PI and IPC

One can observe that, in general, IPC has behavior

similar to PI. The differences appear in the lock time

where, by definition, in uniprocessor systems, the resource

is always available when using IPC protocol. For the PI

protocol, the blocking time will appear with the primitive

lock, and this time may be longer than that with IPC. In

IPC the blocking time appears before the activation time,

and it has a maximum length of a single critical section (in

the conditions described above).

According to Table 3, the IPC protocol presented

87

standard deviation and average response time smaller than

PI. Another important point in Table 3 is that the worst-case

response time observed in the IPC test was almost a critical

section smaller than the PI (the size of a critical section is

17 ms, and the difference between the worst case of IPC

and PI is around 14 ms).

Figure 12 shows the tail of the response time histograms

of IPC and PI combined. In this figure, the response times

of the IPC protocol concentrates on lower values. For the

PI, these are distributed more uniformly to higher values,

indicating an average response time smaller for the IPC

protocol. This histogram also indicates in its final portion

that the worst case, as it was also observed in Table 3,

has a difference of one critical section in favor of the IPC

protocol. This difference in the worst case was reported in

the figure by two vertical lines, where the distance between

them is about the duration of one critical section. Table 4

summarizes the results qualitatively.

Figure 12. Histogram of the response time of
the high priority task

Protocol PI IPC

Activation

Latency

Not varied Varied

Blocking time Varied Not varied

Response time Blocking time

dependent

Latency depen-

dent

Table 4. Summary of expected results

6 Implementation Overhead

We define overhead as any decrease in the system’s

ability to produce useful work. Thus, for this study, the

overhead will be considered as the reducing of the CPU

time available to the rest of the system, given the presence

of a set of higher priority tasks sharing resources protected

by PI or IPC.

To evaluate the protocol implemented in terms of

overhead imposed on the system, we used a set of test tasks

as specified in Table 5. In the same table, it is presented

the tasks configurations, some of which are identical to the

tasks used to evaluate the protocol in the previous section.

For example, for task T0’, the size of the critical section

is equal to the size of the critical section of task T0 of the

previous test (represented by "== T0").

To perform an estimative of the overhead, it was

created a measuring task with priority 51 (with policy

SCHED_FIFO). This priority is above the default priority

of threaded irq handlers [8] and softirqs [6] . This was done

to keep the measuring task above the interference of the

mechanisms of interrupt handling and work postponement

of Linux. Every CPU time that remains (not used by the

test tasks synchronized by IPC or PI) is then assigned to

the measurement task. Both the measurement task and the

task set synchronized by IPC or PI were fixed to a single

CPU (CPU 0 in a system with 2 cores.)

The measurement task is activated before the activation

of real-time tasks and ends after they terminate. In each

test iteration, the measurement task runs for 9 seconds,

and the higher priority tasks begin 1 second after it starts.

As shown in Table 5, task T0’ executes 10 activations, the

others will run until the end of this task.

Task T0’ T1’ T2’ T3’ T4’ T5’ T6’

Priority 70 65 64 63 62 61 60

Activation

interval

==

T0

==

T1

==

T1

==

T1

==

T2

==

T2

==

T2

Resource R1 R1,

R2

R1,

R2

R1,

R2

R2 R2 R2

Critical

section

size

==

T0

==

T1

==

T1

==

T1

==

T2

==

T2

==

T2

Number

of activ.

10 T0’

dep

T0’

dep

T0’

dep

T0’

dep

T0’

dep

T0’

dep

Table 5. Actions realized by tasks

To obtain the overhead estimative, the measurement

88

task is executed in an infinite loop incrementing a variable

by the time specified above (9 seconds). The overhead

will be noticed by how much the measurement task could

increment a count, taking into account the execution of

the set of tasks synchronized by IPC or PI. The values of

the counts made by the measurement task are presented in

Table 6, which was ordered to facilitate visual comparison.

IPC PI

187,882,717 188,776,389

188,035,384 189,155,169

188,160,733 189,202,563

188,194,113 189,263,630

188,207,825 189,331,186

188,240,432 189,361,353

188,563,788 189,387,326

188,603,802 189,418,120

188,616,385 189,428,218

188,703,718 189,437,569

188,736,889 189,447,533

188,742,876 189,471,453

188,935,538 189,475,286

188,952,045 189,489,740

188,962,343 189,492,896

188,993,374 189,494,791

189,000,638 189,569,661

189,178,721 189,572,258

189,203,245 189,604,953

189,307,878 189,638,715

189,478,899 189,696,190

189,536,986 189,778,227

189,674,412 189,825,606

189,785,580 189,867,362

189,858,951 190,046,853

189,900,585 190,207,326

190,030,444 190,252,943

190,047,436 190,342,313

190,066,156 190,349,981

190,105,987 190,387,518

190,328,052 190,538,130

190,338,011 190,539,875

Table 6. Counter values of measurement task

Table 7 presents the basic statistical data related to the

samples presented in Table 6.

To evaluate the results we used the statistical hypothesis

test for averages with unknown variance (Student t-test).

By hypothesis, the overhead of PI and IPC are equal, ie, the

average of IPC and PI are equal (H0 : µPI = µIPC).

Protocol IPC PI

Average(µ) 189,136,685.72 189,682,847.91

Var.(S2

x) 524,003,070,588.27 191,603,683,258.35

Minimum 187,882,717 188,776,389

Maximum 190,338,011 190,539,875

Table 7. Basic statistics of the found values

The data presented in Table 8, which provides the data

necessary for the hypothesis test, was obtained from the

data showed in Table 7 plus the information of the number

of samples (n = 32)

Sa2

IPC,PI 357,803,376,923.31

SaIPC,PI 598,166.68

n 32

α 0.1%

d.f. 60

t -3.65

Table 8. Student’s t-test data

6.1 Analysis of the Results

Because the data produced the value of t = 3.65, which

does not belong to the region of acceptance (in t-Student

distribution), the test rejects H0 with a significance level

of 0.1 %. At significance level (α) of 0.1%, the collected

data indicates a difference between PI and IPC. There is a

probability smaller than 0.1% that the differences observed

on the presented data are from casual factors of the system

only.

These differences are likely due to the fast path of the PI

implementation. In IPC, there is always a need of priority

verification, and this can not be performed atomically.

Another point is that if a task with priority below the

priority ceiling of a given resource acquires that resource,

its priority has to be changed, and this may influence

the overhead. As those tests show, there is a reasonable

probability of tasks finding resources available, not always

the priorities propagation algorithm (PI) will run. But

almost always there will be priority adjustments (IPC),

except for the task that defines the priority ceiling of the

resource.

89

7 Conclusions

Task synchronization is fundamental in multitasking

and/or multithread systems, specially in real-time systems.

