The Case for Thread Migration:

Predictable IPC in a
Customizable and Reliable OS

Gabriel Parmer

The George Washington University
Computer Science Department
gparmer@gwu.edu

Component-Based OSs and pi-kernels

Configurability in RT /Embedded
systems

— m scheduling policies

Jcol service >

m resource sharing protocols
m interrupt scheduling

oo) /- C1e)
e { e Reliability in RT/Embedded Systems
Ma" m limit scope of failures
=
@ System policies/abstractions are
components

lTimef Driver

m User-level, separate protection
domains

Network Driver

IPC implementation key for system performance and predictability

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 2 /19

Synchronous IPC Between Threads

DEPED

< kernel
N ~
~ ~ -
T thread
- structure

wait queue

Communication operations:

m Clients: send + wait_reply = call

m Servers: reply + wait_msg = reply_wait
Threads

® bound to a component

m separate scheduling parameters

®m communication end-points

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 3/19

Thread Migration

N . N . kernel

Thread
Structure

Invocation /procedure call semantics for communication
m Scheduling context migrates between components

m Separate execution context in each component

m Kernel thread structure tracks invocations

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 4 /19

Synchronous IPC and Thread Migration

Functionally identical
m interface definition language (IDL)

L4 and COMPOSITE performance
m Similar published overheads
® > 2/3 invocation cost is hardware overhead in COMPOSITE

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 5/19

Thread Migration vs. Synchronous IPC

Qualitative comparison wrt predictability
m worst-case overheads, relevant parameters

m implications for system design
CPU Accounting and Scheduling

Communication End-point Contention

System Configurability

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 6 /19

CPU Accounting, Scheduling: Thread Migration

Accounting and Scheduling

m execution charged to, and
scheduled wrt the client thread

Resources within each component
must avoid priority inversion

m component-based locking policies

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 7 /19

CPU Accounting, Scheduling: Sync. IPC

Gabe Parmer (CS@GWU)

Accounting

m execution time not accounted

to clients
m bandwidth servers?

Scheduling
m threads have independent
priorities
m possible priority inversion

Thread Migration and Synchronous IPC

8 /19

CPU Accounting, Scheduling: L4 Implementations

Lazy scheduling, direct switch
m don't call scheduler, and directly switch to server
m optimizations for performance

m unpredictable scheduling and accounting

Credo
m decouple scheduling context from execution context
m server runs with scheduling ctxt of client thread

m tracking correct scheduling context
m O(n) in depth of invocations

Sync IPC — thread migration

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 9 /19

Communication End Points: Sync. IPC

kernel

wait queue

IPC worst-case execution-time?
m O(length of wait queue)

Client decides thread to invoke, server/kernel know which are
available

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 10 / 19

Communication End Points: Thread Migration

N

The target of invocation is the component
m server contains code to locate execution context
m specialized policies
m service differentiation
m allocate new execution contexts

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 1 /19

System Customizability

Configurability for Real-Time/Embedded Systems
m temporal policies

m scheduling
m synchronization

m reliability vs. predictability

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 12 /19

User-Level Component-Based Scheduling

COMPOSITE supports component-based scheduling
m no kernel scheduler, only dispatching

Synchronous IPC requires scheduler interaction
m switch between threads
m activation of multiple threads

Can double (or triple) invocation cost

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 13 /19

Mutable Protection Domains

-
© ' ! C !
| ' ! | !
| . I | I
| I ! | !

1 2) <)

Dynamically trade-off fault-isolation for performance

Raise and lower protection domain boundaries between components

m remove boundaries where communication overheads are
significant

m raise boundaries when “hot-paths” change

Overhead of thread dispatching >> overhead of function call

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 14 /19

Conclusions

Summary Chart:

Accounting/ | Communication End | Customiz -
Scheduling Point Contention ability
Sync. IPC:
pure X X v
Is/ds X X X v
credo v X v
Thd Migration v v vV

Qualitative assessment of the predictability of the two models
m Moving sync. IPC implementations toward migrating thread
increases predictability
m Migrating thread model good fit for predictable, reliable,
configurable systems

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 15 /19

[WA

Parmer (CS@G Thread Migration and Synch

Communication End Points: Sync. IPC Il

7z
T,
s
i/

Execution contexts are the target of invocation

m client decides which to invoke

m kernel/server know which are busy

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 17 /19

Communication End Points: Sync IPC Il

\\\ P
i -

Synchronous IPC addressing the component
m kernel manages server threads
Synchronous IPC — Thread Migration

Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC

Stack Manager Component

\
7z
7

Upon “stack miss”, invoke stack manager component
m allocate new stack (shown)
m priority inheritance
m when a thread using a stack is done, it returns it to be used by
the requesting thread

m QoS-aware stack allocation
Gabe Parmer (CS@GWU) Thread Migration and Synchronous IPC 19 /19

	Motivation
	Conclusions

