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Embedded Real-time Systems

Many embedded devices provide multiple, integrated functionalities.

In such systems its important to deliver correct functionality on time.

Non-real-time systems System does

« Correct function if produced the right thing
result is correct

Real-time systems System does the  ...and it does it
« Correct function if produced right thing... on time
result is correct and
delivered on time E +

These functionalities share both logical and physical resources.
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Integration Problem

@ Isolation: applications shall not interfere

e Temporal isolation (processor);
o Spatial isolation (memory).
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@ Development and analysis versus integration
o Independent analysis of application on virtual platforms;
o Application specific scheduling algorithms;
e Composition of virtual platforms.
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ration Problem

@ Isolation: applications shall not interfere

e Temporal isolation (processor);
o Spatial isolation (memory).

@ Development and analysis versus integration

o Independent analysis of application on virtual platforms;
o Application specific scheduling algorithms;
e Composition of virtual platforms.

© Applications may share logical resources.
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A Solution: Hierarchical Scheduling

Global
Scheduler
local local local
scheduler scheduler scheduler
subsystem 0 subsystem 1 T subsystem n
Rl Rz

@ subsystem: server, set of tasks and local (task) scheduler

@ server: a budget allocated each period

Martijn van den Heuvel (TU/e, SAN) Extending a HSF with Resource Sharing 6 July 2010



A Solution: Hierarchical Scheduling

Global
Scheduler
local local local
scheduler scheduler scheduler
subsystem 0 subsystem 1 T subsystem n
Rl Rz

@ subsystem: server, set of tasks and local (task) scheduler

@ server: a budget allocated each period

Tasks, located in arbitrary subsystems, may share logical resources
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Outline

© Task Synchronization
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MicroC/OS-II Basics

MicroC/OS-Il is
@ a commercial RTOS
o targeted at embedded systems
@ open source

@ available at http://micrium.com/

It provides
@ a portable and configurable kernel
@ a fixed-priority, preemptive task scheduler

@ basic services (mailboxes, mutexes and counting semaphores)
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GRASP: microC/OS-II Instrumentation and Visualization

@ Visualization of scheduling behavior:

[ M. Holenderski, M. van den Heuvel, R. J. Bril, and J. J. Lukkien.
Grasp: Tracing, visualizing and measuring the behavior of
real-time systems.

In 15t WATERS, July 2010.

o}OpenCores
@ MicroC/OS-II port to OpenRISC platform \ www.opencores.oro

@ OpenRISC: Architectural Simulator
http://opencores.org/openrisc,orlksim
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microC/OS-1I's mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

6 July 2010
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Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption
inherits a predefined priority transitive priority inheritance
non-transparent transparent
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microC/OS-1I's mutexes: Priority calling

Priority calling is similar to priority inheritance protocol (PIP):

Priority Inheritance Rule:

when a higher-priority task blocks on a resource,
the lower-priority task holding the resource inherits the higher priority;

Priority Calling Priority Inheritance

unique priority for each resource run-time priority adaption
inherits a predefined priority transitive priority inheritance
non-transparent transparent

It is not: Highest Locker Protocol (HLP) or Stack Resource Policy (SRP).

@ microC/OS-II: a task inherits a higher priority only when a higher

priority task is blocked;
@ in HLP/SRP a task immediately inherits a priority when it locks a

resource.
6 July 2010 9 /23
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microC/OS-1I: protocol classification

microC/OS-II's synchronization protocol suffers from deadlock:

t *
Taskl |

| ¢ Legend:
Task2 h:l |:| active

I holding
mutex

Idle | |

0 50 100
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microC/OS-II: protocol classification

microC/OS-II's synchronization protocol suffers from deadlock:

t *
Taskl |

| ¢ Legend:
Task2 h:l |:| active

I holding
mutex

Idle | |

0 50 100

Conclusion:
microC/OS-1l implements a non-transparent, priority-inheritance protocol
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Intermezzo: Stack Resource Policy (SRP)

@ Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.
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Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

@ A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.
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Intermezzo: Stack Resource Policy (SRP)

@ Each resource has a statically determined resource ceiling:

Definition of a resource ceiling:

the maximum priority of any task that could use the resource.

@ A dynamically updated system ceiling is maintained:

Definition of the system ceiling

the maximum resource ceiling of any resource currently being locked in the
system.