In addition to protection against race conditions, these

mechanisms must prevent the emergence of uncontrolled

priority inversions, which could cause the missing of

deadline, leading real-time applications to present incorrect

behavior, and possibly harmful consequences (depending

on the application). In this context, it was proposed an al-

ternative for some applications to the protocol implemented

in the real-time Linux branch.

The IPC protocol may be suitable for dedicated appli-

cations that use architectures without instruction compare

and exchange because, in this way, the implementation

may not use the fast path (via atomic instructions). Another

advantage of the IPC is that it generates less context

switches than the PI, inducing faster response times due to

switching overhead as well as lower failure rates in the TLB.

One of the disadvantages of the IPC for wider use is the

need for manual determination of the priority ceiling of

IPC mutexes. But this is not a problem for automation and

control applications for example. Dedicated device-drivers

are fully aware of the priorities of the tasks that access

them, justifying the manual setting of the ceiling in this

case.

As seen in the tests, the PI protocol may be more

appropriate if the latency of activation is important. But

if the blocking time is more relevant, IPC may be the

best solution. In terms of average response time, the two

solutions were similar, but IPC showed lower average

response time probably due to the latency of activation

being less than the waiting time of the PI. Another point

in favor of the IPC protocol appears when we compare

the difference in the worst-case response time observed

in the tests since the IPC case was about a critical section

smaller than in the PI case, as can be seen in Table 3. The

PI protocol has a response time that may vary depending of

the pattern of resource sharing and sequences of activation,

which does not occur with IPC. Its blocking time will

always be at most one critical section.

Although blocking/response times are smaller in the

IPC, tests show that the overhead of IPC implemented is

greater than the native PI in PREEMPT-RT. This overhead

is most likely caused by the absence of a fast path in the

implementation of IPC. There is a set of operations on

lock/unlock that can not be executed atomically as in PI.

These operations involve priority changes and tracking

mutexes acquired by tasks.

As future work, we intend to implement a version with

adaptive ceiling, ie, ceiling can be automatically adjusted

in run-time. There is still a possibility (which was not

considered in this article) to build a fast-path. To make this

possible, the priority adjustments should be postponed until

the eminence of a system rescheduling (through changes in

the scheduler). We also intend to expand the study of the

IPC protocol to multiprocessor systems.

8 Acknowledgments

To CAPES and CNPq for financial suport.

References

[1] T. Baker. A stack-based resource allocation policy for re-

altime processes. In IEEE Real-Time Systems Symposium,

volume 270, 1990.

[2] A. Burns and A. Wellings. Real-time systems and pro-

gramming languages: Ada 95, real-time Java, and real-time

POSIX. Addison Wesley, 2001.

[3] M. Harbour and J. Palencia. Response time analysis for tasks

scheduled under EDF within fixed priorities. In Proceedings

of the 24th IEEE International Real-Time Systems Sympo-

sium, page 200. Citeseer, 2003.

[4] C. S. IEEE, editor. POSIX.13. IEEE Std. 1003.13-1998. In-

formation Technology - Standardized Application Environ-

ment Profile - POSIX Realtime Application Support (AEP).

The Institute of Electrical and Electronics Engineers, 1998.

[5] B. Lampson and D. Redell. Experience with processes and

monitors in Mesa. 1980.

[6] R. Love. Linux Kernel Development (Novell Press). Novell

Press, 2005.

[7] I. Molnar. Preempt-rt.

http://www.kernel.org/pub/linux/kernel/projects/rt -

Last access 01/21, 2010.

[8] S. Rostedt and D. Hart. Internals of the RT Patch. In Pro-

ceedings of the Linux Symposium, volume 2007, 2007.

[9] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization. IEEE

Transactions on computers, 39(9):1175–1185, 1990.

[10] L. Torvalds. “Linux Kernel Version 2.6.31.6”, 2010.

http://www.kernel.org/pub/linux/kernel/v2.6/linux-

2.6.31.6.tar.bz2 - Last access 03/21, 2010.

[11] V. Yodaiken. Against priority inheritance. FSM-

LABS Technical Paper, 2003. Available at

http://yodaiken.com/papers/inherit.pdf.

90

The Case for Thread Migration:

Predictable IPC in a Customizable and Reliable OS

Gabriel Parmer

Computer Science Department

The George Washington University

Washington, DC

gparmer@gwu.edu

Abstract

Synchronous inter-process communication (IPC) be-

tween threads is a popular mechanism for coordination in

µ-kernels and component-based operating systems. Signif-

icant focus has been placed on its optimization, and con-

sequently the efficiency of practical implementations ap-

proaches the lower limits set by hardware. This paper

qualitatively compares the predictability properties of the

synchronous IPC model with those of the migrating thread

model. We assess the idealized communication models, and

their practical implementations both in different versions of

L4, and in the COMPOSITE component-based OS. We study

three main factors – execution accounting, communication

end-points, and system customizability – and discuss the

trade-offs involved in each model. We make the case that

the migrating thread model is as suitable as synchronous

IPC, if not more so, in configurable systems requiring strict

predictability.

1 Introduction

Component-based operating systems are an appealing

foundation for embedded and real-time systems as they en-

able high degrees of system specialization and enhanced re-

liability. The system’s software is decomposed into fine-

grained components. Each component provides a policy,

abstraction, or mechanism that is accessed by other com-

ponents through its interface. A system with specific tim-

ing constraints, or that is reliant on specific resource man-

agement policies, chooses the appropriate components to

satisfy those particular requirements. By segregating com-

ponents into separate protection domains (provided by e.g.

hardware page-tables), the reliability of the system is in-

creased as the scope of the side-effects of faults is limited to

individual components. Communication and interaction be-

tween components is conducted via inter-process commu-

nication (IPC) in which the kernel mediates control transfer

between protection domains.

Many different IPC mechanisms exist including syn-

chronous IPC between threads, and thread migration.

Implementations using synchronous IPC1 exist that are

extremely efficient, approaching the performance lower-

bound imposed by hardware [10]. This method is used in

many systems focusing on extreme IPC performance [16,

20, 17, 19], and it is employed in at least two commer-

cially successful OSes, QNX and OKL42. To accomplish

most tasks, coordination between system components is re-

quired. Thus the predictability of the IPC operation impacts

the real-time characteristics of all software in a component-

based system. This paper seeks to provide a qualitative

analysis and comparison of the predictability properties of

this established IPC mechanism with those of thread mi-

gration [7]. For invocation using thread migration, a single

schedulable thread executes across components.

