


Preface

This volume contains the papers presented at the 1st international workshop on
Model Based Engineering for Robotics (RoSym’10). held on October 5th, 2010
in Oslo, Norway in conjunction with the MODELS 2010 Conference.

The main objectives of this workshop are to organize common discussions
within Model-base Engineering (MBE) and Robotics experts on how MBE can
help robotics people and to share issues that robotics people have encountered
with MBE. Current engineering approaches for robotic systems have indeed been
demonstrated to be insufficient to bypass following constraints that robotics
embedded systems are currently facing:

– the problem space is huge: as uncertainty of the environment and the number
and type of resources available to the robot increase, the definition of the best
matching between current situation and correct robot resource exploitation
becomes overwhelming even for the most skilled robot engineer,

– the solution space is huge: in order to enhance robustness of complex robotic
systems, existing cognitive methods and techniques need to exploit robotic-
specific resources adequately. This means that the robotic system engineer
should master highly heterogeneous technologies in order to integrate them
in a consistent and effective way.

One ideal process for developing robotic software components is to enable
the design and implementation of highly complex and robust robotic systems to
involve in less effort as possible. Robotics systems are complex and embedded
ones; thanks to MBE that has already demonstrated its efficiency on complex
and embedded systems. We expect MBE to be a real promising solution for the
development process of robotics software and systems.

Potentially, new MBE techniques have to be developed for robotics which
can also be applicable to other domains. Since robotics is a very challenging
domain, we are confident that new techniques may possibly open new way for
Model Based Engineering.
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Abstract. Robotic systems are becoming increasingly complex, as their
tasks and working environments become ever richer. As a result, there is
an urgent need to provide robots with self-awareness and self-adaptation
capabilities that allow them to autonomously deal, among other things,
with software and hardware failures, changes in the environment, or in-
teractions with other systems. The use of high-level models that can be
adapted at run-time by the robot itself, promises to significantly boost
the applicability and performance of robotic systems. This paper reports
our experience in applying the DiVA model-driven adaptive approach to
a robotics case study, describing its benefits and limitations for robotics.

1 Introduction

With increased flexibility and ease of use, robots are at the dawn of a new era,
turning them into ubiquitous helpers to improve our quality of life by delivering
efficient services in our homes, offices, and public places. In order to achieve
such flexibility, the management of uncertainties will be a key component of
success [17]. Enabling robots to manage the different sources of uncertainty they
must deal with (e.g., changes in the environment, altered requirements, software
and hardware failures, etc.) requires providing them with self-awareness and self-
adaptation capabilities [2]. This implies enabling robots to build and dynamically
adapt models of themselves and their environments.

The Strategic Research Agenda (SRA) [17], delivered one year ago by the
European Robotics Technology Platform, defines adaptation as a change to the
process or the method of execution performed by the system itself, generally at
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project (EU FP7 STREP, contract 215412, http://www.ict-diva.eu/)



runtime. Adaptation may involve cognitive decision making and can take place
over both short and long timescales, affecting any level of the system. According
to the SRA, future robots, and later groups of robots, will adapt their hardware
and software to changes of the environment, work piece, and processes.

Among the mid- and long-term challenges related to adaptation (spanning
dimensions such as control, learning, modeling, etc.), the SRA highlights the need
for more automatic (or semi-automatic) use of models for different purposes,
including [...] adaptation and reconfiguration. In this vein, the Model-Driven
Engineering (MDE) paradigm promisses to bring great benefits to robotics [3].

In a context different from robotics, the DiVA Project3 proposes to lever-
age models both at design-time and runtime (models@runtime) to support the
dynamic adaptation of complex software systems. This paper reports our expe-
rience in applying the DiVA approach to a robotics case study, describing its
benefits and limitations for robotics.

The rest of the paper is organized as follows: Section 2 surveys related work;
Section 3 briefly introduces models@runtime in the context of the DiVA Project;
Section 4 describes our experience in applying the DiVA model-driven adaptive
approach to a robotics case study; Section 5 reports the lessons learned and open
challenges; and, Section 6 concludes and presents some future research lines.

2 Related Work

Since the late 90s, great research efforts have been made in self-adaptive and
autonomic software development. As a result, some interesting high-level refer-
ence models and frameworkshave been developed [14,9]. In addition, these efforts
have also resulted in modern execution platforms, such as Fractal [7], OSGi4 or
SCA5, which provide APIs for software introspection and reconfiguration. These
platforms currently exhibit some limitations as, for instance, they do not allow
to preview the effects of a reconfiguration until it is actually executed, or to
simulate what-if scenarios in order to evaluate different possible configurations
a priori. Moreover, in the case of complex adaptive systems, a large number of
low level reconfiguration scripts (calls to the reconfiguration API) need to be
manually coded, making the process cumbersome and error prone.

Putting the focus on the robotics domain, some interesting results have been
achieved by the bio-inspired and cognitive system communities on low-level robot
behavior adaptations based, e.g., on genetic algorithm mutations [10]. However,
in order to deal with the increasingly growing complexity of real-word robotic
systems and working environments, higher-level adaptation mechanisms need to
be developed. In this vein, it becomes necessary to shift the focus from low-
level self-adaptive algorithms to higher-level self-adaptive software components
and component-based architectures [9]. Furthermore, the envisaged adoption of
MDE by the robotics community promises not only to help raising the level of

3 http://www.ict-diva.eu/
4 http://www.osgi.org
5 http://www.eclipse.org/stp/sca/



abstraction at which robotics systems are designed, but also enable their self-
adaptation using models@runtime.

