Cache-Related Preemption and Migration Delays: Empirical Approximation and Impact on Schedulability

> OSPERT 2010, Brussels July 6, 2010

Björn B. Brandenburg James H. Anderson

University of Rome "Tor Vergata" The University of North Carolina at Chapel Hill

Work supported by AT&T, IBM, and Sun Corps.; NSF grants CNS 0834270, CNS 0834132, and CNS 0615197; ARO grant W911NF-09-1-0535; and AFOSR grant FA 9550-09-1-0549.

The Problem

Multiprocessor Global EDF schedule with overheads.

The Problem

Kernel overheads (e.g., release overhead, scheduling overhead, etc.) are "easy" to measure.

Bastoni, Brandenburg, and Anderson 3

The Problem

Overheads due to preemption / migrations are not!

Bastoni, Brandenburg, and Anderson 4

Outline

- Cache-related preemption and migration delays (CPMD).
- Two methods to measure CPMD.
- Experimental results and discussion.
- Impact on schedulability (sketch).

Cache-Related Preemption and Migration Delays (CPMD)

- Cache-related preemption and migration delays:
 - Delays due to additional cache misses when resuming execution after a preemption or a migration.

- Heavily dependent on working set size (WSS).
- No effective WCET analysis techniques available for current multiprocessors with cache hierarchies.
- Need to rely on empirical measurements.

In this study: empirical approximation of CPMD.

Measuring CPMD

Measuring CPMD

Outline

- Cache-related preemption and migration delays (CPMD).
- Two methods to measure CPMD.
- Experimental results and discussion.
- Impact on schedulability (sketch).

Schedule-Sensitive Method

- On-line recording of delays:
 - Execute instrumented synthetic tasks under desired scheduling policy.
 - Wide range of WSS, TSS, and read/write ratios.
- Can reveal dependencies on:
 - Scheduling policy.
 - Task set size (TSS).
- Cannot explicitly control preempt./migrat.
 - P/M depends on the scheduling policy.
 - Not every job yields a valid measure.
 - A job may be preempted too early, too late, or not at all.

Synthetic Method

- Fine-grained control on measurement process:
 - Artificially trigger preemptions and migrations.
 - Explicit control on preemptions and different types of migrations (through L2 cache, L3 cache, and memory).
- Fixed-prio scheduling policy (e.g., SCHED_FIFO).
 - Single high-prio tasks access wide range of WSS.
 - Wide range of read/write ratios.
- Every job yields a valid measure.
- Cannot detect dependencies on:
 - Scheduling policy, TSS.

Implementation

Operating System:

- UNC's real-time Linux extension.
- Developed as kernel patch (currently based on Linux 2.6.32).
- Code is available at http://www.cs.unc.edu/~anderson/litmus-rt/.

Implementation Issues

- Low-overhead clock device.
 - Time-stamp counter (TSC). Per-core clock device.
- Clock skew among cores.
 - WS access times only based on samples from the same processor.
- Interrupts interference.
 - Interrupts disabled during WS access.
- How to detect when a preempt./migration occurred.
 - Low-overhead kernel-user communication mechanism.
 - Per-task memory page shared with the kernel.

Outline

- Cache-related preemption and migration delays (CPMD).
- Two methods to measure CPMD.
- Experimental results and discussion.
- Impact on schedulability (sketch).

Schedule-Sensitive method:

- G-EDF algorithm (but can be applied to other algos).
- TSS between 25 and 250, tasks randomly generated.
 - Uniform distribution. Periodic tasks with utilizations in [0.001, 0.1] and periods in [10,100] ms.
- WSS in the range from 4 KB to 2048 KB.
- Per-WSS write ratio 1/2 and 1/4.
- Synthetic method:
 - Single SCHED_FIFO task at the highest priority.
 - WSS in the range from 4 KB to 12 MB.
 - Per-WSS write ratio in the range from 0 to 1.
 - Preemption length uniformly distributed in [0,50] ms.

Schedule-Sensitive method:

- G-EDF algorithm (but can be applied to other algos).
- TSS between 25 and 250 tasks randomly generated.
 - Uni [0.0] Tested two configurations for each method:
- WSS method:
- Per-V = Idle system.
- Synthet <u>Under load</u>.
 - Single SURED_FIFU task at the highest phonty.
 - WSS in the range from 4 KB to 12 MB.
 - Per-WSS write ratio in the range from 0 to 1.
 - Preemption length uniformly distributed in [0,50] ms.

Results

Results (System under load) Size of L2 cache /erhead (25.00% writes) impacts predictability.

Results (System under load)

Results (System under load)

26

Results (Idle system)

Outline

- Cache-related preemption and migration delays (CPMD).
- Two methods to measure CPMD.
- Experimental results and discussion.
- Impact on schedulability (sketch).

Impact on Schedulability

Cache-Related Preemption and Migration Delays

Bastoni, Brande Jourg, and Anderson 29

Impact on Schedulability

Impact on Schedulability

Cache-Related Preemption and Migration Delays

Bastoni, Brandenburg, and Anderson 31

Evaluation of Scheduling Algorithms

Conclusions

- Empirical approximation of CPMD:
 - Schedule-sensitive method.
 - Synthetic method.

- CPMD strongly impacts evaluation of schedulers:
 - Preemptions are not necessarily (much) cheaper than migrations (for worst-case overheads).
 - If there is memory bus contention, then this is also true for average-case overheads.

- Validate TSC-based results with performance counters.
- Apply the methodologies on NUMA and embedded platforms.
- Investigate impact of bus locking on CPMD.
 - For example: DMA transfers, atomic instructions etc.

http://www.cs.unc.edu/~anderson/litmus-rt/

Thank You!

Cache-Related Preemption and Migration Delays

Bastoni, Brandenburg, and Anderson 35