

Real-Time Scheduling

Prof. Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
Email: giorgio.buttazzo@sssup.it

Graduate Course on Embedded
Real-Time Control Systems:

Theory and Practice

Scuola Superiore Sant’Anna, Pisa
14-18 June 2010

Theory and Practice

Monday, June 14
08:30 Overview of real-time scheduling (G. Buttazzo)

10:30 Coffee Break

11:00 Overview of the embedded platform (P. Gai)

13:00 Lunch Break13:00 Lunch Break

14:00 The ERIKA real-time kernel (P. Gai)

16:00 Break

16:30 Programming examples

18:30 End of Session

Tuesday, June 15
08:30 dsPic architecture and the Flex board (M. Marinoni)

10:30 Coffee Break

11:00 Lab practice with Flex and Erika

13:00 Lunch Break13:00 Lunch Break

14:00 Wireless communication (G. Franchino)

16:00 Break

16:30 Lab practice with wireless communication

18:30 End of Session

Wednesday, June 16
08:30 Introduction to real-time control (P. Marti)

10:30 Coffee Break

11:00 Feedback scheduling (M. Velasco)

13:00 Lunch Break

14:00 Lab practice on control

16:00 Break

16:30 Lab practice on distributed control

19:00 Banquet

21:00 Luminara tour (Candlelight Feast) in Pisa

Thursday, June 17
08:30 You can sleep longer

11:00 Scilab/Scicos (automatic code generation)

12:00 Project assignment

13:00 Lunch Break13:00 Lunch Break

14:00 Lab practice

16:00 Break

16:30 Lab practice

18:30 End of Session

Friday, June 18
08:30 Lab practice or Final Exam

10:30 Coffee Break

11:00 Project presentation and evaluations

13:00 Lunch Break13:00 Lunch Break

14:30 Closing remarks

Overview of
Real-Time Scheduling

Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa

E-mail: buttazzo@sssup.it

Goal
Provide some background of RT theory that
you can apply for implementing embedded
control applications:

• Basic concepts and task models

• Periodic task scheduling

• Schedulability analysis

• Handling shared resources

• Accounting for blocking times

Real-Time
System

event

action

Real-Time system

A computing system able to respond to
events within precise timing constraints.

Real-Time system

EnvironmentRT system

y

x

t

(t)

(t+Δ)

It is a system in which the correctness depends
not only on the output values, but also on the
time at which results are produced.

y (t+Δ)

Flight control systems Flight simulators

Defense systems Robotics

Medical monitoring Systems … and many others
• automotive applications

• multimedia systems

• virtual reality

• small embedded devices

⇒ cell phones
⇒ digital cameras
⇒ videogames
⇒ smart toys

Interaction with the environment

• Timing constraints are imposed by the
dynamics of the environment.

• The tight interaction with the environment
requires the system to react to events withinrequires the system to react to events within
precise timing constraints.

The operating system is responsible for
enforcing such constraints on task execution.

Implementing a control task

e(t) u(t)
system

y(t)
controllerr(t)

input

control

output

periodic task

sync wait for the next period

Software Vision

Environment

computer

actuatorsD/A

Environment

sensorsA/D

Thread (task) Resource

Kernel-induced delays

yi(t)

ui(t)

I/O delay I/O delay I/O delay

Other timing anomalies
Real-Time ≠ Fast

τ1

τ2

τ1

τ2

double speed deadline miss

Speed vs. Predictability
• The objective of a real-time system is to

guarantee the timing behavior of each
individual task.

• The objective of a fast system is to minimize• The objective of a fast system is to minimize
the average response time of a task set.
But …

Don’t trust average when you have to
guarantee individual performance

There was a man who drowned crossing
a stream with an average depth of 15 cm.

Average depth
15 cm15 cm

Achieving predictability
• The operating system is the part most

responsible for a predictable behavior.