Although there exist plenty of robotics-specific software architeture styles
and frameworks, commonly supported by platform-specific (and hardly inter-
operable) middlewares [15], most of them currently lack of support for model-
driven robotics software development and self-adaptation [11]. Among the few
model-driven tool-chains for robotics software development, it is worth highlight-
ing Smartsoft [18] and V3CMM [6], both enabling component-based platform-
independent design modelling and platform-specific code generation by means of
model transformations. However, to date, neither Smartsoft nor V3CMM sup-
port runtime software adaptation (V3CMM only supports structural and be-
havioural variability modelling at desing-time). Conversely, the work presented
in [8], addresses robotics software runtime adaptation at an architectural level
although, having not adopted a MDE approach, it strongly dependes on the
Prism-MW6 specific middleware platform.

Finally, it is worth highlighting the very interesting initiative started by the
BRICS project7, funded by the 7th EU Framework Program, where both MDE
and robotic system adaptation (to achieve robust autonomy) play a key role,
although these two goals do not appear explicitly related in the proposal.

3 An Overview of DiVA

The idea of “models@runtime” is to leverage models both at design-time and
runtime to monitor, dynamically adapt or evolve software systems. A dedicated
workshop8 is held at MODELS since 2006.

In the context of the DiVA project [16,5], we leverage models@runtime to sup-
port the design and the execution of Dynamic Software Product Lines (DSPL) [12].
At design-time, we describe four facets of a DSPL, that are then leveraged at
runtime to drive the dynamic adaptation process:

– Variability: describes the different features of the system, and their natures
(options, alternatives, etc)

– Environment/Context: describes the relevant aspects of the context we
want to monitor (environment), as well as the current context.

– Reasoning: describes when the system should adapt. It consists in defin-
ing which features (from the variability model) to select, depending on the
current context, using the appropriate formalisms.

– Architecture: describes the configuration of the running system in terms
of architectural concepts.

The role of these models is to formalize how and when a system should adapt.
Thus, adaptation models capture the variability in the system and in its context,
and link changes in the latter with configurations of the former.

6 http://csse.usc.edu/ softarch/Prism/
7 http://www.best-of-robotics.org/
8 http://www.comp.lancs.ac.uk/˜bencomo/MRT/



It is important to note that designers do not specify the whole possible set
of architecture configurations in extension. Instead, each feature of the variabil-
ity model is refined into an aspect model that can be easily woven into a base
model (which contains components and bindings that should be present in all
configurations). This way, the system is designed in intention, and configurations
are explicitly built when needed. When a configuration is built (by aspect weav-
ing) it is first validated by checking some invariants. Then if the configuration
is valid, we rely on a model comparison (between the current configuration and
the newly produced one) to infer a safe migration path that is actually executed
to adapt the running system. This prevent designers from writing low-level and
error-prone reconfiguration scrips. Interested readers are referred to [16,5] for
more details about the use Aspect-Oriented Modeling in DiVA.

4 Applying Models@Runtime to a Robotics Case Study

4.1 Case Study Description

To illustrate how DiVA can address adaptation in robotics, we present a simple
case study developed using its current version. This experience will allow us to
later discuss the advantages and drawbacks of DiVA in the context of robotics.

The case study takes place in a room, containing a number of obstacles, where
two commercial robots (e-pucks 9) are initially placed at arbitrary positions. One
of them plays the role of Victim, while the other plays the role of Rescuer.

The goal of the Victim is to help the Rescuer find it as soon as possible.
To achieve this, it indicates its position using an acoustic or light signal. The
Victim uses the Bluetooth to communicate both changes in its signaling policy
and its current state, which can be: i) OK, ii) Wounded, or iii) KO. The Victim
is equipped with infrared (IR) proximity sensors to detect close objects, which
it can avoid adopting different strategies, namely:i) surround the obstacle, or
ii) change the movement direction. The first action has a greater impact on
energy consumption. Additionally, the Victim can adopt different strategies to
improve its visibility, namely: i) run randomly, ii) walk randomly, or iii) stay
still, in descending order in terms of visibility and resource consumption.

The goal of the Rescuer is to find the Victim in the shortest time possible
with the available resources. It is equipped with three sensors for this purpose,
each one having a different precision and consumption: i) camera, ii) micro-
phones (which can identify the direction of sound), and iii) IR proximity sen-
sors. It can receive Bluetooth communications from the Victim, allowing it to
select the most appropriate sensor and strategy to find it. The Rescuer uses the
same obstacle avoidance strategies as the Victim. Both robots are equipped with
sensors to measure environmental light and noise, and their battery level.

Robots are expected to dynamically adapt their behaviour depending on their
context (i.e., their role, battery level, light conditions, etc.) in order to achieve
their goals using the most appropriate sensors and strategies.

9 http://www.e-puck.org



4.2 Modeling Dynamic Variability and Adaptation

As described in Section 3, DiVA considers four facets of a DSPL: Variability,
Environment/Context, Reasoning, and Architecture. Next, we present the adap-
tation models developed for the case study using the DiVA Eclipse-based editors.

Fig. 1 shows how the context of both robots is modeled. In both cases, three
boolean contex variables capture the changes in the environmental light and
noise, and in the robot battery. The Rescuer includes two additional context
variables: Signal Notification and Victim State, which capture the changes in
the Victim’s signaling policy and state. Note that, whenever the Rescuer has no
information about the Victim, these variables are set to the UNKNOWN value. For
the Victim, only one additional variable is modelled: State, which is set by one
of the Victim’s internal components according, e.g., to the time it has been lost.

In robotics, we can think of three sources of contextual information having
impact in robot software adaptation: i) the environment, ii) the robot internal
state and resources, and iii) the perception of (and, eventually, the communica-
tion and collaboration with) other systems, either robotics or not.

