Extending a HSF-enabled Open-Source RTOS

with Resource Sharing
— International Workshop OSPERT 2010 —

M.M.H.P. van den Heuvel - R.J. Bril - J.J. Lukkien - M. Behnam

System Architecture and Networking (SAN)
Department of Mathematics and Computer Science
Eindhoven University of Technology
The Netherlands

6 July 2010

l
Technische Universiteit T) RN R T ==
e Eindhoven ; ROALEN ITY MRTc

University of Technology SAN

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

1/

23

Outline

© Introduction
© Task Synchronization
© Inter-subsystem resource sharing

@ Conclusions

6 July 2010

2/ 23

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing

Embedded Real-time Systems

Many embedded devices provide multiple, integrated functionalities.

In such systems its important to deliver correct functionality on time.

Non-real-time systems System does

« Correct function if produced the right thing
result is correct

Real-time systems System does the ...and it does it
« Correct function if produced right thing... on time
result is correct and
delivered on time E +

These functionalities share both logical and physical resources.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 3/23

Integration Problem

@ Isolation: applications shall not interfere

e Temporal isolation (processor);
o Spatial isolation (memory).

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 4/23

ration Problem

@ Isolation: applications shall not interfere

e Temporal isolation (processor);
o Spatial isolation (memory).

@ Development and analysis versus integration
o Independent analysis of application on virtual platforms;
o Application specific scheduling algorithms;
e Composition of virtual platforms.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

ration Problem

@ Isolation: applications shall not interfere

e Temporal isolation (processor);
o Spatial isolation (memory).

@ Development and analysis versus integration

o Independent analysis of application on virtual platforms;
o Application specific scheduling algorithms;
e Composition of virtual platforms.

© Applications may share logical resources.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

A Solution: Hierarchical Scheduling

Global
Scheduler
local local local
scheduler scheduler scheduler
subsystem 0 subsystem 1 T subsystem n
Rl Rz

@ subsystem: server, set of tasks and local (task) scheduler

@ server: a budget allocated each period

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

A Solution: Hierarchical Scheduling

Global
Scheduler
local local local
scheduler scheduler scheduler
subsystem 0 subsystem 1 T subsystem n
Rl Rz

@ subsystem: server, set of tasks and local (task) scheduler

@ server: a budget allocated each period

Tasks, located in arbitrary subsystems, may share logical resources

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 5/23

Outline

© Task Synchronization

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 6 /23

MicroC/OS-II Basics

MicroC/OS-Il is
@ a commercial RTOS
o targeted at embedded systems
@ open source

@ available at http://micrium.com/

It provides
@ a portable and configurable kernel
@ a fixed-priority, preemptive task scheduler

@ basic services (mailboxes, mutexes and counting semaphores)

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

http://micrium.com/

GRASP: microC/OS-II Instrumentation and Visualization

@ Visualization of scheduling behavior:

[M. Holenderski, M. van den Heuvel, R. J. Bril, and J. J. Lukkien.
Grasp: Tracing, visualizing and measuring the behavior of
real-time systems.

In 15t WATERS, July 2010.

o}OpenCores
@ MicroC/OS-II port to OpenRISC platform \ www.opencores.oro

@ OpenRISC: Architectural Simulator
http://opencores.org/openrisc,orlksim

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 8 /23

http://opencores.org/openrisc,or1ksim

microC/OS-1I's mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

6 July 2010

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing

microC/OS-1I's mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption
inherits a predefined priority transitive priority inheritance
non-transparent transparent

6 July 2010

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing

microC/OS-1I's mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption
inherits a predefined priority transitive priority inheritance
non-transparent transparent

It is not: Highest Locker Protocol (HLP) or Stack Resource Policy (SRP).

@ microC/OS-II: a task inherits a higher priority only when a higher

priority task is blocked;
@ in HLP/SRP a task immediately inherits a priority when it locks a

resource.
6 July 2010 9 /23

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing

microC/OS-1I: protocol classification

microC/OS-II's synchronization protocol suffers from deadlock:

t *
Taskl |

| ¢ Legend:
Task2 h:l |:| active

I holding
mutex

Idle | |

0 50 100

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

microC/OS-II: protocol classification

microC/OS-II's synchronization protocol suffers from deadlock:

t *
Taskl |

| ¢ Legend:
Task2 h:l |:| active

I holding
mutex

Idle | |

0 50 100

Conclusion:
microC/OS-1l implements a non-transparent, priority-inheritance protocol

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 10 / 23

Intermezzo: Stack Resource Policy (SRP)

@ Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 11 /23

Intermezzo: Stack Resource Policy (SRP)

@ Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

@ A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 11 /23

Intermezzo: Stack Resource Policy (SRP)

@ Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

@ A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

@ A task can only be selected for execution if

@ it has the highest priority among all ready tasks;
@ its priority is higher than the current system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 11 /23

Intermezzo: SRP (Continued)

@ SRP provides non-blocking primitives:
o therefore it allows tasks to share their execution stack;
e blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 12 /23

Intermezzo: SRP (Continued)

@ SRP provides non-blocking primitives:
o therefore it allows tasks to share their execution stack;
e blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

@ SRP is non-transparent,
similar as microC/OS-II's PIP-like implementation.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

Intermezzo: SRP (Continued)

@ SRP provides non-blocking primitives:
o therefore it allows tasks to share their execution stack;
e blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

@ SRP is non-transparent,
similar as microC/OS-II's PIP-like implementation.