• Concurrency control must be enforced by:
⇒ appropriate scheduling algorithms

⇒ appropriate syncronization protocols

⇒ efficient communication mechanisms

⇒ predictable interrupt handling

Let’s review the main
h d li lscheduling results

Periodic task model

ri,k ri,k+1 t

Ti

Ci

ri,1 = 0

τi (Ci , Ti , Di)
job k

For each periodic task, guarantee that:
• each job τik is activated at rik = (k−1)Ti

• each job τik completes within dik = rik + Di

Priority Assignments
• Rate Monotonic (RM):

Pi ∝ 1/Ti (static)

• Deadline Monotonic (DM):

Pi ∝ 1/Di (static)

• Earliest Deadline First (EDF):

Pi ∝ 1/dik (dynamic) di,k = ri,k + Di

RM Optimality
RM is optimal among all fixed priority
algorithms:

If there exists a fixed priority assignment
which leads to a feasible schedule for Γ,,
then the RM assignment is feasible for Γ.

If Γ is not schedulable by RM, then it
cannot be scheduled by any fixed priority
assignment.

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for Γ,
th EDF ill t f ibl h d lthen EDF will generate a feasible schedule.

If Γ is not schedulable by EDF, then it
cannot be scheduled by any algorithm.

Rate Monotonic (RM)
• Each task is assigned a fixed priority Pi

proportional to its rate.

τA

0

500 10025 75

τB

0
τC

40 80

100

Critical Instant
For a task τi, it is the activation time that produces the
longest response time.

τ1

τ2

R2

τ1

τ2

R2

Critical Instant

τ1

For independent preemptive tasks under fixed priorities,
the critical instant of τi, occurs when it arrives together
with all higher priority tasks.

1/6

τ2

τ3

Idle time

2/8

2/12

τi 2/14

How can we verify feasibility?
• Each task uses the processor for a fraction of

time:

i

i
i T

CU =

• Hence the total processor utilization is:

∑
=

=
n

i i

i
p T

CU
1

• Up is a misure of the processor load

A necessary condition

A necessary condition for having a feasible
schedule is that Up ≤ 1.

However, there are cases in which Up ≤ 1 but
the task set is not schedulable by RM.

In fact, if Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

An unfeasible RM schedule

944.0
9
4

6
3

=+=pU

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

Utilization upper bound

833.0
9
3

6
3

=+=pU

τ1

0 9 18

6 120 183

3 6 12

9

15

15

τ2

NOTE: If C1 or C2 is increased,
τ2 will miss its deadline!

A different upper bound

1
8
4

4
2

=+=pU

τ1

The upper bound Uub depends on the
specific task set.

0

4 120 8 16
τ1

τ2
4 128 16

The least upper bound

1

Uub

Γ

Ulub

. . .

A sufficient condition

If Up ≤ Ulub the task set is certainly
schedulable with the RM algorithm.

If Ulub < Up ≤ 1 we cannot say anything
about the feasibility of that task set.

NOTE

Basic results

()121

1
−≤∑

=

n
n

i i

i n
T
Cunder RM

In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

if
i i

if and only ifunder EDF 1
1

≤∑
=

n

i i

i

T
C

Assumptions:
Independent tasks

Di = TiΦi = 0

Utilization bound for large n

()12 /1
lub −= nRM nU

for n →∞ Ulub → ln 2

Schedulability bound

80
90

100

CPU%
RM EDF

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

69%

n

A special case

1
8
4

4
2

=+=pU

If tasks have harmonic periods Ulub = 1.

