
Extending a HSF-enabled Open-Source RTOS
with Resource Sharing

– International Workshop OSPERT 2010 –

M.M.H.P. van den Heuvel - R.J. Bril - J.J. Lukkien - M. Behnam

System Architecture and Networking (SAN)
Department of Mathematics and Computer Science

Eindhoven University of Technology
The Netherlands

6 July 2010

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 1 / 23



Outline

1 Introduction

2 Task Synchronization

3 Inter-subsystem resource sharing

4 Conclusions

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 2 / 23



Embedded Real-time Systems

Many embedded devices provide multiple, integrated functionalities.

In such systems its important to deliver correct functionality on time.

These functionalities share both logical and physical resources.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 3 / 23



Integration Problem

1 Isolation: applications shall not interfere

Temporal isolation (processor);
Spatial isolation (memory).

2 Development and analysis versus integration

Independent analysis of application on virtual platforms;
Application specific scheduling algorithms;
Composition of virtual platforms.

3 Applications may share logical resources.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 4 / 23



Integration Problem

1 Isolation: applications shall not interfere

Temporal isolation (processor);
Spatial isolation (memory).

2 Development and analysis versus integration

Independent analysis of application on virtual platforms;
Application specific scheduling algorithms;
Composition of virtual platforms.

3 Applications may share logical resources.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 4 / 23



Integration Problem

1 Isolation: applications shall not interfere

Temporal isolation (processor);
Spatial isolation (memory).

2 Development and analysis versus integration

Independent analysis of application on virtual platforms;
Application specific scheduling algorithms;
Composition of virtual platforms.

3 Applications may share logical resources.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 4 / 23



A Solution: Hierarchical Scheduling

Global
Scheduler

local
scheduler

subsystem 0

local
scheduler

subsystem 1

local
scheduler

subsystem n
. . .

R1 R2

subsystem: server, set of tasks and local (task) scheduler

server: a budget allocated each period

Tasks, located in arbitrary subsystems, may share logical resources

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 5 / 23



A Solution: Hierarchical Scheduling

Global
Scheduler

local
scheduler

subsystem 0

local
scheduler

subsystem 1

local
scheduler

subsystem n
. . .

R1 R2

subsystem: server, set of tasks and local (task) scheduler

server: a budget allocated each period

Tasks, located in arbitrary subsystems, may share logical resources

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 5 / 23



Outline

1 Introduction

2 Task Synchronization

3 Inter-subsystem resource sharing

4 Conclusions

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 6 / 23



MicroC/OS-II Basics

MicroC/OS-II is

a commercial RTOS

targeted at embedded systems

open source

available at http://micrium.com/

It provides

a portable and configurable kernel

a fixed-priority, preemptive task scheduler

basic services (mailboxes, mutexes and counting semaphores)

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 7 / 23

http://micrium.com/


GRASP: microC/OS-II Instrumentation and Visualization

Visualization of scheduling behavior:

M. Holenderski, M. van den Heuvel, R. J. Bril, and J. J. Lukkien.
Grasp: Tracing, visualizing and measuring the behavior of
real-time systems.
In 1st WATERS, July 2010.

MicroC/OS-II port to OpenRISC platform

OpenRISC: Architectural Simulator
http://opencores.org/openrisc,or1ksim

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 8 / 23

http://opencores.org/openrisc,or1ksim


microC/OS-II’s mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption

inherits a predefined priority transitive priority inheritance

non-transparent transparent

It is not: Highest Locker Protocol (HLP) or Stack Resource Policy (SRP).

microC/OS-II: a task inherits a higher priority only when a higher
priority task is blocked;
in HLP/SRP a task immediately inherits a priority when it locks a
resource.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 9 / 23



microC/OS-II’s mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption

inherits a predefined priority transitive priority inheritance

non-transparent transparent

It is not: Highest Locker Protocol (HLP) or Stack Resource Policy (SRP).

microC/OS-II: a task inherits a higher priority only when a higher
priority task is blocked;
in HLP/SRP a task immediately inherits a priority when it locks a
resource.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 9 / 23



microC/OS-II’s mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption

inherits a predefined priority transitive priority inheritance

non-transparent transparent

It is not: Highest Locker Protocol (HLP) or Stack Resource Policy (SRP).

