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IPC implementation key for system performance and predictability
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Synchronous IPC Between Threads
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Communication operations:

m Clients: send + wait_reply = call

m Servers: reply + wait_msg = reply_wait
Threads

® bound to a component

m separate scheduling parameters

®m communication end-points
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Thread Migration
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Invocation /procedure call semantics for communication
m Scheduling context migrates between components

m Separate execution context in each component

m Kernel thread structure tracks invocations
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Synchronous IPC and Thread Migration

Functionally identical
m interface definition language (IDL)

L4 and COMPOSITE performance
m Similar published overheads
® > 2/3 invocation cost is hardware overhead in COMPOSITE
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Thread Migration vs. Synchronous IPC

Qualitative comparison wrt predictability
m worst-case overheads, relevant parameters

m implications for system design
CPU Accounting and Scheduling

Communication End-point Contention

System Configurability
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CPU Accounting, Scheduling: Thread Migration

Accounting and Scheduling

m execution charged to, and
scheduled wrt the client thread

Resources within each component
must avoid priority inversion

m component-based locking policies
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CPU Accounting, Scheduling: Sync. IPC
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Accounting

m execution time not accounted

to clients
m bandwidth servers?

Scheduling
m threads have independent
priorities
m possible priority inversion
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CPU Accounting, Scheduling: L4 Implementations

Lazy scheduling, direct switch
m don't call scheduler, and directly switch to server
m optimizations for performance

m unpredictable scheduling and accounting

Credo
m decouple scheduling context from execution context
m server runs with scheduling ctxt of client thread

m tracking correct scheduling context
m O(n) in depth of invocations

Sync IPC — thread migration
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Communication End Points: Sync. IPC

kernel

wait queue

IPC worst-case execution-time?
m O(length of wait queue)

Client decides thread to invoke, server/kernel know which are
available
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Communication End Points: Thread Migration

N

The target of invocation is the component
m server contains code to locate execution context
m specialized policies
m service differentiation
m allocate new execution contexts
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System Customizability

Configurability for Real-Time/Embedded Systems
m temporal policies

m scheduling
m synchronization

m reliability vs. predictability
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User-Level Component-Based Scheduling

COMPOSITE supports component-based scheduling
m no kernel scheduler, only dispatching

Synchronous IPC requires scheduler interaction
m switch between threads
m activation of multiple threads

Can double (or triple) invocation cost
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Mutable Protection Domains
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Dynamically trade-off fault-isolation for performance

Raise and lower protection domain boundaries between components

m remove boundaries where communication overheads are
significant

m raise boundaries when “hot-paths” change

Overhead of thread dispatching >> overhead of function call
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Conclusions

Summary Chart:

Accounting/ | Communication End | Customiz -
Scheduling Point Contention ability
Sync. IPC:
pure X X v
Is/ds X X X v
credo v X v
Thd Migration v v vV

Qualitative assessment of the predictability of the two models
m Moving sync. IPC implementations toward migrating thread
increases predictability
m Migrating thread model good fit for predictable, reliable,
configurable systems
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Communication End Points: Sync. IPC Il
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Execution contexts are the target of invocation

m client decides which to invoke

m kernel/server know which are busy
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Communication End Points: Sync IPC Il
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Synchronous IPC addressing the component
m kernel manages server threads
Synchronous IPC — Thread Migration
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Stack Manager Component
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Upon “stack miss”, invoke stack manager component
m allocate new stack (shown)
m priority inheritance
m when a thread using a stack is done, it returns it to be used by
the requesting thread

m QoS-aware stack allocation
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