84p

0

4 120 8 16
τ1

τ2
4 128 16

Schedulability region

1
U1

0.83

)12(/1 −≤∑ n
n

i nU

1
1

≤∑
=

n

i
iU

The U-space

Graduate Course on Embedded Real-Time Control Systems - Pisa 14-18 June
2010

44

U2
10.83

)(
1
∑
=i

i

RM

EDF

Schedulability region

1
U1

0.83

The U-space

τ1

τ2

Ci Ti

3

4

6

9

Graduate Course on Embedded Real-Time Control Systems - Pisa 14-18 June
2010

45

U2
10.83

RM

EDF
94.0

9
4

6
3

=+=pU

4/9

1/2

Schedule

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

EDF

RM

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

The Hyperbolic Bound

• In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

2)1(
1

≤+∏
=

n

i
iU

Schedulability region

1
U1

0.83

)12(/1 −≤∑ n
n

i nU

1
1

≤∑
=

n

i
iU

The U-space

Graduate Course on Embedded Real-Time Control Systems - Pisa 14-18 June
2010

48

U2
10.83

)(
1
∑
=i

i

RM

EDF

Schedulability region

1
U1

0.83

)12(/1 −≤∑ n
n

i nU

1
1

≤∑
=

n

i
iU

The U-space

Graduate Course on Embedded Real-Time Control Systems - Pisa 14-18 June
2010

49

U2
10.83

)(
1
∑
=i

i

2)1(
1

≤+∏
=

n

i
iU

RM

EDF

Response Time Analysis
[Audsley ‘90]

• For each task τi compute the interference
due to higher priority tasks:

∑= ki CI

• compute its response time as
Ri = Ci + Ii

• verify if Ri ≤ Di

∑
> ik PP

ki

Computing the interference

0 Ri

τi

τk

Interference of τk on τi
in the interval [0, Ri]: k

k

i
ik C

T
RI =

Interference of high
priority tasks on τi: k

k

i
i

k
i C

T
RI ∑

−

=

=
1

1

Computing the response time

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

Iterative solution:Iterative solution:

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

−−

=
∑+=

ii CR =0

iterate until
)1(−> s

i
s
i RR

Handling shared
resources

Problems caused by
mutual exclusion

Critical sections
τ2τ1

globlal
memory buffer

write read3; 1i
wait(s) wait(s)

write readx = 3;
y = 5;

a = x+1;
b = y+2;
c = x+y;

int x;
int y;

signal(s)

signal(s)

Blocking on a semaphore

τ1 τ2

P1 > P2

τ1

Δ

CS CS τ2

It seems that the maximum blocking
time for τ1 is equal to the length of the
critical section of τ2, but …

Schedule with no conflicts

τ1

priority

τ2

τ3

Conflict on a critical section

priority B

τ1

τ2

τ3

Conflict on a critical section

priority B

τ1

τ2

τ3

Priority Inversion

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
timetime.

Solution
Introduce a concurrency control protocol for
accessing critical sections.

Non Preemptive Protocol
• Preemption is forbidden in critical sections.

• Implementation: when a task enters a CS, its
priority is increased at the maximum value.

PROBLEMS: high priority tasks that do not use
the same resources may also block

ADVANTAGES: simplicity

Conflict on critical section

τ1

priority B

τ2

τ3

Schedule with NPP

priority

τ1

τ2

τ3

PCS = max{P1, … Pn}

Problem with NPP

priority

τ1

useless
blocking

τ2

τ3

τ1 cannot preemt, although it could

Highest Locker Priority
(Immediate Priority Ceiling)

A task entering a resource Rk gets the
highest priority among the tasks that use Rk

Implementation:
• Each task τi has a dynamic priority pi initialized to Pi

• Each semaphore Sk has a ceiling

• When τi locks Sk, pi is increased to C(Sk)

• When τi unlocks Sk, its priority goes back to Pi

C(Sk) = max {Pi | τi uses Sk}

Schedule with HLP

priority

τ1

S1
S2 C(S2) = P2

C(S1) = P1

τ2

τ3

τ2 is blocked, but τ1 can preempt τ3 within its critical
section, because P1 > C(S2)

Problem with NPP and HLP

t t

τ1 τ2 τ1 blocks just in case ...

A task is blocked when attempting to preempt, not when
accessing the resource.

CS

test

CS

τ1

τ2

P1
P2

p2

Priority Inheritance Protocol
[Sha, Rajkumar, Lehoczky, 90]

• A task increases its priority only if it blocks
other tasks.

• A task τi in a resource Rk inherits the highest
priority among those tasks it blocks.

pi(Rk) = max {Ph | τh blocked on Rk}

Schedule with PIP
priority

τ1

τ

direct blocking

push-through blockingP1

τ2

τ3

P1

P3

p3

Types of blocking
• Direct blocking

A task blocks on a locked semaphore

• Push-through blocking
A task blocks because a lower priority
task inherited a higher priority.

