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Embedded Real-time Systems

Many embedded devices provide multiple, integrated functionalities.

In such systems its important to deliver correct functionality on time.

These functionalities share both logical and physical resources.
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Integration Problem

1 Isolation: applications shall not interfere

Temporal isolation (processor);
Spatial isolation (memory).

2 Development and analysis versus integration

Independent analysis of application on virtual platforms;
Application specific scheduling algorithms;
Composition of virtual platforms.

3 Applications may share logical resources.
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A Solution: Hierarchical Scheduling
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Scheduler
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scheduler
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. . .
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subsystem: server, set of tasks and local (task) scheduler

server: a budget allocated each period

Tasks, located in arbitrary subsystems, may share logical resources
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MicroC/OS-II Basics

MicroC/OS-II is

a commercial RTOS

targeted at embedded systems

open source

available at http://micrium.com/

It provides

a portable and configurable kernel

a fixed-priority, preemptive task scheduler

basic services (mailboxes, mutexes and counting semaphores)
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GRASP: microC/OS-II Instrumentation and Visualization

Visualization of scheduling behavior:

M. Holenderski, M. van den Heuvel, R. J. Bril, and J. J. Lukkien.
Grasp: Tracing, visualizing and measuring the behavior of
real-time systems.
In 1st WATERS, July 2010.

MicroC/OS-II port to OpenRISC platform

OpenRISC: Architectural Simulator
http://opencores.org/openrisc,or1ksim
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microC/OS-II’s mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption

inherits a predefined priority transitive priority inheritance

non-transparent transparent

It is not: Highest Locker Protocol (HLP) or Stack Resource Policy (SRP).

microC/OS-II: a task inherits a higher priority only when a higher
priority task is blocked;
in HLP/SRP a task immediately inherits a priority when it locks a
resource.
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microC/OS-II: protocol classification

microC/OS-II’s synchronization protocol suffers from deadlock:
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Legend:
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holding
mutex

Conclusion:
microC/OS-II implements a non-transparent, priority-inheritance protocol
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Intermezzo: Stack Resource Policy (SRP)

Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

A task can only be selected for execution if
1 it has the highest priority among all ready tasks;
2 its priority is higher than the current system ceiling.
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Intermezzo: SRP (Continued)

SRP provides non-blocking primitives:
therefore it allows tasks to share their execution stack;
blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

SRP is non-transparent,
similar as microC/OS-II’s PIP-like implementation.

Maintaining the system ceiling can be implemented
using a stack data structure:

we stack the resource ceilings of used resources
in a monotonically increasing order;
the top of the stack represents the system ceiling.
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microC/OS-II: Our SRP extension

Deadlocks are resolved:
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Easy implementations (approx. 170 lines of code);

Extended microC/OS-II scheduler with SRP’s preemption rule.
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Global resource sharing problem

Budget depletion during a critical section can lead to
excessive blocking times:

SRP locally
SRP globally
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Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

1 with payback: the consumed overrun budget is subtracted from the
next budget provisioning;

2 no payback: no penalty for overrun consumption.

SIRAP: Prevent budget depletion during resource access;
i.e. before granting access, first check the remaining budget.
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microC/OS-II: HSRP extension

HSRP provides overrun budget (optionally a payback mechanism):
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microC/OS-II: SIRAP extension

SIRAP uses a skipping mechanism:
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HSRP and SIRAP implementation overhead and issues

Event HSRP SIRAP

Lock resource - spinlock

Unlock resource overrun completion -

Budget depletion overrun -

Budget replenishment overrun completion, spinlock-completion
payback (optionally)

HSRP:

close to default SRP;
expensive queue manipulations to track overrun budget;
complex implementation due to explicit event handling.

SIRAP:

spinlocking is executed within a task’s context, but wastes budget;
alternatively: suspend (i.e. block) and resume a task,
but this is not SRP-compliant!
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HSRP and SIRAP side-by-side: Unified interfaces
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Conclusions

We presented:

a classification of microC/OS-II’s synchronization protocol;

an efficient task-level SRP implementation;

two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Upcoming work:

EDF-based synchronization (including BROE);
protocol-transparent global resource sharing.
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