
Schedulable Device Drivers:

Implementation and Experimental Results 1

Nicola Manica, Luca Abeni, Luigi Palopoli,
University of Trento - Trento (Italy),

Dario Faggioli
ReTiS Lab, Scuola Superiore Sant’Anna - Pisa (Italy),

Claudio Scordino,
Evidence Srl - Pisa (Italy)

6, July 2010

1This work has been partially supported by European Commission under the
ACTORS project (FP7-ICT-216586) and by the “Provincia Autonoma di
Trento” under the PAT/CRS Project RoSE

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Motivation for This Work

Real-time applications needs guaranteed CPU time.

If they access hardware devices, properly serving hardware interrupt
requests (IRQs) is equally important:

device drivers must have some CPU time to execute;

device drivers must not steal CPU time to real-time tasks;

device drivers must run with correct timing to serve hardware
requests.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Contribution of This Work

We use Linux PREEMPT RT where device drivers (ISRs and bottom
halves) are treated as tasks (IRQ threads) so that:

their execution is not accounted to any other task,

they can preempt or be preempted by other tasks.

We show how to use the SCHED DEADLINE policy to:

schedule real-time tasks,

schedule IRQ threads,

schedule task sets composed by real-time tasks and IRQ
threads.

We show ho to gather statistical information about interrupt
requests and how to assign proper scheduling parameters to the
IRQ threads.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Contribution of This Work

We use Linux PREEMPT RT where device drivers (ISRs and bottom
halves) are treated as tasks (IRQ threads) so that:

their execution is not accounted to any other task,

they can preempt or be preempted by other tasks.

We show how to use the SCHED DEADLINE policy to:

schedule real-time tasks,

schedule IRQ threads,

schedule task sets composed by real-time tasks and IRQ
threads.

We show ho to gather statistical information about interrupt
requests and how to assign proper scheduling parameters to the
IRQ threads.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Contribution of This Work

We use Linux PREEMPT RT where device drivers (ISRs and bottom
halves) are treated as tasks (IRQ threads) so that:

their execution is not accounted to any other task,

they can preempt or be preempted by other tasks.

We show how to use the SCHED DEADLINE policy to:

schedule real-time tasks,

schedule IRQ threads,

schedule task sets composed by real-time tasks and IRQ
threads.

We show ho to gather statistical information about interrupt
requests and how to assign proper scheduling parameters to the
IRQ threads.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

The Tracing Pipeline

Statistical characterization of inter-arrival and processing time of
IRQ handling can be extracted from the output of the Linux
scheduling tracer (ftrace) by our pipeline of tools:

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Resource Reservation scheduling with SCHED DEADLINE

Scheduling class based on EDF+CBS 2:

tasks are reserved Q (budget) every T time units (period),
and have Q

P
bandwidth (or utilization);

no restrictive assumption on the characteristics of the tasks
(periodic, sporadic or aperiodic).

2http://gitorious.org/sched_deadline

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

http://gitorious.org/sched_deadline

Resource Reservation scheduling with SCHED DEADLINE

Scheduling class based on EDF+CBS 2:

tasks are reserved Q (budget) every T time units (period),
and have Q

P
bandwidth (or utilization);

no restrictive assumption on the characteristics of the tasks
(periodic, sporadic or aperiodic).

Example: inter-frame times for two video players executing under
SCHED FIFO or SCHED DEADLINE:

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

low RT priority

 100 200 300 400 500 600 700 800

high RT priority

 100 200 300 400 500 600 700 800

CBS (12.5, 40)

 100 200 300 400 500 600 700 800

CBS (25, 40)

2http://gitorious.org/sched_deadline

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

http://gitorious.org/sched_deadline

Resource Reservation and IRQ Scheduling

If an IRQ thread is limited to execute for Q CPU time units every
T , and if P is the minimum inter-interrupt time for some device,
at most T−Q

P
interrupts will be delayed due to IRQ thread not

being allowed to run.