BLOCKING:
a delay caused by a lower priority task

Identifying blocking resources
• A task τi can be blocked by those

semaphores used by lower priority tasks
• directly shared with τi (direct blocking)

• shared with tasks having priority higher than τi
(push-through blocking)(push through blocking).

Theorem: τi can be blocked at most once
by each of such semaphores

Theorem: τi can be blocked at most once
by each lower priority task

Bounding blocking times
• Let ni be the number of tasks with priority

less than τi

• Let mi be the number of semaphores that
can block τi

Theorem: τi can be blocked at most on
the duration of αi = min(ni, mi)
critical sections

Example
priority
τ1

τ2

τ3 Y W X

X WZ

X Y Z X

τ3

• τ1 can be blocked once by τ2 (on X2 or Z2) and
once by τ3 (on X3 or Y3)

• τ2 can be blocked once by τ3 (on X3, Y3 or W3)

• τ3 cannot be blocked

Y W X

Example
priority
τ1

τ2

τ3 Y W X

X WZ

X Y Z X

• B1 = δ(Z2) + δ(Y3)

• B2 = δ(W3)

• B3 = 0

τ3 Y W X

Schedule with PIP
priority

τ1

τ
P1

τ2

τ3

τ4

P2

Chained blocking with PIP
priority B1

τ1

τ2

B2 B3

Theorem: τi can be blocked at most once
by each lower priority task

τ3

τ4

Comparison
NPP HLP PIP

1 1 αi = min(ni,mi)# of blocking

no no yes

deadlocks

chained
blocking

pessimism very high high low

transparency

stack sharing

yes yes nodeadlocks
avoidance

yes yes no

yes no yes

Accounting for blocking times

preemption
by HP tasks

τi
blocking by

kLP tasks

()121
1

1
−≤

+
+∀ ∑

−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

Utilization test

Accounting for blocking times

preemption
by HP tasks

τi
blocking by

kLP tasks

211
1

1

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∀ ∏

−

= i

ii
i

k k

k

T
BC

T
Ci

Hyperbolic bound

Response Time Analysis

preemptionτi
blocking

k
k

s
i

i

k
ii

s
i C

T
RCBR

)1(1

1

−−

=
∑++=

iii CBR +=0

iterate until
)1(−> s

i
s
i RR

Stack Sharing
Each task normally uses a private stack for

• saving context (register values)
• managing functions
• storing local variables

stack

stack pointer
PUSH

POP

Stack Sharing

SP1

Why stack cannot be normally shared?

Suppose tasks share a resource: A

blocked
big problems

stack

τ1

τ2
SP2

SP1

Stack Sharing
Why stack can be shared under NPP and HLP?

SP1

stack

τ1

τ2
SP2

SP2

Saving stack memory

τ1

τ2

To save stack size, we should reduce preemption as
much as possible:

stackstack

stack

τ1

τ2

Stot = S1+S2

Stot = max(S1,S2)

Tasks grouping

To reduce preemption we can merge tasks
into groups with the same priority level:

Consider 100 tasks, each with 10 Kb of stack

10 groups
of 10 tasks each stack size = 100 Kb

stack saving = 90 %

100 priorities stack size = 1 Mb

Non preemptive
scheduling

• It reduces context-switch overhead:
making WCETs smaller and more predictable.

• It simplifies the access to shared resources:
No semaphores are needed for critical sections

Advantages of NP scheduling

• It reduces stack size:
Task can share the same stack, since no more than
one task can be in execution

• It allows achieving zero I/O Jitter:
finishing_time – start_time = Ci (constant)

τ1

τ2

100 205 15 25 30 35

RM 97.0
7
4

5
2

≅+=U

Advantages of NP scheduling
In fixed priority systems can improve schedulabiilty:

τ2
0 217 14 28 35

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

NP-RM deadline miss

• In general, NP scheduling reduces schedulability
introducing blocking delays in high priority tasks:

Disdvantages of NP scheduling

deadline
miss

deadline
missΔ Δ

τ1
C1 = ε

• The utilization bound under non preemptive
scheduling drops to zero:

Disdvantages of NP scheduling

τ1

τ2 ∞
T2

T1

C2 = T1

U =
ε

T1
+

∞
C2 0

Non preemptive scheduling anomalies

τ1

τ2

τ3

τ1

τ2

τ3

deadline missdouble speed

Non-preemtive analysis
It is a special case of preemptive scheduling where
all tasks share a single resource for their entire
duration.

