
1OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Implementation and Evaluation of the
Synchronization Protocol Immediate

Priority Ceiling in PREEMPT-RT Linux

Andreu Carminati, Rômulo Silva de Oliveira,
Luís Fernando Friedrich, Rodrigo Lange

Federal University of Santa Catarina (UFSC)
Florianópolis, Brazil

May/2010

2OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Introduction
In real-time operating systems,
task synchronization mechanisms:
– Provide internal consistency of resources and data structures
– Provide determinism of waiting time
– Avoid unbounded priority inversions

In mainline Linux priority inversions occur frequently

Patch PREEMP-RT uses Priority Inheritance
– for priority inversion control

3OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Objective
The objective of this paper is
the implementation of an alternative protocol,
the Immediate Priority Ceiling (IPC)

We intend to use it in dedicated, real-time device-drivers
For example:
– an embedded Linux supports an specific known application
– that does not change task priorities after its initialization

It is not the objective of this paper
to propose a complete replacement of the existing protocol
– but an alternative for use in some situations

This work considers only single processors

4OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

--Unbounded Priority Inversion

5OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

--Priority Inheritance Protocol 1/2

6OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Priority Inheritance Protocol 2/2

7OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Immediate Priority Ceiling
It is a variation of Priority Ceiling Protocol
– Highest Locker Priority

Every resource has a priority ceiling
– The highest priority of all task that access this resource

The priority is adjusted immediately when occurs a resource
acquisition
– and not when the resource becomes necessary to a higher priority tasks

Maximum blocking time of Ti under fixed priority:
– The larger critical section of the system

whose priority ceiling is higher than the priority of task Ti
and is also used by a lower priority task

8OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Immediate Priority Ceiling

Ceiling of R1 = T0 Ceiling of R2 = T1

9OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Description of the Implementation
The Immediate Priority Ceiling Protocol was implemented
Based on the code of rt_mutexes already in the patch PREEMPT-RT
The rt_mutexes implement the Priority Inheritance protocol
Kernel version used was the 2.6.31.6 [10]
with PREEMPT-RT patch rt19

rt_mutexes are implemented in PREEMPT-RT also for
multiprocessors
Our implementation considers only single processors

10OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

--Description of the Implementation
Implementation was made for use in device-drivers (kernel space)
For example, tasks share a critical section
accessed through an ioctl() system call
to a device-driver

11OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Description of the Implementation: Data Structure
The type that implements the Immediate Priority Ceiling protocol is
defined as struct ipc_mutex

struct ipc_mutex {
atomic_spinlock_t wait_lock;
struct plist_head wait_list;
struct plist_node on_task_entry;
struct task_struct *owner;
int ceiling;
... // other rt_mutex fields

};

12OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Description of the Implementation: Data Structure
The type that implements the Immediate Priority Ceiling protocol is
defined as struct ipc_mutex

wait_lock is the spin-lock that protects the access to the structure
wait_list is an ordered (by priorities) list that stores pending lock
requests
on_task_entry serves to manage the locks acquired by a task
– and, consequently, control its effective priority
owner stores a pointer to the task owner of the mutex
– or null pointer if the mutex is available
ceiling stores the priority ceiling of the mutex

13OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Description of the Implementation: Operations
DEFINE_IPC_MUTEX(mutexname, priority)

Defines an Immediate Priority Ceiling mutex
mutexname is the identifier of the mutex
priority is the ceiling of the mutex

The current version can only create mutexes with priorities set at
compile time
It is somewhat restrictive
It is acceptable when an embedded Linux runs a known application
that does not change task priorities after its initialization

14OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Description of the Implementation: Operations
void ipc_mutex_lock(struct ipc_mutex * lock)

Lock operation
In single-processor computers this is a non-blocking function
If a task requests a resource, it is because this resource is available

It manages the priority of the calling task along with the resource
blocking, taking into account all ipc_mutexes acquired so far

15OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Description of the Implementation: Operations
void ipc_mutex_unlock(struct ipc _mutex * lock)

Unlock operation
Releases the resource and adjusts the priority of the calling task

16OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Scenario
We developed a device-driver that provides critical sections to
perform the tests
This device-driver exports a single service: unlocked_ioctl
It multiplexes the calls of three tasks in their correspondent critical
sections
This device-driver provides critical sections to run with both
– Immediate Priority Ceiling
– Priority Inheritance

17OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Scenario
A set of sporadic tasks executes in user space
All critical sections are executed within the device-driver
Measurement of 1000 activations of T0
Task set configuration:

18OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Scenario
All tasks were set at only one CPU
Priority ceiling of mutex R1 is 70 (priority of task T0)
Priority ceiling of mutex R2 is 65 (priority of task T1)

19OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Activation Latency Histogram of T0
Time between entering the ready queue and actually running
Priority Inheritance

Immediate Priority
Ceiling
– Task waits at the activation

20OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Locking Time of T0
Time waiting at the lock operation
Priority Inheritance
– Task waits at the lock

Immediate Priority
Ceiling

21OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Response Time of T0
Priority Inheritance

Immediate Priority
Ceiling

22OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Response Time of T0
Priority Inheritance

Immediate Priority
Ceiling

23OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Response Time of T0

Priority Inheritance

Immediate Priority
Ceiling

24OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Comments
Immediate Priority Ceiling is in general similar to Priority Inheritance

Immediate Priority Ceiling
– Better average response time for T0
– Worst-case response time is almost one critical section smaller
– The length of a critical section is 17 ms, the difference between then is 14 ms

25OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Overhead
Overhead = Decreasing of CPU time available to the rest of the
system, given the presence of a set of higher priority tasks sharing
resources protected
Test used a set of tasks that access the device-driver (mutexes)
Measuring task has lowest priority (priority 51)
– Lower priority than tasks that access the mutexes inside the device-driver
– Higher priority than threaded irq handlers and softirqs

All tasks fixed to a single CPU

26OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Overhead
Any CPU time that is not used by tasks accessing the device-driver
– is assigned to the measurement task

The measurement task implements a loop
– that just increments a variable

The overhead will be noticed by how much the measurement task
could increment a count
– When Pririty Inheritance is used
– When Immediate Priority Ceiling is used

27OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Test Results: Overhead
The collected data indicate that there is a difference between the
counts when the other tasks use
– Mutexes with Priority Inheritance
– Mutexes with Immediate Priority Ceiling

The counting task (lowest priority) receives more processor time
when Priority Inheritance mutexes are used
The implementation of Priority Inheritance mutexes is more efficient
Likely due to the fast path used
– Our implementation of Immediate Priority Ceiling does not use a fast path

28OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Summary
We implemented the Immediate Priority Ceiling protocol in Linux
with patch PREEMPT-RT
This protocol is suitable for dedicated applications on single
processors
Offers smaller maximum response time for high priority tasks
– Maximum blocking time is always at most one critical section

Requires manual determination of the priority ceiling of each mutex
– Feasible for small/static control applications
– Dedicated device-drivers accessed by some well known tasks

Overhead is higher than traditional Priority Inheritance
– Fast path implementation is on the way

It is possible to implement a version with adaptive ceiling
– Priority ceiling is detected automatically in run-time for each mutex

29OSPERT’2010 July 6th, 2010 Brussels, Belgium (in conjunction with ECRTS10)

Implementation and Evaluation of the
Synchronization Protocol Immediate

Priority Ceiling in PREEMPT-RT Linux

Andreu Carminati, Rômulo Silva de Oliveira,
Luís Fernando Friedrich, Rodrigo Lange

Federal University of Santa Catarina (UFSC)
Florianópolis, Brazil

romulo@das.ufsc.br
andreu_carminati@yahoo.com.br