We base most comparisons in this paper on, first, a

pure model of synchronous IPC presented in Section 2.1,

and, second, a variety of implementations of L4, a ma-

ture and highly-efficient µ-kernel [11]. We choose L4

as various implementations and optimizations have been

made that demonstrate many interesting trade-offs in the

design of synchronous IPC. As a concrete implementation

of thread migration, we compare against the COMPOSITE

component-based OS.

Functionally, both synchronous IPC and thread migra-

tion often look identical to client component code. Both are

made to mimic normal function invocation by a interface

1A note on terminology: In this paper, we will refer to synchronous

IPC between threads as simply synchronous IPC, and will use IPC and in-

vocation interchangeably to denote control transfer back and forth between

components. Additionally, we will use common terms in the µ-kernel lit-

erature to denote components as the client (making an invocation), and

server (receiving and handling the invocation).
2See www.qnx.com and www.ok-labs.com.

91

definition language [4], hiding the concrete mechanisms

used for the invocation. Behaviorally, they differ greatly

and in this paper we focus on these differences. Many pre-

dictable systems have been built using synchronous IPC,

but we argue here that thread migration is just as strong

a foundation, if not more-so for predictable, configurable,

and reliable systems. We base this argument on three main

factors: (1) how processing time is accounted to execution

throughout the system, (2) the effects of contention on the

communication end-points in the system, and (3) the effect

of the invocation mechanism on the ability of the system to

provide configurable and specialized services.

This paper makes the following contributions:

• identify key factors that effect the predictability and

flexibility of synchronous IPC;

• analyze the migrating thread model with respect to

these factors, and compare against synchronous IPC;

• suggest a number of changes to a system built on

synchronous IPC, that are inspired by the migrating thread

model, to increase system predictability.

This paper is organized as follows: Section 2 intro-

duces models to describe synchronous IPC and thread mi-

gration, so that they can be compared qualitatively. Sec-

tion 3 discusses the different CPU allocation and account-

ing properties of both models, while Section 4 investigates

the properties of IPC end-point contention, and Section 5

discusses system specialization and configuration opportu-

nities present in the migrating thread model. Section 6 dis-

cusses the limitations of the migrating thread model, while

Section 7 outlines related work, and Section 8 concludes.

2 IPC Models

2.1 Synchronous IPC Between Threads

Here we introduce an idealized version of the syn-

chronous IPC model. Though many real-world implemen-

tations do not implement it directly, it serves as the starting

point for their mechanisms. In the following sections we

will discuss how various implementations diverge from this

strict model where appropriate.

w w

call

callwait wait
kernel

Figure 1. Synchronous IPC between threads.

Threads annotated with a w are on a wait-queue as-

sociated with the server thread.

A system consists of a number of components,

Ca, . . . , Cz , each in separate protection domains. Thus

communication between components must be conducted

via the kernel (as switching between protection domains is

typically a privileged instruction). Each component con-

tains a number of threads τCa

0
, . . . , τCa

n . When thread τCa

0

wishes to harness the functionality provided by C1, τCa

0

sends a message to τCb

0
, and waits to receive a reply. This

send and receive is often conflated into a single call system

call. τCb

0
waits for requests from client threads, processes

a request when one arrives, and replies to the client. The

operations of reply and wait are often conflated into a sin-

gle reply wait system call. These API additions optimize

for synchronous IPC and reduce the number of required

user/kernel transitions [10]. If τCb

0
is processing and not

waiting for an IPC when τCa

0
calls it, τCa

0
will block in a

queue for τCb

0

3, which will refer to as the wait-queue for a

server thread.

Figure 1 illustrates synchronous IPC between three pro-

tection domains. A server thread, τCb

0
, will become a

client by harnessing the functionality of a third component

and calling τCc

0
. We will say these nested IPCs create a

chain of invocations. More generally, when taken together

with the wait-queues for each server thread, a dependency

graph [20] is created where threads waiting for a reply from

a server thread (either because the server thread is process-

ing on their behalf, or because they are in the wait-queue)

are said to have a dependency on the server thread.

2.2 Thread Migration

kernel

Figure 2. Thread migration. Execution contexts are

spread across components, but the same schedulable

entity traces invocations.

Thread migration [7] is a natural model for making invo-

cations between components in a system. The same schedu-

lable entity in one component continues execution in the

other. The same thread, τ0, executes through system com-

ponents just as a thread in an object oriented language tra-

verse many objects. If components are resident in the same

protection domain this enables direct function invocation

with little overhead [14, 15]. If system components ex-

ist in separate protection domains, then thread migration

is less natural, but can still be accomplished. We will as-

sume components in separate protection domains from now

3Note this is not the only option. The call system call can return an

error code indicating the server thread is not ready for invocations. The

consensus for synchronous IPC amongst surveyed implementations instead

chooses the previous option.

92

on. In such a case, the execution context for a thread and

the scheduling context are decoupled [20]. An invocation

into each protected component requires a separate execu-

tion context (including C stack and register contents), but

the scheduler treats the thread as a single schedulable en-

tity. Figure 2 depicts thread migration.

2.2.1 Thread Migration in COMPOSITE

COMPOSITE is a component-based operating system focus-

ing on enabling the efficient and predictable implementation

of resource management policies, mechanisms, and abstrac-

tions as specialized user-level components [14]. Higher-

level abstractions such as networking and file-systems are

implemented as components, as are less-conventional low-

level policies for task and interrupt scheduling [13], mutual

exclusion mechanisms, and physical memory management.

Components, by default, are spatially isolated from each

other in separate protection domains (provided by hardware

page-tables).

Components export an interface through which their

functionality can be harnessed by other components. As

system policies and abstractions are defined in components,

invocations between components are frequent and must be

both efficient and predictable.

thread invocation

stack

bC ip

C ip,sp
a

Ca

Cb
capabilities

pgtbl

Figure 3. COMPOSITE kernel data-structures in-

volved in an invocation. A syscall specifies a capabil-

ity (associated with Ca) that yields the component to

invoke (Cb). A thread’s invocation stack saves the in-

voking component and enough state to return from the

invocation (namely, the instruction and stack point-

ers).

The main kernel data-structures involved in an invoca-

tion between component Ca and Cb are depicted in Fig-

ure 3. Each component is restricted to make invocations

only to components to which it has a capability [9]. Kernel

capability structures link components and designate the au-

thority to make invocations from one to the other. A thread

executing in Ca that makes an invocation on a capability

(via system call), will resume user-level execution in Cb,

the component designated by the capability. This invoca-

tion occurs within the same thread, thus the same schedula-

ble entity.