Fig. 2 shows the variability model including the dependencies among the
variants and the adaptation constraints. The variants represent different possible
realizations of a variability dimension. For instance, there are three variants for
the Search Strategy dimension, one for each of the strategies the Rescuer can use
to find the Victim. As the caridinality of this dimension is set to [1..1], one (and
only one) of the strategies needs to be selected for each particular configuration
of the Rescuer. The Detailed strategy involves the highest search accuracy, and
thus requires the camera and microphones variants (see Dependency column).
The Available and Required expressions correspond to contexts in which the
variant respectively can or must be used. For example, given the importance of
energy consumption, it only makes sense to consider the Detailed strategy when
the battery of the robot is not low.

The next step is to model the properties relevant for the system, i.e., the func-
tional and extra-functional properties that need to be optimized. Each property
has a name and a direction, the later specifying if it should be minimized (0)

(a) (b)

Fig. 1. Context model for the robot playing the role of (a) Rescuer and (b) Victim.



(a)

(b)

Fig. 2. Model of the variability and constraints for (a) Rescuer and (b) Victim.

(a) (b)

Fig. 3. Selected properties for (a) Rescuer and (b) Victim.

or maximized (1). As shown in Fig. 3, we have selected to minimize the power
consumption, and maximize the search and signaling accuracy.

Fig. 4 shows the impact of variants (rows) on each property (columns). When
a dimension has an impact on a certain property, for each of its variant a quali-
tative appreciation of this impact has to be specified. For example, the Signaling
dimension affects both the power consumption and the signaling accuracy. In
particular, the Light Generator has a low power consumption and signaling ac-
curacy, while the Acoustic Generator has a medium power consumption and
a high accuracy. This table is the base to make different trade-offs among the
variants and to select the optimal configuration for the actual context.

Finally, Fig. 5 shows the robot adaptation rules. These are Priority Rules,
i.e., they capture the relevant system properties depending on the context. For
example, the rule Battery is low specifies that when the battery is low, optimiz-



(a) (b)

Fig. 4. Impact of variants on robot properties for (a) Rescuer and (b) Victim.

(a) (b)

Fig. 5. Robot adaptation rules for (a) Rescuer and (b) Victim.

ing power consumption has a high priority. Conversely, the Battery is ok rule
specifies that this is a secondary concern when the battery is OK.

It is worth noting that DiVA allows the simulation of the previous adapta-
tion models provided the user inputs a sequence of contexts (set of values for
the context variables). For each context, the simulator calculates and shows (it
must be said that not in a very friendly and readable way) the best possible
architecture configuration. This facility, has allowed us to perform multiple tests
on the models developed as part this work, although we decided not include
the screenshots showing the results for the sake of simplicity and for the space
limitations.

4.3 Runtime Architecture to Support Dynamic Variability

In order to support actual runtime adaptation in robotics, we can consider the
three-layer architecture developed as part of the DiVA project (see Fig. 6(a)).
In the platform-independent model-based layer, the components produce and
consume models, i.e., when the context model is updated, the Reasoner calcu-
lates a derived variability model accordingly. For all the features included in the
variability model, the Weaver composes the corresponding architectural model,
which then is checked and submitted to the proxy layer. The Proxy layer is re-
sponsible for bridging the gap between design-time models and the runtime. The



Causal Link component receives the architectural model and reconfigures the ar-
chitecture being executed by the robot. Additionally, the Monitoring component
observes runtime events generated at runtime by the probes in order to create
and update the context model. Finally, the Robotic layer basically contains all
the specific components of the robot (e.g. see Fig. 6(b)).

5 New Challenges for Runtime Adaptation in Robotics

Models@Runtime have demostrated promissing results for dynamically adapting
business system architectures. However, the experience reported in this paper
shows that several issues remain in this approach when applied to robotics. In
this section, we present a set of problems and challenges that we feel that are of
particular importance and that need to be addressed in the next stage of Model-
Driven Engineering for robotics. These challenges are the result of the lessons
learned from the experience described in Section 4.

– Cooperative adaptation engines. In DiVA, as in most adaptation approaches,
it is not easy to design several adaptation engines that need to cooperate. In
robotics, this is a fundamental requirement as robots often need to cooperate
with other systems (e.g., other robots). Thus, designers should be able to
model all adaptation engines and their relations.
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Fig. 6. (a) Runtime architecture to support dynamic variability in robotics. (b) Case
study robot component. Thick lines denote some variability degree.



– Multi-layer adaptation engines. Robots might belong to teams and, even-
tually, to other higher-order communities. Thus, they might need to adapt
themselves according to both individual and global adaptation strategies.
The current versions of DiVA can not manage layered engines in which the
adaptation can be driven both locally and a globally.

– Model the impact of context dimensions during simulation. To obtain a cor-
rect simulation, it would be interesting to model the impact of selecting
certain context dimensions. For instance, if the Bluetooth variant is deac-
tivated, it should not be possible to update the context (e.g., the state of
other robots). However, during the simulation step provided by DiVA, all the
context variables can be modified at any time, even if the variant controlling
the update of these variables is deactivated. This is a major drawback for
simulation. In fact, designers need to modify the context model themselves
to obtain a correct simulation at each adaptation step.

– Context sharing. DiVA allows the description of the relevant aspects to be
monitored (environment) as well as the current context. However, it does
not support context sharing, sometimes necessary in robotics (e.g., to allow
cooperating robots to share their local maps to obtain a global one).

– Context uncertainty management. If we add the possibility of sharing context
models, we also need to manage the confidence of the shared information.
Thus, it is important to know how safe or acurate is the information shared
by each robot, as it can (willingly or not) provide others with useless or even
dangerous information. Coupling context information with fuzzy logic could
simplify the design of context models [4].

– Using Model@runtime for implementing not only the system architecture but
also its components. Current approaches, such as DiVA, mainly model the
system architecture. As a consequence, the adaptation engine can only work
at that level (adding or removing components or bindings among them,
changing the value of component attributes, etc.) To support other kinds
of adaptation, it can be interesting to use models@runtime for component
implementation [13]. This would allow us to also adapt some parts of the
component implementation.