τ1 R

τ2

τ3 R

R

The max blocking time for task τi is given by the
largest Ck among the lowest priority tasks:

Bi = max{Cj : Pj < Pi}

Response time analysis

τi

Bi Ii

WOi = max{sik – rik}

Ci

sik fikrik

k

WOi = Worst-case occupied time: due to blocking from
lp(i) and interference from hp(i)

NOTE: the end of WOi cannot coincide with the activation
of a higher priority task τh, which would increase
WOi by Ch

k

Response time analysis

τi

Bi Ii

WOi = max{sik – rik}

Ci

sik fikrik

k

93

k

k
k

i
i

k
ii C

T
WOBWO ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= ∑

−

=

1
1

1

Ri = WOi + Ci

Response time analysis

∑
− −

⎟
⎟
⎞

⎜
⎜
⎛

++=
1)1(

)(1
i

k

s
i

i
s

i CWOBWO

∑
=

+=
i

k
kii CBWO

1

)0(

94

∑
=

⎟
⎠

⎜
⎝1k

k
k

ii T

Stop when)1()(−= s
i

s
i WOWO

Ri = WOi + Ci

Preemptive
scheduling

Non
Preemptive
scheduling

Limited
Preemptive
scheduling

Taking advantage of NP scheduling

Trade-off solutions
Deferred preemptions

Fixed preemption points

Preemption thresholds

Deferred Preemption
Each task can defer preemption up to qi

NP regions are floating in the code
(i.e., NP regions can start at any time)

q3

q2

}{max jPPi qB
ij <

=

Interesting problem
Given a preemptively feasible task set, reduce
preemptions as much as possible still preserving
schedulability.

Reducing context switch costs and WCETs

This means finding the longest non-preemptive
chunk Qi for each task that can still preserve
schedulability.

Under EDF

Under Fix. Pr. Yao et. al. - RTCSA 2009

Baruah - ECRTS 2005

Qi is related with the maximum blocking time that
can be tolerated by higher priority tasks.

A simple bound for Qi

Let βi be the maximum blocking time that can be
tolerated by τi, called blocking tolerance.

Then, it must be

}{max jPPi qB
ij <

=

iiB β≤

where

Hence:
ijPP

q
ij

β≤
<

}{max

max {q2, q3, q4} ≤ β1

max {q3, q4} ≤ β2

i = 1

i = 2

A simple bound for Qi

ijPP
qi

ij

β≤∀
<

}{max

q4 ≤ β3i = 3

q2 ≤ β1

q3 ≤ min{β1, β2}
i = 1

i = 2

i = 3 q4 ≤ min{β1, β2, β3}

Q1 = ∞

i ≥ 2

i = 1

A simple bound for Qi

Qi = min{Qi 1, βi 1}i ≥ 2 Qi {Qi-1, βi-1}

Deriving βi from the utilization test

)(lub
1

iU
T
B

T
C

i

i
i

k k

k ≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

)(iUU i
i

=+⎟
⎞

⎜
⎛∑ β)(lub

1
iU

T
U

ik
k =+⎟
⎠

⎜
⎝
∑
=

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

i

k
kii UiUT

1
lub)(β

Fixed Preemption Points (FPP)
Each task τi is divided in mi chunks: qi,1 ... qi,mi

It can only be preempted between chunks

}{max max
jPPi qB

ij <
=

6 12 18 240

τ1

Example
Let: τ1 be fully non preemptive: q11 = C1 = 3

τ2 consisting of 2 NP chunks: q21 = 1, q22 = 3, C2 = 4
τ3 be fully non preemptive: q31 = C3 = 2

9 180 27

τ2

τ3

Note that:
The worst case response time of τ2 does not occur in
the first instance.
The interference on τ2 is larger than B2 + C1.