In addition to designating which component to execute

in, a capability includes the instruction pointer in Cb to be-

gin execution at. To maintain isolation, execution in Cb

must be on a different stack from the one used in Ca. This

execution stack in Cb is not chosen by the kernel. Instead,

it is assumed that when the upcall is made into Cb, the first

operation performed is to locate a stack to execute on. This

operation we will refer to as execution stack retrieval. A

simple implementation of this is to have a freelist of stacks

in Cb, and to remove and use one upon upcall. Execution

stack retrieval must be atomic to maintain freelist integrity

as thread preemptions can occur at any time. COMPOSITE

supports restartable atomic sequences [13] to provide this

atomicity, even on processors that don’t support atomic in-

structions. If the freelist of stacks is empty, then Cb invokes

the stack manager component that either allocates a stack

in Cb, or blocks the requesting thread until one becomes

available.

As depicted in Figure 3, the structure representing a

thread in COMPOSITE includes an invocation stack4 which

traces all invocations that have been made while in the con-

text of that thread. Each entry in the stack includes a ref-

erence to the component being invoked, and the instruction

and stack pointers to return to in the previous component.

When an invoked component returns from an invocation

(by invoking a static return capability), an item is popped

off of the invocation stack, and the appropriate protection

domain, stack pointer, and instruction pointer are loaded,

returning execution to the invoking component (Ca). This

process avoids loops, and doesn’t touch user-memory so it

shouldn’t fault. The kernel invocation path, then, should be

predictable.

Invocation arguments are passed in registers – up to 4

words on the x86 COMPOSITE implementation. Additional

arguments are passed via shared memory.

IPC Efficiency in COMPOSITE: As in L4, the num-

ber of data-structures (thus cache-lines and TLB entries)

touched during an invocation is small to minimize cache in-

terference, and improve performance [10]. COMPOSITE’s

invocation path is implemented in C. It achieves perfor-

mance on the order of optimized synchronous IPC paths

also implemented in C. A component invocation takes less

than 0.7 µ-seconds on both a 2.4 Ghz Pentium 4 proces-

sor, and a 1 Ghz Pentium M processor5. This is compara-

ble to reported performance numbers in the µ-kernel litera-

ture [23, 15].

We believe that this demonstrates that thread-migration

can be implemented without significant performance over-

heads compared to other techniques. Given this, the ques-

tion is what are the other system factors that favor either

4Please note that this invocation stack is unrelated to the C stack.
5The average invocation overheads on these processors are similar –

though they have varying clock speeds – due to significant differences in

hardware overheads for user-kernel transitions, page-table switches, and

relative CPU/memory speeds.

93

thread migration, or synchronous IPC. We investigate these

in the rest of the paper.

3 CPU Allocation and Accounting

In this section, we investigate how CPU time is allocated

amongst and accounted to different threads.

C C C Ca b ba

IP

TCP

(a) (b)

Figure 4. Invocations through components: (a)

thread migration, (b) synchronous IPC.

We start with a simple system depicted in Figure 4. Ap-

plication execution starts in a client component Ca and

makes an IPC to CTCP which, in turn, makes an IPC to

CIP . This could correspond to an untrusted client send-

ing a packet through the transport and internetworking lay-

ers. Additionally, a second client component, Cb, causes

the same progression of IPCs. Assume that Ca and Cb do

not trust each other, and that they simply use the services

provided by lower-level components.

Here we wish to investigate how CPU time is allocated

and accounted throughout the system, and how it effects

the policies for managing time. We investigate two models:

synchronous IPC with a separate thread per component, and

migrating threads where threads start in Ca and Cb and exe-

cute throughout system components. Figure 4 depicts these

two situations.

From a resource allocation and accounting perspective,

these two models are very different. To illustrate, assume

that the amount of cycles spent processing in Ca is pa
a. Invo-

cations from this component result in pa

TCP
and pa

IP
cycles

sent processing in CTCP and CIP , respectively. Addition-

ally, the amount of time spent processing for the execution

originating in Cb is pb

b
, pb

TCP
and pb

IP
, correspondingly.

3.1 Synchronous IPC Accounting and Ex-
ecution

Client execution accountability: In the synchronous

IPC model, the processing time spent in each component

is charged to the component’s thread. Thus the thread in the

initial applications will be charged for their execution: pa
a

and pb

b
. However, the execution charged to τCT CP

0
will be

pa

TCP
+ pb

TCP
, and τCIP

0
will be charged for pa

IP
+ pb

IP
. If

the number of requests originating from Ca is significantly

larger than those from Cb (even if the processing time in

those components is small), the system scheduler will have

little ability to throttle one client, or to even know which

client is causing the overhead in the networking stack. The

fundamental problem with this model for tracking CPU us-

age, and scheduling computation, is that it loses information

about which client a shared component is doing processing

for. Practical approaches to many of the shortcomings of the

pure synchronous IPC model are discussed in Section 3.3.

Real-time task models: Aside from the inability of the

scheduler to properly track client execution throughout the

system, synchronous IPC does not naturally accommodate

traditional real-time task execution models. It is common

to assume a task has a given worst-case execution time, C,

and executes periodically, with a period of T . C includes

all execution time, including that which occurs in server

components. The scheduler, will not see the thread using

C execution time as the accounting for this execution is

distributed throughout invoked threads in the system. This

would make it difficult if not impossible to implement ac-

curate aperiodic servers [22] that make invocations to other

components, as budget consumption would be spread across

multiple threads. An additional problem arises as the prior-

ity of a thread is often associated with its C (e.g. in rate-

monotonic scheduling). It is not obvious how to assign

priorities to threads throughout the system in the presence

of pervasive thread dependencies. This is especially true

in an open real-time system where an unknown number of

nonreal-time or soft real-time tasks execute along side hard

real-time tasks and they can all rely on shared servers. This

problem only becomes more pronounced as the depth of the

component hierarchy increases.

An application can avoid these problems by making no

invocations to server threads. Unfortunately, this limits the

functionality available to that application, and prevents the

decomposition of the system into fine-grained components.

Priority Inversion: A server thread might have a low

priority compared to a high-priority client. In such a case,

a medium priority thread can cause unbounded priority in-

version. To avoid these situations, great care must be taken

in assigning thread priorities throughout the system. For

example, [5] proposes a static structuring such that server

threads always have the same or higher priority than their

clients. Unfortunately, it is not clear if it generalizes in

open systems. Additionally, as it requires that servers run

at a higher priority, it can lead to larger scheduling inter-

ference of high priority server threads (that service predom-

inantly low priority threads) with medium priority threads

elsewhere in the system.

One might be tempted to observe that many of these

problems come from having components that are relied

upon and invoked by multiple other components, possi-

bly with widely varying temporal requirements. Can’t we

94

simply arrange the system such that there are no compo-

nents that are shared between different subsystems? Unfor-

tunately, it is difficult to not share components that drive

shared peripherals (e.g. keyboards, networking cards), that

share the system’s physical memory between subsystems,

or that schedule system’s threads (assuming component-

based scheduling [13]). Such sharing is unavoidable.