These six challenges are not exhaustive. They just aim to describe some of
the new requirements that need to be managed to make models@runtime usable
in the context of adaptive robotic systems.

6 Conclusions and Future Work

This paper reports our experience of using the DiVA model-driven approach
to design and implement an adaptive robotic system. Both the benefits and
the drawbacks of such an approach have been described. This paper makes the
following claims that, in our opinion, are worth being discussed at the workshop:

– As a community, we need to take the next step and adopt the perspective that
robotics systems are software intensive systems and their architecture has to



be properly modeled. As stated in [1] software architecture is, fundamentally,
a composition of architectural design decisions (dimensions in DiVA). These
design decisions (that fix some variation points) should be represented as
first-class entities in the software architecture and it should be possible to
add, remove and change architectural design decisions against limited effort.
For that, a “models@runtime” approach like DiVA provides a first answer.

– Models should be used both at design- and at run-time. There is a clear
benefit of modeling adaptive robotic systems, as the same models can be
used to simulate the robot behavior in a particular context, and then directly
executed by the robot at run-time.

– Robotic system are adaptive systems. They should be resource- and context-
aware. As systems with limited resources, robots cannot always be confident
in the context and cannot always collect the same level of information.

– Robotic systems should be designed to support cooperation with other sys-
tems. In that direction, model-driven engineering for robotics research should
share some knowledge and design principles with model-driven engineering
for Systems of Systems.

For the future, we plan to address some of the challenges identified in Sec-
tion 5. In particular, in the short- and mid-term, we will work in two main
directions: extending the DiVA framework so it can manage several adaptation
engines, and supporting a better context representation.
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Abstract. Coming from the Artificial Intelligence (AI) and Semantic Web 
(SW) circles, ontologies are used mainly to represent domains. The Model 
Driven Engineering (MDE) field gave birth to Domain Specific Languages to 
represent a particular technical domain. Abstracting from their uses, we 
consider as many others researchers that ontologies and models are closer than 
their original fields could get to think. Furthermore, their building or 
development are facing the same problems. They are costly and need experts’ 
interviews in order to grasp specific knowledge and structure it. Likewise, 
ontologies and DSL can benefit from each other domains in reusing 
construction methodologies and even reusing knowledge modelled in another 
format. In this paper we first present the ontologies and DSL definition we use 
and some methodologies of development enabling the reuse of knowledge (as 
alignment, fusion). We then present how we propose to reuse the knowledge of 
a robotic ontology to develop robotic DSLs within the PROTEUS1 project in 
order to inject ready-made domain information to the DSL. 

1 Introduction 

Following (Caplat, 2008), (Guizzardi, 2007), and (Gasevic, 2005), we consider 
ontologies and models/metamodels as highly close. To use both technologies with the 
best interests and find the connection points, we compare them on several criteria. 
The key connection points to use ontologies and models are about the abstraction 
levels that they represent (and then the necessary abstraction level to bind them) and 
more the applications and tools that are available for both technologies (and then 
check which are reusable or interchangeable). 

Observing DSLs and ontologies, the first noteworthy remark is on the 
building/development methodology that is identical. An ontology as a DSL can be 
built/developed through inquiry, domain survey and modelling. Then we postulate 
that for the same objective, we should find the same concepts represented (with 
different formats) and then that we can find equivalent items from the DSL to the 
ontology. 

                                                           
1 The PROTEUS project is a three-years funded by the French National Research Agency 
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In order to check such hypothesis, we built in parallel, from the same use-cases and 
experts interviews robotic ontology and robotic DSL in the scope of the PROTEUS 
ANR Project. One of the DSLs is built from the PROTEUS ontology knowledge and 
the others from scratch. Here is only presented the development methodology of a 
Robotic Architecture DSL whose requirements are ontology based. 

In this paper, we first present a definition of ontology and DSL and their 
application. In section 3, we then present our analysis grid and in the last section, we 
present how we propose to reuse the knowledge of a robotic ontology to develop 
robotic DSLs within the PROTEUS project in order to inject ready-made domain 
information to the DSL. 

2 Ontology, DSL: some definitions 

We first present a short state of the Art on ontologies and DSLs within the view 
adopted in the PROTEUS project. In the first part, we describe ontology as a structure 
of the data and in the second part, we describe the DSL (Domain Specific Language 
as a language designed for, and intended to be useful for, a specific kind of concern. 

2.1 Ontology 

The ontology is one of the favourite tools of the Semantic Web (SW). The SW 
proposes different tools using normalized data or which helps structuring Web data 
and associating “semantics” to data. A syntactic layer is added to the data available on 
the Web and is claimed to be the semantic enrichment. It’s this layer which aims at 
enabling a mutual machine-machine or man-machine understanding.  

Ontology is defined by (Gruber, 1993) as an explicit specification of a 
conceptualization. In (Gruber and Lytras, 2004), Thomas Gruber refines its definition 
of this type of Knowledge Base (KB) taking into account the necessary cooperation of 
experts of the domain to come to an agreement on the semantics, the ontological 
commitment: “Every ontology is a treaty – a social agreement – among people with 
some common motive in sharing” (p. 5). The process of negotiation is oriented toward 
the objective of the conceptualization more than towards its structure. T. Gruber 
strongly emphasizes the idea of a viewpoint carried by the ontology: 

“The ontology is a representation artefact (a specification), distinct from the world 
it models, and that it is a designed artefact, built for a purpose. […] I would try to 
emphasize that we design ontologies.” (Gruber et Lytras, 2004, p. 1) 

(Lassila and McGuinness, 2001) identify more or less formal ontologies and 
(Uschold and Grüninger, 1996) organize them according to their uses:  

- For human communication (not ambiguous ontology but informal); 
- For computer systems interoperability (exchange format); 
- For system design (formal encoding and metadata). 
 
