
The Case for Thread Migration:

Predictable IPC in a

Customizable and Reliable OS

Gabriel Parmer

The George Washington University
Computer Science Department

gparmer@gwu.edu

Component-Based OSs and µ-kernels

Network DriverTimer Driver

Connect ion Manager

File Desc. API

TCP

HTTP Parser

Even t
Manager

IP
Port

Manager

Lock

Timed Block

Conten t Manager

CGI Service

CGI FD API

Async Invs.
Stat ic

Con ten t

Scheduler

vNIC

MPD Manager

Configurability in RT/Embedded
systems

scheduling policies

resource sharing protocols

interrupt scheduling

Reliability in RT/Embedded Systems

limit scope of failures

System policies/abstractions are
components

User-level, separate protection
domains

IPC implementation key for system performance and predictability

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 2 / 19

Synchronous IPC Between Threads

thread
structure

kernel

wait queue

S S0 1
CCC0 1 2

Communication operations:

Clients: send + wait reply = call

Servers: reply + wait msg = reply wait

Threads

bound to a component

separate scheduling parameters

communication end-points

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 3 / 19

Thread Migration

Structure

Thread

kernel

Invocation/procedure call semantics for communication

Scheduling context migrates between components

Separate execution context in each component

Kernel thread structure tracks invocations

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 4 / 19

Synchronous IPC and Thread Migration

Functionally identical

interface definition language (IDL)

L4 and Composite performance

Similar published overheads

> 2/3 invocation cost is hardware overhead in Composite

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 5 / 19

Thread Migration vs. Synchronous IPC

Qualitative comparison wrt predictability

worst-case overheads, relevant parameters

implications for system design

1 CPU Accounting and Scheduling

2 Communication End-point Contention

3 System Configurability

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 6 / 19

CPU Accounting, Scheduling: Thread Migration

TCP

IP

C C0 1 Accounting and Scheduling

execution charged to, and
scheduled wrt the client thread

Resources within each component
must avoid priority inversion

component-based locking policies

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 7 / 19

CPU Accounting, Scheduling: Sync. IPC

TCP

IP

C C10
1 Accounting

execution time not accounted
to clients
bandwidth servers?

2 Scheduling

threads have independent
priorities
possible priority inversion

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 8 / 19

CPU Accounting, Scheduling: L4 Implementations

Lazy scheduling, direct switch

don’t call scheduler, and directly switch to server

optimizations for performance

unpredictable scheduling and accounting

Credo

decouple scheduling context from execution context

server runs with scheduling ctxt of client thread

tracking correct scheduling context

O(n) in depth of invocations

Sync IPC → thread migration

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 9 / 19

Communication End Points: Sync. IPC

c0 c1 0
s

2
s1

c
2 S

kernel

wait queue

IPC worst-case execution-time?

O(length of wait queue)

Client decides thread to invoke, server/kernel know which are
available

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 10 / 19

Communication End Points: Thread Migration

The target of invocation is the component

server contains code to locate execution context

specialized policies

service differentiation
allocate new execution contexts

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 11 / 19

System Customizability

Configurability for Real-Time/Embedded Systems

temporal policies

scheduling
synchronization

reliability vs. predictability

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 12 / 19

User-Level Component-Based Scheduling

Composite supports component-based scheduling

no kernel scheduler, only dispatching

Synchronous IPC requires scheduler interaction

switch between threads

activation of multiple threads

Can double (or triple) invocation cost

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 13 / 19

Mutable Protection Domains

fn fn

Dynamically trade-off fault-isolation for performance

Raise and lower protection domain boundaries between components

remove boundaries where communication overheads are
significant

raise boundaries when “hot-paths” change

Overhead of thread dispatching >> overhead of function call

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 14 / 19

Conclusions

Summary Chart:
Accounting/ Communication End Customiz -
Scheduling Point Contention ability

Sync. IPC:
pure × × X
ls/ds ×× × X
credo X∗ × X

Thd Migration X X∗ XX

Qualitative assessment of the predictability of the two models

Moving sync. IPC implementations toward migrating thread
increases predictability

Migrating thread model good fit for predictable, reliable,
configurable systems

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 15 / 19

? || /* */

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 16 / 19

Communication End Points: Sync. IPC II

w w

Execution contexts are the target of invocation

client decides which to invoke

kernel/server know which are busy

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 17 / 19

Communication End Points: Sync IPC III

Synchronous IPC addressing the component

kernel manages server threads

Synchronous IPC → Thread Migration

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 18 / 19

Stack Manager Component

Stack
Manager

Upon “stack miss”, invoke stack manager component

allocate new stack (shown)
priority inheritance

when a thread using a stack is done, it returns it to be used by
the requesting thread

QoS-aware stack allocation
Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 19 / 19

	Motivation
	Conclusions