3.2 Migrating Threads Accounting and
Execution

The migrating thread model makes it explicit which

client a server component is processing for, e.g. computa-

tion in the networking stack is performed in the scheduling

context of the client thread. The scheduler explicitly sees all

execution performed on behalf of a specific client, and can

schedule it accordingly. Thus, the execution time accounted

to the thread created in Ca is pa
a + pa

TCP
+ pa

IP
, and like-

wise for the thread created in Cb. If τa makes a dispropor-

tionately large amount of invocations into the networking

stack, it is charged directly for the processing time of those

invocations (in contrast to the synchronous IPC case).

Priority Inversion: A significant complication with the

migrating thread model concerns shared resources within a

server component. If a low-priority thread takes a shared

resource requiring mutual exclusivity (e.g. it is protected

by a lock) priority inversion can occur if it is preempted

by a high-priority thread that attempts to access the shared

server resource. The solution to this is to use a resource

sharing protocol that bounds the priority inversion [18]. In

COMPOSITE, locking policies including those that avoid

unbounded priority inversion are implemented as compo-

nents.

We claim that the resource management and accounting

properties of this model more closely match the intended

structure of a system composed of many components. There

is some precedent for this position: When a user-level pro-

cess makes a system call, the execution time spent in the

kernel is typically accounted to and scheduled with the cre-

dentials of the user-level thread. That is to say, that threads

migrate from user- to kernel-level (though, of course, their

execution contexts change).

3.3 Synchronous IPC Implementations:
Accounting and Execution

Actual implementations of synchronous IPC deviate

from the pure model. In this section, we discuss the rele-

vant differences.

In synchronous IPC, the kernel switches between threads

on each IPC. It is thus natural to perform scheduling on

every IPC. However, the overhead of scheduling decreases

IPC performance significantly. An optimization is to use

lazy scheduling to avoid scheduling until the scheduler is

explicitly invoked (e.g. via a timer-interrupt), and to do di-

rect process switch whereby the system switches directly to

the server thread upon IPC [10, 17] (assuming the server

thread was blocked waiting for an IPC) 6. The combination

of these techniques removes scheduling related overheads

from the IPC path.

Unfortunately, The thread that is charged for execution

at any point in time is not predictable. Before the execu-

tion of the scheduler, the invoking thread is charged, em-

ulating migrating threads. However, after the scheduler is

executed, the threads are scheduled separately. This un-

predictability is harmful to real-time systems [16], and re-

searchers have tested if the optimization is indeed neces-

sary for efficiency [6]. The answer appears dependent on

the frequency of IPCs. It should be noted that in such a case

we are choosing between two undesirable cases: (1) unpre-

dictable resource accounting and scheduling (via direct pro-

cess switching and lazy scheduling), and (2) the problems

associated with the pure synchronous IPC between threads

(Section 3.1) including the associated overhead.

Side-stepping these problems, Credo [20] decouples the

execution context and scheduling context of threads. Syn-

chronous IPC between threads transfers the scheduling con-

text to the receiving thread. This model can require walking

a path in the dependency graph of thread synchronizations

to maintain proper scheduling context assignments. Credo

essentially moves the synchronous IPC regime towards a

migrating thread model. Unfortunately, it does so at the

cost of complexity, and it increases the worst-case execu-

tion time of invocations by requiring the walking of the de-

pendency graph to determine current scheduling context. If

the depth of this tree is not predictable, then IPC operations

themselves will, in turn, not be predictable.

Discussion: Motivated by efficiency or better ac-

counting, practical synchronous IPC implementations have

moved towards the accounting and execution style of a mi-

grating thread model. However, they do so a the cost of

complexity and possible unpredictability. Systems requir-

ing predictable IPC in which dependency graph depths can-

not be statically known, would benefit from starting with a

migrating thread model.

4 Communication End-Point Contention

IPC in µ-kernels and component-based OSes is directed

at specific communication end-points. The end-point in

synchronous IPC systems is the server thread. This thread is

addressed directly from the client (i.e. by thread id), or in-

directly via a capabilities [9]; the end-point is the same. For

6It should be noted that K42 provides synchronous IPC with direct pro-

cess switch between dispatchers that are similar in many ways to system

threads.

95

thread migration, the target of an invocation is the compo-

nent, or protection domain, being invoked. This component

can be addressed either by id, or indirectly by capability.

The end-point of an invocation is important as it effects sys-

tem behavior when there is contention (multiple concurrent

invocations) to that end-point.

4.1 Synchronous IPC End-Point Con-
tention

Unpredictable IPC overheads due to end-point con-

tention: If multiple threads attempt to conduct synchronous

IPC with an active server thread, they are placed in its wait-

queue. When the server thread replies, the system exe-

cutes the thread being replied to, or one of the threads on

the wait-queue, depending on which of all of the threads

has the highest priority. The execution cost of finding the

next thread to execute, then, is linear in the size of the

wait-queue. Thus to enable predictable IPC, the number

of threads concurrently calling a specific server thread must

be bounded. The assumption is often that the duration of

an IPC is short, thus the server thread will be preempted

with only a small probability. Thus, the wait-queues should

rarely grow to significant length. In general component-

based systems in which even applications are decomposed

into separate components, the probability of preemption in

an invoked component is high, thus the consideration of

wait-queue length is important7. Importantly, worst-case

IPC costs must be considered in hard real-time systems.

w w

(a) (b) (c)

Figure 5. Invocations of and contention on vari-

ous end-points. (a) All client threads invoke sep-

arate server threads. (b) Client threads invoke the

same server thread, adding two to the server thread’s

wait-queue. (c) Thread migration: execution contexts

aren’t the target of invocation, thus cases similar to

(b) are impossible.

Assume N threads concurrently attempt to invoke M

threads in a server component. If N = 1, M ≥ 1, then

7Some synchronous IPC implementations disregard priority, and either

switch immediately to the thread being replied to, or to the head of the wait-

queue. This alleviates the problem of linear execution time in the size of

the wait-queue. However, as it ignores thread priorities, it is unpredictable

none-the-less.

it is clear the IPC will continue without complication as the

wait-queue is empty. If M ≥ N ≥ 1, and each of the N

synchronizes with a separate server thread, the situation is

comparable (Figure 5(a)). However, it is possible that all

N invoking threads will attempt to synchronize with a sin-

gle thread in the server, thus the wait-queue will be N − 1

long 8. M − 1 server threads will remain waiting for IPC,

and IPC overheads will correspondingly increase. This sit-

uation is depicted in Figure 5(b). If N > M , then some

server thread’s wait-queues will be unavoidably non-empty.