We can define a formal ontology as a modelling of knowledge of the World. The 

knowledge is organized on a network of concepts. An ontology, then, consist in a set 
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of definitions of basic categories (things, relations, properties) which enables to 
describe the things of the domain of interest, their properties and the relations the 
things maintain among each others. Then, hierarchical relations (isa relations) or 
horizontal relations among concepts or instances are rigorously defined. The concept 
properties can have values in finite and predefined intervals and the strictly defined 
axioms impose logical constraints enabling the control of logical inferences 
applicable on data (properties inheritance, transitive or inverse properties...). Via these 
inferences, new knowledge can be discovered. Despite this mechanism, domain 
experts and knowledge engineers should be involved in the ontology building. 

Ontologies are used in several domains. In SW, each element is tagged. The tag is 
understood by software systems which enables their interoperability (as for Web 
Services). These tags, normalized and understandable by Human and Software agents, 
give semantics to the Web. In Artificial Intelligence (AI), the ontologies can be used 
to mime human behaviours, as for example, human language with linguistic 
ontologies. In system design (Architecture, Engineering) the ontologies used are 
formal and propose a complex and rigid modelling of knowledge usable by software 
agents. 

The challenges on ontologies are improvements on knowledge sharing on the Web, 
systems interoperability, Man-Machine/Machine-machine communication and then 
step in ontology building (Buitelaar et al., 2005) and update (Cimiano and Völker, 
2005), use and reuse of ontologies (annotation (Handschuh and Staab, 2003), 
fusion/merging/alignment (Noy and Musen, 1999)) and ontology language 
development (RDF (Brickley et al., 2004), OWL (McGuinness et al., 2004), Topic 
Maps (Biezunski et al., 1999) etc.). 

T. Gruber considers that ontologies are always mixes of informal and formal parts. 
The ontologies that are said to be semi-formal are mainly informal and he finally 
concludes that “all practical ontologies are semiformal”. 

2.2 Domain Specific Language 

According to (Bezivin, 2004), initially, the objects technologies were supposed to 
be an integration technology as it was theoretically possible to take into account 
homogeneously, processes, rules, functions, etc., through objects. Nowadays, we 
return to less hegemonic vision where the different programming and management 
paradigms coexist and models are no more considered only as documentary or 
guiding means for a human activity of programming, but that they can be used to feed 
tools for software automatic production. The MDE is an integrated vision through 
DSL based on different paradigms. Indeed, Metamodels and Models are used to ease 
the whole software lifecycle management, i.e. the code generation but also, 
integration and interoperability, documentation generation and the automation of 
software applications deployment. The different levels of Models are represented by 
M0 - data level/instances, M1 - model level, M2 - metamodel level, M3 - meta-meta-
level. 

A Domain Specific Language is a formal language, and then a grammar, tailored to 
a specific application domain. It is then a metamodel at a notation level. Constructs 
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and abstractions of the domain are offered within the language increasing its 
expressiveness in comparison to General Purpose Languages (GPL). A DSL (or its 
graphical representation, the DSML - Domain Specific Modelling Language -) is a 
textual representation of a domain and enables the specification of a M1 - model in 
accordance with a defined metamodel (M2). The DSL enables to build and read a 
model. It adds symbols, represents the concepts of a metamodel and enables to handle 
them. 

A model is an abstraction of the reality (as a Data-Base) and therefore is only a 
specific viewpoint on the reality.  

The metamodel (MM) is a self defining model and also underlies model(s) 
(whether explicitly or not). The MM establishes the concepts which are useful in a 
specific Domain of interest and the rules of use together. I.e. it defines the relations 
among the concepts in a distorted view of the situation which is to say according to a 
certain viewpoint of the domain.  

A large collection of M2 standard metamodels exists to represent specific domains 
(as well as UML profiles). They are sometimes coupled with specific tools enabling 
to tackle specific principles or methodology. The OMG proposes the MOF meta-meta 
language on which generic meta-languages (UML) as well as specific meta-languages 
are built (OMG, 2006). MOF enables to develop Domain languages (DSL) and UML 
enables to develop Profiles (as MARTE for Modelling and Analysis of Real-Time and 
Embedded Systems). Other metamodel implementations are available for BPMN 
(Business Process Model and Notation) or Information Management Metamodel 
(IMM) systems (SysML) for example2. 

The semantics of the Models is not straightforwardly available. It is more inherent 
to the use of the model (in reading it, transforming it, edit it, modify it…). I.e. the 
semantics are in the interpretation of a model and the rules applied to transform it 
(any rules of decoding/recoding). The rules enable to enrich, filter, add, specialize 
(and even « retro-engineered”) information of the model to generate another model. A 
semi-automated way for interpreting models is available through transformation 
languages as QVT (Query, Views, Transformation, (QVT, 2008)) or ATL (ATL, 
2010) (Lemesle, 1998, and Bezivin, 2004). However, some constraint expression 
languages express semantics as they constrain the interpretation of the information. It 
is the case for the OMG standard OCL (Object Constraints Language) or through a 
verification tool as PRAXIS (Blanc, 2008). 

Even if DSL has for main requirement the proven consistency of the model, it 
appears that the same fundamental questions are posed in the two domains. What to 
model, how to model it, how to reconcile user needs and system requirements? But 
also, what does semantics means? What is granularity and what is viewpoint? How 
concepts evolve? Then we pose a number of criteria to compare ontologies and DSL. 
We present them on the next section. 

