Implementation of Overrun and Skipping in VxWorks

Mikael Åsberg, Moris Behnam and Thomas Nolte MRTC/Mälardalen University Sweden

Reinder J. Bril Technische Universiteit Eindhoven The Netherlands

PRØRESS

A national Swedish Strategic Research Centre

Swedish ^z/₂ Foundation for Strategic Research

Overview

- Background (Resource sharing in the hierarchical scheduling environment)
 - Overrun
 - Skipping
- Preliminaries:
 - Stack resource policy (SRP)
 - Hierarchical scheduling framework (HSF)
- VxWorks implementation:
 - SRP
 - Overrun/Skipping
 - Common (Överrun/Skipping)
 - Overrun
 - Skipping
- Comparison (Overrun/Skipping)
- Evaluation
- Conclusion

PRØRESS

Background

- Problem: Resource sharing across subsystems
- Solution: Protocols such as Overrun or Skipping
 - Overrun: extend budget to complete critical sec.
 - Skipping: Skip task exec. if budget is too small
- Both are based on SRP (at both subsystem and task level)

Preliminaries: SRP

- Synchronization protocol (FPS and EDF)
- SRP notations:
 - Task priority ceiling
 - Resource ceiling
 - System ceiling
- Example: FPS (RM)
 prio1 < prio2 < prio3

PRØRESS

Preliminaries: HSF

- Two-level HSF (OSPERT'08)
 - Supports FPPS and EDF in both levels
 - Periodic tasks
 - Subsystems are impl. as periodic servers
 - Impl. made in VxWorks

Implementation: SRP

- Data-structures
 - Resource ceiling stack (system ceiling)
 - Blocked task queue (FIFO)
- Added/modified functionality
 - Lock and Unlock
 - Modification to local scheduler

Implementation: Common

- Resources
 - Globally shared (mapped to local)
 - Locally shared
- Global/local system ceiling
- Data-structures
 - Resource ceiling stack (system ceiling)
 - Blocked server queue (FIFO)
- Check sys. ceil. at server release

Implementation: Overrun

Data-structures

- Overrun flag
- Resource counter
- + Low lock overhead
- + Low amount of data-structures
- <u>- Amount of calls to global scheduler</u>

PR GRESS

- Data-structures
 - Resource locking time
 - FIFO queue (for self-blocking)
- + Less calls to global scheduler
- Overhead in lock and local scheduler
- Need to save data for critical section length

- Memory complexity:
 - Skipping higher than Overrun
 - Self blocking queue, resource holding time
- Skipping needs modification of local scheduler
- Both modifies the global scheduler
 - Both use server-level SRP
 - Skipping checks self-blocking at release
 - Overrun checks overrun at budget depletion
- Less time deviation for Skipping
 - Overrun calls global scheduler more often
- Overhead
 - Skipping: More overhead in Lock function
 - Overrun: More overhead in Unlock function
 - It points to that Skipping has lower than Overrun

PRORESS • (Details in next slide)

Evaluation

- Experimental setup:
 - Hardware:
 - Robotics controller (ABB)
 - Pentium Pro (200 MHz) processor
 - VxWorks 5.2
 - 8 generated systems (S1 S8)
 - Systems were recorded 600 time units (tu)
 - Task period: 40-100 tu, server period: 5-20 tu
 - Task utilization per system: ~15%

Protocol	System															-	
	S^1	S^2	S^3	S^4	S^5	S^6	S^7	S^8	S^1	S^2	S^3	S^4	S^5	S^6	S^7	S^8	
	# calls to lock/unlock									# calls to Scheduler							
Skipping	306	335	248	275	181	224	202	236	8	5	7	4	5	5	10	6	
Overrun	304	335	247	275	181	225	203	236	47	13	40	16	36	17	30	25	

Conclusion

- We have implemented 2 synchronization protocols in VxWorks
 - Overrun and Skipping
- Both protocols are based on our previous work: HSF (OSPERT'08)
- Evaluation results indicate less overhead for Skipping
 - Although memory allocation grows with the nr. of un-nested global resources
- Overrun causes more time deviation
- Skipping needs modification of local scheduler
- Future work:

PR GRESS

- More evaluation (measure entire overhead)
- Optimizations

11

The end

Thank you! Questions?