This means that, when selecting the reservation period for an IRQ
thread, we must respect

T − Q

P
< Nc

where Nc is the number of IRQs that can be buffered inside the
hardware device.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Resource Reservation and IRQ Scheduling

If an IRQ thread is limited to execute for Q CPU time units every
T , and if P is the minimum inter-interrupt time for some device,
at most T−Q

P
interrupts will be delayed due to IRQ thread not

being allowed to run.

This means that, when selecting the reservation period for an IRQ
thread, we must respect

T − Q

P
< Nc

where Nc is the number of IRQs that can be buffered inside the
hardware device.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Controlling I/O Throughput

Disk throughput figures when using different reservation for the
disk IRQ thread. OS caching mechanisms are disabled, DMA is
enabled on the left, disabled on the right.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

T
hr

ou
gh

pu
t (

M
B

/s
)

Reserved fraction of CPU time (Q/T)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
hr

ou
gh

pu
t (

M
B

/s
)

Reserved fraction of CPU time

Minimum
Average

Maximum

What can we say?

DMA makes it possible to achieve much higher throughput
but shows some more unpredictability.

disk throughput is proportional to IRQ thread’s bandwidth Q
T
,

both with and without DMA!
N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Controlling I/O Throughput

Disk throughput figures when using different reservation for the
disk IRQ thread. OS caching mechanisms are disabled, DMA is
enabled on the left, disabled on the right.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

T
hr

ou
gh

pu
t (

M
B

/s
)

Reserved fraction of CPU time (Q/T)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
hr

ou
gh

pu
t (

M
B

/s
)

Reserved fraction of CPU time

Minimum
Average

Maximum

What can we say?

DMA makes it possible to achieve much higher throughput
but shows some more unpredictability.

disk throughput is proportional to IRQ thread’s bandwidth Q
T
,

both with and without DMA!
N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Balancing Throughput and Latency (I)

A video player is used as a real-time application, while IRQ load
from the network card is generated with netperf.

Raising the priority of the video player above the one of the
network IRQ thread stabilizes the player performances. . .

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

Player Alone

 100 200 300 400 500 600 700 800

Player + netperf

 100 200 300 400 500 600 700 800

Player with RT priority
 + netperf

. . . but the network throughput drops from 88Mbps to 58Mbps.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Balancing Throughput and Latency (I)

A video player is used as a real-time application, while IRQ load
from the network card is generated with netperf.

Raising the priority of the video player above the one of the
network IRQ thread stabilizes the player performances. . .

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

Player Alone

 100 200 300 400 500 600 700 800

Player + netperf

 100 200 300 400 500 600 700 800

Player with RT priority
 + netperf

. . . but the network throughput drops from 88Mbps to 58Mbps.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Balancing Throughput and Latency (II)

Using SCHED DEADLINE for both (video player and netperf):

Test Player CBS net IRQ CBS Throughput

Test1 (29ms, 40ms) (9ms, 100ms) 59.75Mbps

Test2 (28ms, 40ms) (12ms, 100ms) 65.43Mbps

Test3 (26ms, 40ms) (13ms, 100ms) 70.83Mbps

Test4 (25ms, 40ms) (14ms, 100ms) 76.14Mbps

Test5 (20ms, 40ms) (18ms, 100ms) 88.55Mbps

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800

CBS (20, 40)

 100 200 300 400 500 600 700 800

CBS (25, 40)

 100 200 300 400 500 600 700 800

CBS (29, 40)

Both throughput and latency can be controlled by means of
resource reservations!

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Conclusions and Future Work

We showed that some recent developments in the Linux kernel can
be exploited to schedule the IRQ threads together with time
sensitive tasks, using the resource reservation framework, such that
both their interference on real-time tasks and the achieved device
throughput are kept under control.

We also showed how to derive consistent scheduling parameters for
the IRQ threads by statistically analyzing Linux scheduling traces.

Future Works:

investigating thoroughly effectiveness and usability of the
stochastic analysis framework;

considering even more different workloads and resources;

try to simplify the Markov model used inside such analysis.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Conclusions and Future Work

We showed that some recent developments in the Linux kernel can
be exploited to schedule the IRQ threads together with time
sensitive tasks, using the resource reservation framework, such that
both their interference on real-time tasks and the achieved device
throughput are kept under control.