                                                           
2 The Catalog of OMG Modelling and Metadata Specifications is available at: 

http://www.omg.org/technology/documents/modeling_spec_catalog.htm 
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3 Ontology/DSL Comparison 

In order to fix the gain of using an ontology in comparison to building a DSL, we 
ordered our observation on a comparison grid between ontology and DSL. We present 
this grid here (Tab. 1) as well as other works on the ontology/DSL fusion or reuse.  
The main comparison criteria are the design domain, the building methodology, the 
application domain and the technologies and tools. Another comparison grid could be 
seen in the challenges described by (Walter et al., 2009) regarding 5 challenges, 
tooling, language interoperability, formal semantics, learning curve and domain 
analysis (p.1). 

3.1 Design Domain and Domain Design 

Ontology and DSLs are modelling means to represent a domain. They are used by 
designers of application in engineering field for the DSL and a more Artificial 
Intelligence and Knowledge Engineering fields for the Ontology. They are meeting 
the needs of structuring data and information for application use. 

3.2 Building Methodology 

According to (Tairas et al., 2009), the ontology building methodology has clearer 
guidelines than the DSL development methodology. 
Some useful guidelines for ontology have been published by ((Biebow and Szulman, 
1999), (Noy and Mc Guiness, 2001), (Gomez-Perez et al., 2003)). These building 
methodologies are usually supported by a tool (respectively, TERMINAE, PROTÉGÉ, 
ONTOWEB). Though, they are based on more informal principles of user 
needs/requirement gathering as described in RUP (Kruchten, 2001), (Passing, 2006)), 
or in Object Oriented Design Methodologies in general. 

The basic iterative steps to build/develop an ontology/DSL are usually:  
1) Need and requirement phase: Find what are the users need (from experts, 

domain documents, definition of the use of the model, explanation of the 
business processes of the users, and eventually, what’s reusable); 

2) Design phase: It’s a knowledge capture and structuring phase where the data 
collected is organized and structured to be useful within the model; 

3) Evaluation: the obtained model is evaluated to check whether it satisfies the 
specification requirements. 

For the DSL, the evaluation is based not only on the design result but also on the 
DSL support tools developed in an 4) Implementation phase, where the necessary 
tools for executable DSLs are developed (i.e. compiler or an application generator 
that translates DSL constructs in an existing language for example). 

This 4th phase is considered as differential in DSL vs. ontologies. The ontology 
support tools are not considered as part of the ontology design process. However, an 
ontology is not solely a KB; when it is used, it comes with a set of supporting tools as 
editors, reasoners, etc. 
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The building of ontology and developing of DSL both consider as highly useful to 
reuse existing works. Then in the requirement phase, reusable DSLs or ontologies are 
envisaged. Several integration methodologies have been developed in the both fields. 
(Pinto and Martins, 2000), describe several types of integration reusing an existing 
ontology to build a new one.  

1) Integration enables to easily collate large ontologies and to reconcile several 
knowledge sources in keeping their autonomy; 

2) Merging integration enables to create a unique and consistent ontology; 
3) Alignment/Mapping integration is done by creating links among ontologies 

which often have a complementary coverage of a broader domain. 
(Mernick et al, 2005) identify three patterns of design based on an existing 
language:  

• Piggyback domain-specific features on part of an existing language; 
• Specialisation by restricting an existing language; 
• Extension: by extending an existing language with new features. 
Here are two ways of considering the reuse of existing data but that can be equally 

used in any type of models. 

3.3 Application Domain 

As for their origin, ontology and DSL are models used for different application. We 
mainly recover ontologies in AI application (Classification, Knowledge Base, 
Dictionaries, and Natural Language Generation) or Web application (Automatic 
Annotation, Web-Services Orchestration). DSL are found in engineering fields as 
Systems modelling, Code Generation, Functional and non-functional verification, 
Simulations… 

As their applications are different, their design goals are different. They mainly 
differ on the automation, security and robustness level they should provide when 
encapsulated in the final application. 

3.4 Technologies and Tools 

A lot of applications are affiliated to DSL and ontologies but in two main different 
ways. We then consider some Specification tools or Meta-tools, used to design/build 
the (Meta-)models, vs. end-use tools. 
The specification tools are on the order of Design tool: Editor, Modeller, Ontology 
GUI, ontology editor, development framework, model composition tool, development 
graphical environment, inference engine or Consistency tools: Model checker, 
reasoning engines… The end-use tools are on the order of an orchestration engine 
based on an ontology, a Web GUI adapting to the concept of the user, the simulation 
engine playing a model… They are not specifically based on an ontology or a model 
and it is on these technologies that we can test the coverage and the semantics abilities 
of DSL and ontologies modelling the same domain for example. 
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Table 1. Ontology/DSL Comparison grid  

3.5 Rationale for the use of ontology in the design process of DSLs 

Several works have used ontologies for their semantic or structural 
complementarity with DSLs (with the limitations underlined in the previous section). 
Two main types of ontologies are referred; (1) the ontology as the explicit 
specification of a conceptualization (Morin et al., 2009), (Walter, 2009) and (2) the 
Ontology as the metaphysical study of the nature of being and existence (Kurtev, 
2007). (Kurtev, 2007) is designing a meta-language (OGML) based on the 

Comparison 

criteria 

Ontology DSL 

Design 

Domain 

Knowledge Engineering Engineering in general (Computer 
science engineering, System 
engineering, Electronics - for 
example: real time embedded 
systems, robotic systems, avionics 
systems-) 

Building / 

Development 

Methodology 

Ontology Building 
• User need and requirements 

capture 
• Reuse possibilities 
• Domain knowledge and 

structuring relations 
• Evaluation 

DSL development 
• User need and requirements 

capture 
• Reuse possibilities 
• Domain knowledge and 

structuring relations 
• Implementation of executable 

DSL tools (i.e. a compiler or 
translator, …) 