It follows that IPC predictability is dependent on if the

following factors can be predicted: (1) the relative num-

ber of clients and server threads, and (2) the distribution of

client invocations across server threads.

Limiting wait-queue length: Perhaps the most straight-

forward way to predict the maximum size of server wait-

queues is to ensure that for each client thread, there is a

corresponding server thread. Care is taken to only invoke

a client’s corresponding server thread. Though appealing

in simplicity, this solution doesn’t generalize for two rea-

sons. First, the maximum number of threads in a protec-

tion domain is often bounded. Thus two components with

the maximum number of threads each, would have at least

twice the number of threads than are available in the server.

Second, threads take up resources (e.g. memory). In the

worst case such a strategy would require T ×C threads, for

T application threads and C components.

In a more realistic scenario, server threads are partitioned

amongst different classes of client threads (with different

priorities, or timing constraints). Fundamentally, client

threads don’t know the status of specific server threads (i.e.

if specific server threads are busy or waiting for IPC). Yet

on each invocation, they must answer “which server thread

should I call?” Thus it is difficult, in the general case, for

them to avoid invoking the same server thread.

Discussion: Predictable systems can be created using

the two suggested modifications to synchronous IPC. How-

ever, in general systems with possibly malicious clients, and

deep component hierarchies, it is not clear what the price of

such techniques is (e.g. in memory consumption for thread

context, or programmer complexity). Generally, the root

problem is that the clients are forced to choose the specific

execution context to process on in the server, but they don’t

have all information required to make that decision. That

decision is best made by the server that knows its own state.

In Section 4.3, we discuss possible enhancements to make

this possible.

8We are assuming a very specific interleaving of client threads where

invocations are made before a server thread completes processing of an

IPC request. This is the worst-case, and must be considered in real-time

systems.

96

4.2 Thread Migration and End-Point
Contention

For thread migration, the communication end-point be-

ing invoked is the server component9. As discussed in Sec-

tion 2.2.1, when a component is upcalled into as the result

of an invocation, the first operation it performs it to retrieve

an execution stack from its local freelist. Assume N threads

invoke the functions of a component in which M execution

stacks (contexts) exist.

(b)(a)

Figure 6. Retrieving execution contexts with thread

migration. (a) Stacks are maintained on a freelist in

the invoked component, or (b) in the kernel.

If N ≤ M , all invocations will immediately find an ex-

ecution stack to execute on. As the invocation end-point is

the component, rather than specific execution contexts, so

the server prevents contention on its stacks. As the execu-

tion contexts are not the target of IPC, the component has

the opportunity to multiplex execution contexts as it deems

appropriate. Clients will never block waiting for an execu-

tion context. Figure 6(a) depicts this operation.

If N > M , then contention for execution contexts is un-

avoidable, so the freelist of stacks will be empty for some

invocations. In such cases, the thread invokes a component

specializing in stack management. The stack manager allo-

cates a new stack for immediate use, or calls the scheduler

to block the thread until one becomes available. In the latter

case, the stack manager implements priority inheritance to

avoid unbounded priority inversion. Differentiated service

between different clients or threads can be provided both at

the time of execution stack retrieval, and in the stack man-

ager by maintaining different lists of stacks for each level of

service, and class of specific threads (i.e. hard real-time vs.

best-effort execution contexts).

In COMPOSITE we choose to implement all policies for

obtaining execution contexts at user-level in components.

This enables (1) the definition of specialized policies as

user-level components, and (2) the simplification of the ker-

nel invocation path enabling its predictable execution and

low number of data-structure accesses. It is possible to

maintain the freelist of stacks in the kernel and assign a

thread to a specific context for the duration of a compo-

nent invocation. This is the approach taken by [8] which

slightly complicates both kernel data-structures and the in-

vocation path. Additionally, it places the policy for man-

9More specifically, in COMPOSITE the end-point is a function within

the API of the component denoted by a capability is the target.

aging the stack freelist in the kernel (thus precluding the

differentiated service policy described above). The bene-

fit of this approach is that, in the case there is no available

stack, it avoided the invocation into the server component.

Figure 6(b) depicts this scenario.

Discussion: By changing the target of invocations from

individual threads in the server to the server itself, thread

migration enables the server to manage and allocate its own

execution contexts. This avoids multiple client threads wait-

ing on a single server thread while other server threads are

available which will increase IPC overheads.

4.3 Synchronous IPC End-Point En-
hancements

Here we propose methods for modifying synchronous

IPC implementations to include many of the benefits of the

migrating thread model by changing the server communica-

tion end-point.

Locating execution contexts: One benefit of the migrat-

ing thread model is that the IPC end-point is not a specific

execution context, thus the system – or the invoked compo-

nent – has the opportunity to choose the appropriate context

itself according to specialized policies. The system (and

application) designer need not carefully plan which specific

client and server threads communicate with each other. We

believe that slight modifications to synchronous IPC imple-

mentations would enable the same capability.

Some modern µ-kernel systems [9] use capabilities to

indirectly address the thread endpoint for IPC. Given this

level of indirection, it would be natural for the capability

to reference not a single thread, but a collection of server

threads. Figure 6(b) depicts a similar scheme. Whenever an

invocation is made with the capability, a thread is dequeued

and execution in the server is made on that thread. As capa-

bilities currently hold a pointer to the thread to IPC to, the

overhead of this approach should be minimal. Capabilities

can include a wait-queue of threads waiting to complete IPC

with one of the server threads. Alternatively, when no server

thread is available to service a call, a exception IPC (sim-

ilar to page-fault IPC) can be delivered to a corresponding

execution context manager. When paired with the Credo

enhancements to migrate scheduling context upon invoca-

tion, synchronous IPC becomes quite similar to thread mi-

gration indeed. The desired behavior seems better captured

by thread migration.

Predictable IPC execution time: In systems where it

is difficult to predict the maximum number of threads on a

wait-queue for a server thread (thus the worst-case cost of

an IPC), it is possible for intelligent data-structures to pro-

vide a constant-time lookup of the highest priority thread

waiting for IPC. This removes the linear increase to the cost

of IPC for waiting threads (though not the cost commen-

97

surate with the depth of the dependency graph in Credo).

The O(1) Linux scheduler (present in Linux versions 2.6

to 2.6.23) includes a data-structure enabling constant time

lookup of the highest-priority thread. Though this approach

will technically make IPC time predictable across all wait-

queue lengths, it could impose a large cost in terms of mem-

ory usage and constant execution overheads. We leave this

as an area of future study.

5 System Configurability

We discuss the ways that COMPOSITE provides the user-

level definition of novel policies that rely upon the seman-

tics of thread migration. Specifically, we discuss user-level,

component-based scheduling, and Mutable Protection Do-

mains (MPD) that enable the alteration of the protection do-

main configuration at run-time.