6 12 18 24

9 180 27

0

τ1

τ2

Must be carry out up to the busy period of each task.

Response Time Analysis (FPP)

τ3

Busy period of τ2

Level-i busy period
It is the interval in which the processor is busy executing
tasks with priority higher than or equal to Pi, including
blocking times.

6 12 18 24

9 180 27

0

τ1

τ2

τ3

Busy period of τ2

Response Time Analysis (FPP)

Level-i busy period
It can be computed as the shortest interval that satisfies:

h
h

i

PPh
ii C

T
LBL

ih

∑
≥

+=
:

Initial value can be: h
PPh

ii CBL
ih

∑
≥

+=
:

)0(

up to job Ni:

i

i
i T

LN =

0

0

τi

last
iq

sik fik(k-1)Ti

Response Time Analysis (FPP)

() h
h

ik

PPh

last
iiiiik C

T
sqCCkBs

ih

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+−+= ∑

>

1)1(
:

last
iikik qsf +=

iikik TkfR)1(−−=

{ }ikNki RR
i],1[

max
∈

=
i

i
i T

LN =
NOTE:

()last
iiiik qCTks −+−=)1()0(

() h
iklast

iiiiik C
T
sqCCkBs ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−+−+= ∑ 1)1(

iii TLN /=

()last
iiiik qCTks −+−=)1()0(

do {
k = 1

for (i=1 to n) {

Response Time Analysis (FPP)

hPPh T
ih

⎟
⎠

⎜
⎝>:last

iikik qsf +=

iikik TkfR)1(−−=

} while (k ≤ Ni)
k++

}

if (Rik > Ri) then Ri = Rik

if (Ri > Di) then return(UNFEASIBLE)

return(FEASIBLE)

Special cases
Fully non preemptive scheduling

i
last
i Cq =

}{max jPPi CB
ij <

=

Deferred Preemption

0=last
iq

}{max jPPi QB
ij <

=

Preemption Thresholds (PT)
Each task has two priorities:

Pi nominal priority: used to enqueue the task in the
ready queue and to preempt

θi threshold priority: used for task execution

threshold
nominal

threshold priority ≥ nominal priority

Unfeasible task set

τ1

τ2

τ3

2

2

5 deadline miss

Fu
lly

pr
ee

m
pt

iv
e

0 2 4 6 8 10 12 14 16 18

deadline miss

0 2 4 6 8 10 12 14 16 18

τ1

τ2

τ3

2

2

5Fu
lly

no
n

pr
ee

m
pt

iv
e

But feasible with preemption thresholds

Pi θi

3

2

3

3

τ1 can preempt τ3

τ2 cannot preempt τ3
τ1 cannot preempt τ2

τ1

τ2

2

2

1 2 τ3
5

NOTE:
The same feasible schedule is obtained by splitting τ3 in
two non preemptive chuncks: q31 = 2, q32 = 3

Response time analysis (PT)

τi

θi

Pi

τi can only be preempted
by tasks τh: Ph > Pi

τi can only be preempted
by tasks τh: Ph > θi

h
h

ik

h

ik

Ph
iikik C

T
s

T
fCsf

ih
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−++= ∑

>

1
: θ

h
h

ik

PPh
iiik C

T
sCkBs

ih

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+= ∑

>

1)1(
:

sik fik

Remarks
Preemption Thresholds are easy to specify, but it is
difficult to predict the number of preemptions and where
they occur ⇒ large preemption overhead

Deferred Preemption allows bounding the number of
preemptions but it is difficult to predict where they occur.
Note that the analysis assumes 0=lastqNote that the analysis assumes

Fixed Preemption Points allow more control on
preemptions and can be selected on purpose (e.g., to
minimize overhead, stack size, and reduce WCETs).

A large final chunk in τi reduces the interference from hp-
tasks (hence Ri), but creates more blocking to hp-tasks.

0=iq