• Evaluation 

Application 

Domains 

Classification, Automatic 
Annotation, Web-Services 
Orchestration, Knowledge Base, 
Dictionaries, Natural Language 
Generation, … 

Systems modelling, Code 
Generation, Functional and non-
functional verification, 
Simulations, … 

Technologies 

and Tools 

Ontology GUI, inference engine, 
ontology editor, reasoning 
engines, … 

DSL development framework 
(AMMA, Eclipse GMT,…), 
Modeler, model composition tool, 
DSL development graphical 
environment (DSL Toolkit 
Microsoft, Papyrus,…), Code 
generator, Model checker, 
transformation languages 
(ATL,…),… 

Format 
RDF, OWL, Topic Maps,… MOF, EMF, EMOF, CMOF, 

SMOF,… 
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metaphysical principles of Ontology. It results in a high-level DSL close to the formal 
ontology metamodels. (Morin et al., 2009) and (Walter, 2009) are combining the 
ontologies with DSL at a meta-level to extend the coverage of a DSL (Walter and 
Ebert, 2009) or to integrate a variability viewpoint straightforwardly in a DSML 
(Morin et al., 2009). In the PROTEUS project, the ontology as (2) is firstly used to 
represent the domain, i.e. inferring information from a KB that complements with the 
Architecture DSL and then to develop the DSLs, i.e. as a representation of experts’ 
knowledge. 

4 On the use of ontology for the development of the PROTEUS 
DSLs 

4.1 The Proteus Project 

In (PROTEUS, 2009), the robotic market is described as existing and going on 
growing at a fast pace. It is then of utmost importance to help French industries have 
their share of it. The PROTEUS project (Plateforme pour la Robotique Organisant les 
Transferts Entre Utilisateurs et Scientifiques meaning Robotic Platform to facilitate 
transfer between Industries and academics) goal is to create a portal for the French 
robotic community. Such a portal, to be of use, will be constituted of many parts and 
one key point is a toolset, the technological part of the platform. 

The PROTEUS platform will enable to gain new skills in order to create or 
improve new products, new process or new services by providing easier way to 
collaborate inside a community. The software created through the project will include 
components and architecture description allowing its users to create complex systems 
where they should be able to assess and validate generic software technologies. 
Moreover, the link to real robots will allow these generic technologies to be inserted 
in hardware. 

The shared infrastructure provided will take into account the definition of the so 
called standardized robot architecture for some specific domain as well as generic 
capabilities through the use of formal representations associated with generator tools. 
The platform should enable the community to use real robots operated by end‐users in 
order to directly assess its achievements (e.g. cognition and control algorithms) onto 
real industrial robots. The software‐oriented considerations are taken into account 
through tools facilitating knowledge transfer, executable environments creation, and 
methodologies to make these enabling resources easily exploitable by diverse and 
numerous adopters of the community. The work to be done on this axis will be to 
provide a minimal formal language to support the description of scenarios and model 
integration facilities (model means here an external component, either stand alone 
components or library of components that that provides access point and capability to 
be externally sequenced) and open simulation architecture. 

The robotic fields considered are restricted to mainly aerial and terrestrial robotic 
as well as considerations on humanoid robotic. 
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4.2 The PROTEUS robotic Ontology 

The robotics ontology within PROTEUS is seen as a tool for modelling and analyzing 
robotic systems. Development, test and validation of embedded systems like mobile 
robots involve different knowledge domains. A robot’s physical structure and control 
software are designed in order to fulfil a given type of missions. Testing the robot’s 
functionalities needs a model of a robot as well as a model of its nominal 
environment. Ontologies can be used to do this modelling and validate it (PROTEUS, 
2009). 

The ontology has been built from the knowledge of robotics experts involved in 
different sub-domain of the field. Their expertise concerns the following domains: 
command, control, perception, navigation, localization, traffic control, optimization, 
mission planning to simulation. To share their knowledge and models it, the experts 
have been brought together in modelling meetings. Their exchanges were supported 
by the description of scenario representing the use of their field within the 
autonomous systems domain. 

From these modelling meetings the requirements of the Robotic ontology in 
PROTEUS were described. The Robotic ontology should be able to model the 
mechanical and electronic component models, as well as control architectures, 
consistency detection systems and simulators, database of components, control tasks 
or complete subsystems. The ontology should help modelling different versions of a 
given robot and follows its evolution. As it comes to model the robot’s behaviour, its 
ability to perform the missions for which it was designed; there is also a need for 
modelling its environment and its mission in urban area (PROTEUS, 2009). 

The resulting OWL DL ontology (in its primary version) consists of 205 concepts 
linked with 73 relations (OWL properties). A screenshot of this ontology is presented 
in Fig.1. The ontology is organized around a kernel ontology describing the main 
concepts of the field and extended with several sub-domain ontologies describing the 
following topics: Robotic Components, Information, Mission, Environment, and 
Simulation.  

This first version of the robotic ontology has been validated by the industrial users 
involved in the PROTEUS project but extensions’ refinement is planned for the 
follow-up of the PROTEUS project. 

In the PROTEUS project, the ontology is used not only to represent the domain 
and to develop the Robotic Architecture DSL as presented in this paper, but also to 
validate DSLs manually developed on Communication and Algorithm. 

And then it is also plan to use this ontology: 
1) To normalize the robotic domain;  
2) To support inference at run-time; 
3) To automatically transform Ontology in DSL. 
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Fig. 1. Screenshot of a part of the kernel ontology 

4.3 From PROTEUS ontology to PROTEUS DSLs 

4.3.1 Rationale of the ontology use in the Architecture DSL design process 

The methodology we followed in PROTEUS is described in Fig.2. We show the 
DSL design process that integrates the ontology. The design process consists in four 
steps: 

1. The requirements of the DSL are gathered from both following sources: in the 
one hand from the ontology and in the other hand from the state-of-the-art on 
DSL for robotics systems. 