5.1 Component-Based Scheduling

In designing µ-kernels and component-based operating

systems, a common goal is to include in the kernel only

those concepts required to implement the system’s required

functionality at user-level [11]. The inclination is to re-

move mechanisms and policy from the (fixed) kernel and

define them instead in replaceable and independently fail-

able user-level components. Part of the motivation for this

is so that the system can be configured to the largest possi-

ble breadth of application and system requirements. In real-

time and embedded systems, the policies that dictate tem-

poral behavior are amongst the most sensitive to meeting

such requirements. In COMPOSITE, then, we have focuses

on enabling the user-level, component-based definition of

system scheduling policies [13].

To enable efficient user-level scheduling in COMPOSITE,

the invocation path should not require scheduler invocation.

This goal has two implications: First, the invocation path

should not rely on scheduling parameters associated with

threads, such as priority, as these are defined in the user-

level scheduler. Second, the invocation path should not re-

sult in multiple threads becoming active, as this would im-

ply an invocation of the user-level scheduler.

The migrating thread model satisfies both of these con-

straints. As no thread switches occur during the invoca-

tion path, the scheduling parameters associated with threads

are not required. The only thread active during an invoca-

tion is the original scheduling context. To block or wakeup

threads, invocations must be made to the scheduler compo-

nent.

Pure synchronous IPC does not satisfy either of these

goals. As thread switches occur on each IPC, the next thread

to execute must be located, and to do so involves access

to thread scheduling parameters, and dispatching between

threads. This practically requires the scheduler to be kernel-

resident, and for the IPC mechanism to hard-code a single

scheduling policy. Additionally, some IPC operations result

in the activation of multiple threads. For example, when

executing a reply wait, the IPC path can result in both the

client and server threads, being active if there are threads on

the wait-queue for the server thread. Direct process switch-

ing avoids these issues at the cost of predictable thread exe-

cution accounting.

There are some indications, beyond the COMPOSITE

implementation, that user-level scheduling of all system

threads is best done with the migrating thread model. For

example, in [21], L4 is modified to allow specific threads to

control scheduling. Doing so involves migrating scheduling

context with IPCs as in Credo. Additionally, due to compli-

cations created by end-point contention, the author suggests

that a solution is to “construct a µ-kernel solely based on

procedure call semantics”.

5.2 Mutable Protection Domains

The resource accountability and execution semantics of

component invocations are identical for invocations be-

tween protection domains, and between components in the

same protection domain. This, along with novel mech-

anisms for predictably and dynamically altering protec-

tion domain structures, enables Mutable Protection Do-

mains (MPD) [12]. MPDs recognizes that in a fine-grained

component-based system, even optimized invocation paths

can have significant overheads10. The system is able to

monitor the frequency of invocations between each com-

ponent. We observe that the distribution of such invoca-

tion counts is heavily tailed, and if the overhead of invoca-

tions between a small number of components is removed,

the system can attain both high reliability (retaining most

protection domain boundaries), while concurrently achiev-

ing significant performance improvements (up to 40%). As

the distribution of invocations between components change,

the system can erect and remove protection boundaries as

appropriate. The goal is to maintain high reliability (to de-

tect and isolate faults when they occur), and high perfor-

mance. When a protection boundary is required for security,

it should never be removed.

To retain a consistent model of thread execution account-

ing and scheduling in a system using synchronous IPC,

thread switches would be necessary even when the compo-

nents share a protection domain. The overhead of schedul-

ing and switching between threads is higher than that of di-

rect invocation of the destination function. For example, the

cost of intra-protection domain invocations in COMPOSITE

10In COMPOSITE, we implement a simple web-server [14] consisting

of about 25 components. Each HTTP request causes between 50 and 70

invocations depending on if it is for static or dynamic content.

98

fnfn

(a) (b)

Figure 7. Inter-address space invocations of the

function fn, using (a) synchronous IPC that required

thread dispatch, and (b) migrating threads with indi-

rect invocations through a function pointer [14].

is on the order of a C++ virtual function call, significantly

faster than thread dispatch. Figure 7 depicts these two forms

of invocation. Only a single execution context is required

when using thread migration.

6 Thread Migration Limitations

There are a number of limitations and peculiarities both

with the thread migration model, and with the COMPOSITE

implementation. We discuss these in turn.

Execution Context Unavailability: When an invoca-

tion is made to a component, an execution context for that

invocation must be found. This can be done in the ker-

nel [8], or within the component itself (as in COMPOSITE).

If there are no available contexts, the system must resolve

this contention. Both thread migration and synchronous

IPC must deal with this case where there are more pending

invocations than there are server execution contexts. We be-

lieve this case is best dealt with by allowing the customized

definition of the policies for dealing with such cases. In

COMPOSITE, these policies are defined as components and

they vary from having separate execution stack freelists for

different client service classes (i.e. to guarantee that hard

real-time tasks will always find a stack), to implementing

priority inheritance. Additionally, we are currently inves-

tigating methods to balance responsiveness with execution

context memory usage when allocating execution contexts

to components.

Fault Recovery: The fault recovery model for server-

based systems using synchronous IPC is well-known and

simple to understand. When a fault occurs within a server,

all threads in active IPC with that thread or server can be di-

rectly notified of that failure and act accordingly. The fault-

ing thread and the server can independently be restarted.

With thread migration, the thread that causes a fault in one

component should not be destroyed as its execution context

is spread across multiple components. Thus when a fault

occurs in a specific component, one solution is to cause the

thread to return to the invoking component, either with an

error code, or an exception [3]. This model is less familiar

to developers accustomed to a process-style structuring of

the system.

6.1 COMPOSITE Implementation Limitations

COMPOSITE is a prototype and should not be seen as

being as feature-rich as either monolithic systems such as

Linux, or even mature µ-kernels such as L4. A number

of design decisions simplify the implementation of thread

migration in COMPOSITE.

First, the COMPOSITE kernel is non-preemptive. The

IPC path assumes that no interrupts will preempt it, thus

that no synchronization around kernel data-structures is re-

quired in the single-processor case. Additionally, as the

invocation path does not touch user-memory, we assume

that faults cannot occur. The non-preemptive assumption

is justified by the general lack of expensive operations in

the kernel. For example, we avoid supporting general hier-

archical address space operations such as map, grant, and

unmap [11] operations in the kernel, as complex mapping

hierarchies can cause unmap to become expensive. Instead,

we provide a simple operation to directly map a physical

frame into a specific virtual location in a component. A

privileged user-level component uses this simple facility to

itself implement the higher-level operations. Though we be-

lieve the non-preemptive kernel implementation is a sound

design decision, we cannot predict if systems that do not

make such an assumption might have difficulty implement-

ing efficient invocations using thread migration.