@ Maintaining the system ceiling can be implemented
using a stack data structure:
e we stack the resource ceilings of used resources
in a monotonically increasing order;
o the top of the stack represents the system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

microC/OS-1l: Our SRP extension

Deadlocks are resolved:

v
Tasia | miiil
| i ii i Legend:
Task2 _ | | ||*:- |:| active

holding
Idle [I I

mutex

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 13 /23

microC/OS-1l: Our SRP extension

Deadlocks are resolved:

v
Tasia | miiil
| i ii i Legend:
Task2 _ | | ||*:- |:| active

holding
Idle [I I

mutex

e Easy implementations (approx. 170 lines of code);

o Extended microC/OS-II scheduler with SRP’s preemption rule.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 13 /23

Outline

© Inter-subsystem resource sharing

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 14 /23

Global resource sharing problem

Budget depletion during a critical section can lead to

excessive blocking times:
Taskl
o ——
v

Task3 ; I

Legend:
OS-Serverldie)
o SRP locally | I N [y
e SRP globally 20 I holding mutex
Serverl 10-\ \
0
10
Server2 54 _
0
|t s el Lot e
0 50

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 15 / 23

Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

@ HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

@ with payback: the consumed overrun budget is subtracted from the
next budget provisioning;
@ no payback: no penalty for overrun consumption.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 16 / 23

Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

@ HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

@ with payback: the consumed overrun budget is subtracted from the
next budget provisioning;
@ no payback: no penalty for overrun consumption.

@ SIRAP: Prevent budget depletion during resource access;
i.e. before granting access, first check the remaining budget.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 16 / 23

microC/OS-1l: HSRP extension

HSRP provides overrun budget (optionally a payback mechanism):
Teskt | [
wlmr—n

Task3

* Legend:

w' [
: |:| active
— [- PO
" [—

=N N\
= AN

0

6 July 2010

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing

microC/OS-11: SIRAP exte

SIRAP uses a skipping mechanism:

Taskl

Task2 [

Server-1-ldle

Task3

-

Legend:

|:| active

I holding mutex

Task4

Server-2-ldle

OS-Serverldie
20

Serverl 10 4
0

AN\
S AN

6 July 2010

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing

18 / 23

HSRP and SIRAP implementation overhead and issues

] Event H HSRP \ SIRAP
Lock resource - spinlock
Unlock resource overrun completion -
Budget depletion overrun -
Budget replenishment overrun completion, | spinlock-completion
payback (optionally)

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 19 /23

HSRP and SIRAP implementation overhead and issues

] Event H HSRP \ SIRAP
Lock resource - spinlock
Unlock resource overrun completion -
Budget depletion overrun -
Budget replenishment overrun completion, | spinlock-completion
payback (optionally)

e HSRP:

o close to default SRP;
e expensive queue manipulations to track overrun budget;
e complex implementation due to explicit event handling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 19 /23

HSRP and SIRAP implementation overhead and issues

] Event H HSRP \ SIRAP
Lock resource - spinlock
Unlock resource overrun completion -
Budget depletion overrun -
Budget replenishment overrun completion, | spinlock-completion
payback (optionally)

e HSRP:

o close to default SRP;
e expensive queue manipulations to track overrun budget;
e complex implementation due to explicit event handling.

o SIRAP:
e spinlocking is executed within a task's context, but wastes budget;

o alternatively: suspend (i.e. block) and resume a task,
but this is not SRP-compliant!

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 19 /23

HSRP and SIRAP side-by-side: Unified interfaces

v
] N AN | N i N F_—11
Server-1-ldie I:l

- e ———m
Server-2-Idie |:| |:||| :

08 serveride — e | | D
=N NN N NN
=N N\

100 150 200 250

Legend: |:| active I holding mutex

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 20 / 23

Outline

@ Conclusions

Martijn van den Heuvel (TU/ xtending a HSF with Resource Sharing 6 July 2010 21 /23

Conclusions

We presented:
@ a classification of microC/OS-II's synchronization protocol;

@ an efficient task-level SRP implementation;

@ two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

@ a side-by-side integration of SIRAP and HSRP in a single HSF.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

Conclusions

We presented:
@ a classification of microC/OS-II's synchronization protocol;

@ an efficient task-level SRP implementation;

@ two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

@ a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

Conclusions

We presented:
@ a classification of microC/OS-II's synchronization protocol;

@ an efficient task-level SRP implementation;

@ two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

@ a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Upcoming work:
e EDF-based synchronization (including BROE);
@ protocol-transparent global resource sharing.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010

References

@ M. Asberg, M. Behnam, T. Nolte, and R. J. Bril.
Implementation of overrun and skipping in VxWorks.
In 6" OSPERT, July 2010.

[d M. Behnam, I. Shin, T. Nolte, and M. Nolin.
SIRAP: A synchronization protocol for hierarchical resource sharing in
real-time open systems.
In EMSOFT, October 2007.

[§ R. 1. Davis and A. Burns.
Resource sharing in hierarchical fixed priority pre-emptive systems.
In 27th RTSS, December 2006.

@ M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien.
Protocol-transparent resource sharing in hierarchically scheduled
real-time systems.

In 15t" IEEE ETFA, September 2010.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 23/

	Outline
	Introduction
	Task Synchronization
	Inter-subsystem resource sharing
	Conclusions