microC/OS-II: a task inherits a higher priority only when a higher
priority task is blocked;
in HLP/SRP a task immediately inherits a priority when it locks a
resource.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 9 / 23



microC/OS-II: protocol classification

microC/OS-II’s synchronization protocol suffers from deadlock:

0 50 100

Task1

Task2

Idle

Legend:

active

holding
mutex

Conclusion:
microC/OS-II implements a non-transparent, priority-inheritance protocol

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 10 / 23



microC/OS-II: protocol classification

microC/OS-II’s synchronization protocol suffers from deadlock:

0 50 100

Task1

Task2

Idle

Legend:

active

holding
mutex

Conclusion:
microC/OS-II implements a non-transparent, priority-inheritance protocol

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 10 / 23



Intermezzo: Stack Resource Policy (SRP)

Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

A task can only be selected for execution if
1 it has the highest priority among all ready tasks;
2 its priority is higher than the current system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 11 / 23



Intermezzo: Stack Resource Policy (SRP)

Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

A task can only be selected for execution if
1 it has the highest priority among all ready tasks;
2 its priority is higher than the current system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 11 / 23



Intermezzo: Stack Resource Policy (SRP)

Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

A task can only be selected for execution if
1 it has the highest priority among all ready tasks;
2 its priority is higher than the current system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 11 / 23



Intermezzo: SRP (Continued)

SRP provides non-blocking primitives:
therefore it allows tasks to share their execution stack;
blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

SRP is non-transparent,
similar as microC/OS-II’s PIP-like implementation.

Maintaining the system ceiling can be implemented
using a stack data structure:

we stack the resource ceilings of used resources
in a monotonically increasing order;
the top of the stack represents the system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 12 / 23



Intermezzo: SRP (Continued)

SRP provides non-blocking primitives:
therefore it allows tasks to share their execution stack;
blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

SRP is non-transparent,
similar as microC/OS-II’s PIP-like implementation.

Maintaining the system ceiling can be implemented
using a stack data structure:

we stack the resource ceilings of used resources
in a monotonically increasing order;
the top of the stack represents the system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 12 / 23



Intermezzo: SRP (Continued)

SRP provides non-blocking primitives:
therefore it allows tasks to share their execution stack;
blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

SRP is non-transparent,
similar as microC/OS-II’s PIP-like implementation.

Maintaining the system ceiling can be implemented
using a stack data structure:

we stack the resource ceilings of used resources
in a monotonically increasing order;
the top of the stack represents the system ceiling.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 12 / 23



microC/OS-II: Our SRP extension

Deadlocks are resolved:

0 50 100

Task1

Task2

Idle

Legend:

active

holding
mutex

Easy implementations (approx. 170 lines of code);

Extended microC/OS-II scheduler with SRP’s preemption rule.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 13 / 23



microC/OS-II: Our SRP extension

Deadlocks are resolved:

0 50 100

Task1

Task2

Idle

Legend:

active

holding
mutex

Easy implementations (approx. 170 lines of code);

Extended microC/OS-II scheduler with SRP’s preemption rule.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 13 / 23



Outline

1 Introduction

2 Task Synchronization

3 Inter-subsystem resource sharing

4 Conclusions

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 14 / 23



Global resource sharing problem

Budget depletion during a critical section can lead to
excessive blocking times:

SRP locally
SRP globally

0 50

Task1

Task2

Task3

OS-ServerIdle

0

10

20

Server1

0

5

10

Server2

Legend:

active

holding mutex

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 15 / 23



Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

1 with payback: the consumed overrun budget is subtracted from the
next budget provisioning;

2 no payback: no penalty for overrun consumption.

SIRAP: Prevent budget depletion during resource access;
i.e. before granting access, first check the remaining budget.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 16 / 23



Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

1 with payback: the consumed overrun budget is subtracted from the
next budget provisioning;

2 no payback: no penalty for overrun consumption.