@ A task can only be selected for execution if

@ it has the highest priority among all ready tasks;
@ its priority is higher than the current system ceiling.
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Intermezzo: SRP (Continued)

@ SRP provides non-blocking primitives:
o therefore it allows tasks to share their execution stack;
e blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.
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@ SRP provides non-blocking primitives:
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e blocking occurs upon an attempt to preempt, rather than
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@ SRP is non-transparent,
similar as microC/OS-II's PIP-like implementation.
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Intermezzo: SRP (Continued)

@ SRP provides non-blocking primitives:
o therefore it allows tasks to share their execution stack;
e blocking occurs upon an attempt to preempt, rather than
upon an attempt to access a resource.

@ SRP is non-transparent,
similar as microC/OS-II's PIP-like implementation.

@ Maintaining the system ceiling can be implemented
using a stack data structure:
e we stack the resource ceilings of used resources
in a monotonically increasing order;
o the top of the stack represents the system ceiling.
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microC/OS-1l: Our SRP extension

Deadlocks are resolved:

v
Tasia | miiil
| i ii i Legend:
Task2 _ | | ||*:- |:| active
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microC/OS-1l: Our SRP extension

Deadlocks are resolved:

v
Tasia | miiil
| i ii i Legend:
Task2 _ | | ||*:- |:| active

holding
Idle [I I

mutex

e Easy implementations (approx. 170 lines of code);

o Extended microC/OS-II scheduler with SRP’s preemption rule.
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Outline

© Inter-subsystem resource sharing
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Global resource sharing problem

Budget depletion during a critical section can lead to

excessive blocking times:
Taskl
o ——
v

Task3 ; I

Legend:
OS-Serverldie )
o SRP locally | I N [y
e SRP globally 20 I holding mutex
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Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

@ HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

@ with payback: the consumed overrun budget is subtracted from the
next budget provisioning;
@ no payback: no penalty for overrun consumption.
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Global resource sharing problem

Two SRP-based solutions for fixed-priority scheduling:

@ HSRP: React upon budget depletion while a resource is locked;
i.e. allow to use an overrun budget

@ with payback: the consumed overrun budget is subtracted from the
next budget provisioning;
@ no payback: no penalty for overrun consumption.

@ SIRAP: Prevent budget depletion during resource access;
i.e. before granting access, first check the remaining budget.
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microC/OS-1l: HSRP extension

HSRP provides overrun budget (optionally a payback mechanism):
Teskt | [
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microC/OS-11: SIRAP exte

SIRAP uses a skipping mechanism:
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HSRP and SIRAP implementation overhead and issues

] Event H HSRP \ SIRAP
Lock resource - spinlock
Unlock resource overrun completion -
Budget depletion overrun -
Budget replenishment overrun completion, | spinlock-completion
payback (optionally)
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] Event H HSRP \ SIRAP
Lock resource - spinlock
Unlock resource overrun completion -
Budget depletion overrun -
Budget replenishment overrun completion, | spinlock-completion
payback (optionally)

e HSRP:

o close to default SRP;
e expensive queue manipulations to track overrun budget;
e complex implementation due to explicit event handling.
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HSRP and SIRAP implementation overhead and issues

] Event H HSRP \ SIRAP
Lock resource - spinlock
Unlock resource overrun completion -
Budget depletion overrun -
Budget replenishment overrun completion, | spinlock-completion
payback (optionally)

e HSRP:

o close to default SRP;
e expensive queue manipulations to track overrun budget;
e complex implementation due to explicit event handling.

o SIRAP:
e spinlocking is executed within a task's context, but wastes budget;

o alternatively: suspend (i.e. block) and resume a task,
but this is not SRP-compliant!
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HSRP and SIRAP side-by-side: Unified interfaces
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Outline

@ Conclusions
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Conclusions

We presented:
@ a classification of microC/OS-II's synchronization protocol;

@ an efficient task-level SRP implementation;

@ two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

@ a side-by-side integration of SIRAP and HSRP in a single HSF.
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Conclusions

We presented:
@ a classification of microC/OS-II's synchronization protocol;

@ an efficient task-level SRP implementation;

@ two alternative hierarchical SRP-implementations,
i.e. SIRAP and HSRP;

@ a side-by-side integration of SIRAP and HSRP in a single HSF.

We made a minimal number of modifications to MicroC/OS-II.

Upcoming work:
e EDF-based synchronization (including BROE);
@ protocol-transparent global resource sharing.
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