We also showed how to derive consistent scheduling parameters for
the IRQ threads by statistically analyzing Linux scheduling traces.

Future Works:

investigating thoroughly effectiveness and usability of the
stochastic analysis framework;

considering even more different workloads and resources;

try to simplify the Markov model used inside such analysis.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Conclusions and Future Work

We showed that some recent developments in the Linux kernel can
be exploited to schedule the IRQ threads together with time
sensitive tasks, using the resource reservation framework, such that
both their interference on real-time tasks and the achieved device
throughput are kept under control.

We also showed how to derive consistent scheduling parameters for
the IRQ threads by statistically analyzing Linux scheduling traces.

Future Works:

investigating thoroughly effectiveness and usability of the
stochastic analysis framework;

considering even more different workloads and resources;

try to simplify the Markov model used inside such analysis.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Thank You for Your Time...

Any questions?

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Effectivenes of the Statistical Tools

Test Average Std Dev Max Min

T1 1190 29 1569 1040
T5 5198 22 5278 5058
T10 10195 22 10277 10062
T50 50207 27 50298 50081
T100 100207 25 100290 100093

Test Average Std Dev Max Min

T1 1207 1011 14336 0
T5 5212 1019 6144 4096
T10 10210 271 12288 8192
T50 50229 1023 51200 49152
T100 100204 530 100352 98304

Inter-Packet times as measured in the sender and in the receiver (µs).

Test Average Std Dev Max Min

T1 1210 32 1424 59
T5 5222 117 5385 63
T10 10264 60 10353 10093
T50 50832 627 50353 50082
T100 100424 9342 100313 76

Test Average Std Dev Max Min

T1 15 5 63 9
T5 19 1 68 18
T10 14 1 29 13
T50 16 2 28 15
T100 21 3 23 12

Statistics about the inter-arrival and execution times of the IRQ thread (µs).

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Full Disk Experiments (I)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2000 4000 6000 8000 10000

P
{I

nt
er

-A
rr

iv
al

 =
 t}

t (microseconds)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

P
{E

xe
cu

tio
n

T
im

e
=

 t}

t (microseconds)

PMF of the inter-arrival and execution times for the disk IRQ thread.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Full Disk Experiments (II)

Test Average
(2ms, 100ms) 1.9858%
(6ms, 100ms) 6.38374%

(20ms, 1000ms) 2.16843%
(60ms, 1000ms) 6.49811%
(10ms, 100ms) 10.6726%
(20ms, 100ms) 21.5825%
(60ms, 100ms) 62.4476%
(80ms, 100ms) 82.5952%
(90ms, 100ms) 92.9371%
(95ms, 100ms) 100%

(100ms, 1000ms) 11.778%
(200ms, 1000ms) 23.261%
(600ms, 1000ms) 65%
(800ms, 1000ms) 84.5455%
(900ms, 1000ms) 93.007%
(950ms, 1000ms) 100%

Disk IO-throughput when IRQ thread is scheduled with deadline scheduler.

Test Average Std Dev Max Min

No Reservations 16.89s 0.12s 17.05s 16.67s
(30ms, 100ms) 52.85s 0.87s 55.22s 52.36s
(40ms, 100ms) 39.52s 0.61s 41.25s 39.27s
(50ms, 100ms) 31.49s 0.12s 31.74s 31.40s
(60ms, 100ms) 26.23s 0.03s 26.30s 26.19s
(70ms, 100ms) 22.58s 0.20s 23.14s 22.47s
(80ms, 100ms) 19.77s 0.19s 20.31s 19.69s
(90ms, 100ms) 17.59s 0.04s 17.66s 17.55s

Time needed to perform a file copy, when the disk IRQ thread is scheduled with different parameters.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

Full Disk Experiments (III)

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.02 0.2 0.4

T
im

e
(m

s)

Q/T

T = 50
T = 100
T = 200

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
hr

ou
gh

pu
t (

M
B

/s
)

Reserved fraction of CPU time

Minimum
Average

Maximum

Total time needed to read a large file and achieved throughput, as a function of the reserved CPU time.

N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino Schedulable Device Drivers: Impl. and Exp. Results