SIRAP: Prevent budget depletion during resource access;
i.e. before granting access, first check the remaining budget.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 16 / 23



microC/OS-II: HSRP extension

HSRP provides overrun budget (optionally a payback mechanism):

0 50 100

Task1

Task2

Server-1-Idle

Task3

Task4

Server-2-Idle

OS-ServerIdle

0

10

20

Server1

0

10

20

Server2

Legend:

active

holding mutex

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 17 / 23



microC/OS-II: SIRAP extension

SIRAP uses a skipping mechanism:

0 50 100

Task1

Task2

Server-1-Idle

Task3

Task4

Server-2-Idle

OS-ServerIdle

0

10

20

Server1

0

10

20

Server2

Legend:

active

holding mutex

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 18 / 23



HSRP and SIRAP implementation overhead and issues

Event HSRP SIRAP

Lock resource - spinlock

Unlock resource overrun completion -

Budget depletion overrun -

Budget replenishment overrun completion, spinlock-completion
payback (optionally)

HSRP:

close to default SRP;
expensive queue manipulations to track overrun budget;
complex implementation due to explicit event handling.

SIRAP:

spinlocking is executed within a task’s context, but wastes budget;
alternatively: suspend (i.e. block) and resume a task,
but this is not SRP-compliant!

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 19 / 23



HSRP and SIRAP implementation overhead and issues

Event HSRP SIRAP

Lock resource - spinlock

Unlock resource overrun completion -

Budget depletion overrun -

Budget replenishment overrun completion, spinlock-completion
payback (optionally)

HSRP:

close to default SRP;
expensive queue manipulations to track overrun budget;
complex implementation due to explicit event handling.

SIRAP:

spinlocking is executed within a task’s context, but wastes budget;
alternatively: suspend (i.e. block) and resume a task,
but this is not SRP-compliant!

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 19 / 23



HSRP and SIRAP implementation overhead and issues

Event HSRP SIRAP

Lock resource - spinlock

Unlock resource overrun completion -

Budget depletion overrun -

Budget replenishment overrun completion, spinlock-completion
payback (optionally)

HSRP:

close to default SRP;
expensive queue manipulations to track overrun budget;
complex implementation due to explicit event handling.

SIRAP:

spinlocking is executed within a task’s context, but wastes budget;
alternatively: suspend (i.e. block) and resume a task,
but this is not SRP-compliant!

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 19 / 23



HSRP and SIRAP side-by-side: Unified interfaces

0 50 100 150 200 250

Task1

Task2

Server-1-Idle

Task3

Task4

Server-2-Idle

OS-ServerIdle

0

10

20

Server1

0

10

20

Server2

Legend: active holding mutex

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 20 / 23



Outline

1 Introduction

2 Task Synchronization

3 Inter-subsystem resource sharing

4 Conclusions

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 21 / 23



Conclusions

We presented:

a classification of microC/OS-II’s synchronization protocol;

an efficient task-level SRP implementation;

two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Upcoming work:

EDF-based synchronization (including BROE);
protocol-transparent global resource sharing.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 22 / 23



Conclusions

We presented:

a classification of microC/OS-II’s synchronization protocol;

an efficient task-level SRP implementation;

two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Upcoming work:

EDF-based synchronization (including BROE);
protocol-transparent global resource sharing.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 22 / 23



Conclusions

We presented:

a classification of microC/OS-II’s synchronization protocol;

an efficient task-level SRP implementation;

two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Upcoming work:

EDF-based synchronization (including BROE);
protocol-transparent global resource sharing.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 22 / 23



References

M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril.
Implementation of overrun and skipping in VxWorks.
In 6th OSPERT, July 2010.

M. Behnam, I. Shin, T. Nolte, and M. Nolin.
SIRAP: A synchronization protocol for hierarchical resource sharing in
real-time open systems.
In EMSOFT, October 2007.

R. I. Davis and A. Burns.
Resource sharing in hierarchical fixed priority pre-emptive systems.
In 27th RTSS, December 2006.

M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien.
Protocol-transparent resource sharing in hierarchically scheduled
real-time systems.
In 15th IEEE ETFA, September 2010.

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010 23 / 23


	Outline
	Introduction
	Task Synchronization
	Inter-subsystem resource sharing
	Conclusions