An additional limitation of the current COMPOSITE im-

plementation is the fact that it only supports uniproces-

sors. We believe partitioning the state of the system (e.g.

threads) between processors will enable efficient and pre-

dictable (and lock-free) invocations when we move COM-

POSITE to multiprocessors.

7 Related Work

Thread migration is not a new method for inter-

protection domain invocation. LRPC [1] describes now

RPC within a single machine can be optimized by using

thread migration. Ford [7] altered the invocation path in

Mach to use thread migration for a significant performance

improvement. Pebble [8] optimizes invocation latency by

custom-compiling specialized invocation code and by us-

ing thread migration. We argue that thread migration is a

predictable foundation upon which to implement finely de-

composed, configurable, and reliable systems. We do not

know of other work that has compared the predictability of

thread migration to synchronous IPC.

8 Conclusions

In this paper, we argue the case for using a thread migra-

tion approach for predictable inter-protection domain com-

munication in configurable and reliable systems. In doing

99

so, we introduce the COMPOSITE design for component in-

vocation that uses thread migration. We make this argu-

ment in terms of three factors: (1) the desire to have a con-

sistent processor management and accounting scheme for

CPU utilization across invocations that maps well to sys-

tems in which specialized services are provided by some

components to others, (2) the communication end-point ab-

stractions provided by the kernel that have a significant ef-

fect on the bounds for IPC latency, and (3) the effect that

the IPC mechanism can have on the ability of the system

to provide configurable system policies (e.g. scheduling,

MPD).

We argue that thread migration provides a predictable in-

vocation foundation, and we contrast that with synchronous

IPC in the general case. We argue not that previous IPC

mechanisms should be abandoned, but that bringing their

semantics closer to that of thread migration is beneficial for

overall system predictability.

The COMPOSITE source code is available upon request.

References

[1] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.

Levy. Lightweight remote procedure call. ACM Trans. Com-

put. Syst., 8(1):37–55, 1990.

[2] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mutual

exclusion for uniprocessors. In ASPLOS-V: Proceedings of

the fifth international conference on Architectural support

for programming languages and operating systems, pages

223–233, New York, NY, USA, 1992. ACM.

[3] F. M. David, J. C. Carlyle, E. Chan, D. Raila, and R. H.

Campbell. Exception handling in the choices operating sys-

tem. In Advanced Topics in Exception Handling Techniques

in Springer Lecture Notes in Computer Science, pages 42–

61, 2006.

[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom.

Flick: a flexible, optimizing idl compiler. In PLDI ’97:

Proceedings of the ACM SIGPLAN 1997 conference on Pro-

gramming language design and implementation, pages 44–

56, New York, NY, USA, 1997. ACM Press.

[5] K. Elphinstone. Resources and priorities. In Proceedings of

the 2nd Workshop on Microkernels and Microkernel-Based

Systems, October 2001.

[6] K. Elphinstone, D. Greenaway, and S. Ruocco. Lazy

scheduling and direct process switch – merit or myths? In

Workshop on Operating System Platforms for Embedded

Real-Time Applications, July 2007.

[7] B. Ford and J. Lepreau. Evolving mach 3.0 to a migrating

thread model. In Proceedings of theWinter 1994 USENIX

Technical Conference and Exhibition, pages 97–114, 1994.

[8] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-

schatz. The pebble component-based operating system. In

Proceedings of Usenix Annual Technical Conference, pages

267–282, June 2002.

[9] A. Lackorzynski and A. Warg. Taming subsystems: capa-

bilities as universal resource access control in l4. In IIES

’09: Proceedings of the Second Workshop on Isolation and

Integration in Embedded Systems, pages 25–30, New York,

NY, USA, 2009. ACM.

[10] J. Liedtke. Improving ipc by kernel design. In SOSP ’93:

Proceedings of the fourteenth ACM symposium on Oper-

ating systems principles, pages 175–188, New York, NY,

USA, 1993. ACM Press.

[11] J. Liedtke. On micro-kernel construction. In Proceedings of

the 15th ACM Symposium on Operating System Principles.

ACM, December 1995.

[12] G. Parmer and R. West. Mutable protection domains: To-

wards a component-based system for dependable and pre-

dictable computing. In RTSS ’07: Proceedings of the 28th

IEEE International Real-Time Systems Symposium (RTSS

2007), pages 365–378, Washington, DC, USA, 2007. IEEE

Computer Society.

[13] G. Parmer and R. West. Predictable interrupt management

and scheduling in the Composite component-based system.

In RTSS ’08: Proceedings of the 29th IEEE International

Real-Time Systems Symposium. IEEE Computer Society,

2008.

[14] G. A. Parmer. Composite: A Component-Based Operating

System for Predictable and Dependable Computing. PhD

thesis, Boston University, Boston, MA, USA, Aug 2009.

[15] S. Reichelt, J. Stoess, and F. Bellosa. A microkernel api for

fine-grained decomposition. In 5th ACM SIGOPS Workshop

on Programming Languages and Operating Systems (PLOS

2009), Big Sky, Montana, oct 2009.

[16] S. Ruocco. A real-time programmer’s tour of general-

purpose l4 microkernels. In EURASIP Journal on Embedded

Systems, 2008.

[17] Scheduling in k42, whitepaper:

http://www.research.ibm.com/k42/white-

papers/scheduling.pdf.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization. IEEE

Trans. Comput., 39(9):1175–1185, 1990.

[19] J. S. Shapiro. Vulnerabilities in synchronous ipc designs. In

SP ’03: Proceedings of the 2003 IEEE Symposium on Se-

curity and Privacy, page 251, Washington, DC, USA, 2003.

IEEE Computer Society.

[20] U. Steinberg, J. Wolter, and H. Hartig. Fast component in-

teraction for real-time systems. In ECRTS ’05: Proceedings

of the 17th Euromicro Conference on Real-Time Systems

(ECRTS’05), pages 89–97, Washington, DC, USA, 2005.

IEEE Computer Society.

[21] J. Stoess. Towards effective user-controlled scheduling

for microkernel-based systems. SIGOPS Oper. Syst. Rev.,

41(4):59–68, 2007.

[22] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The de-

ferrable server algorithm for enhanced aperiodic responsive-

ness in hard real-time environments. IEEE Trans. Comput.,

44(1):73–91, 1995.

[23] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen, and

G. Heiser. Performance of address-space multiplexing on

the Pentium. Technical Report 2002-1, University of Karl-

sruhe, Germany, 2002.

100

smp
Image

smp
Rectangle

smp
Image

smp
Text Box
http://www.artist-embedded.org/