2. Building the domain model of the DSL: The purpose of the domain model is 
to describe formally the concepts of the domain. The domain model will be 
described by the means of one or more class diagrams, as well as in the form 
of textual descriptions. 

3. Domain model verification: this step is intended to verify that the 
aforementioned domain model is covering all the requirements expressed in 
the first step. 

4. UML/textual representation: An alternative for the specification of a DSL is 
the use of UML, which is a widely known modelling language that has a lot of 
support tools (Giachetti et al., 2009). Another alternative is a textual 
representation of the DSL. 
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Fig. 2. Integrating the ontology in the design process of the DSL  

The ontology is involved in the steps 1 and 2 of the DSL design process. Indeed, 
the first requirement of the DSL is to correspond to domain concepts defined in the 
ontology. The other requirements, coming from the ontology, are derived from this 
one. From the ontology, we extract all the concepts that are specific to the domain. 
Those concepts are then filtered to retain only the relevant ones for the DSL. On the 
other hand, if some concepts are missing in the ontology, they are added to the 
domain model of the DSL. 

Table 2. Mapping the ontology to the DSL domain model 

Ontology (OWL) Domain model (UML class diagram) 
Concept Class 
subClassOf Generalization 
Property Association 
Property:IsA Inheritance 
Property:HasA Composition 
Cardinality Multiplicity 
The table 2 shows the transition from the ontology, written in OWL DL language, to 
the DSL domain model specified as a UML class diagram. OMG also proposes the 
ODM (Ontology Definition Metamodel) which defines a set of QVT mappings from 
UML to OWL (IBM et al., 2009). Only the automatic transformation from UML to 
OWL is implemented, the transformation from OWL to UML is not implemented yet. 

1. DSL Requirements 

2. Domain Model 

3. Domain Model Verification 

Ontology 

State of the art on 

DSLs for robotics systems 

4. UML/textual Representation 
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So we have not taken advantage of the ODM project to make the transition from 
OWL to UML. 

4.3.2 Architecture DSL development on Robotic ontology based requirements 

One of the objectives of the PROTEUS project is to provide domain specific 
languages (and related tools like editors, consistency checkers, etc ...) suitable to 
specify missions, environments and robot behaviours that have been specified by 
robotics experts involved in the project. The discussions under the PROTEUS project 
have lead to the decision of defining three DSLs: 

1. The "Architecture DSL" which will ease the definition of specific robotic 
architectures (reactive, deliberative, hybrid) and specific components that 
form those architectures (sensors, actuators, planners).  

2. The "Control & Communication DSL" that will control the robotic 
components and will ease the definition of communication mechanisms 
between components (sending/receiving of events and data). 

3. The "Algorithms DSL" that will ease the definition of algorithms which are 
to be used, triggered with the “Control & Communication DSL” for 
implementing behaviours in the different components of an architecture 
described with the “Architecture DSL”. 

To assist the development of the PROTEUS DSLs, we have used the ontology 
presented in section 3.2 to build the domain model of the DSLs. In this section, we 
only present the case of the "Architecture DSL".  
The main entry of the design process of PROTEUS DSLs is the ontology presented in 
section 3.2. As stated before, the ontology is organized around a kernel ontology and 
extended with several sub-domain ontologies describing the following topics: Robotic 
Components, Information, Mission, Environment and Simulation. 
From this ontology, relevant concepts related to robotic architecture are extracted. In 
table 3, we list some of those relevant concepts: 

Table 3. Subset of concepts extracted from the PROTEUS ontology 

Concept Ontology Source Concept Ontology Source 

Component kernel WeaponHardware components 

SoftwareComponent Kernel PowerHardware components 

HardwareComponent Kernel SensorHardware components 

Environment kernel EnvironmentParameterSensor components 

ActuatorHardware components ImageSensor components 

PhysicDevice components LocalizationSensor components 

MotorizationHardware components ObjectDetectionSensor components 

PrehensionHardware components ObjectTrackingSensor components 
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From the set of concepts that we have associated to the domain model of the 
"Architecture DSL", we have eliminated some concepts that are not relevant for the 
definition of the DSL. For example, the concept "Architecture" is too general and is 
useless for the specification of a robotic architecture. 
On the other hand, we have noticed that there are some missing concepts that have to 
be added to the domain model of the DSL. For example, concepts such as 
"ComputingHardware" and "StorageHardware" are not contained in the first version 
of this ontology and are compulsory for an Architecture DSL. 

5 Conclusion 

In this article, we have presented a methodology for reusing ontologies in the 
development process of domain specific languages. The methodology is used in the 
case of the PROTEUS project and has lead to the definition of the specification 
requirements for the Robotic Architecture DSL of PROTEUS. The algorithm DSL 
and the control/communication DSL will be developed from scratch but a comparison 
methodology will be set up for validation on the ontology. 

As an ontology is used more to classify things of the World and DSL are more 
used to build engineering artefacts, another work to be done is to handle an ontology 
guided approach to delimitate the borders of these three DSLs from the ontology. Is 
there tracks in the ontology model of the design viewpoint of the architect? Is it 
possible to delimitate the scope of the architecture viewpoint? Isn’t a DSL an 
engineering viewpoint on a larger domain in itself?  
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Abstract. We are designing and developing an autonomous mobile robot based 

on model-based engineering approach. In this paper, we will discuss features of 

reusability of existing robot modules through this development. 

Keywords:  Mobile Robot, RT-Middleware, SysML 

1 Introduction 

In Japan there are a growing number of disabled and elderly people who usually 

require personal transportation vehicles, such as car, bicycle and wheelchair. 

However, currently people have many difficulties or are unable to use these vehicles 

in complex environments such as shopping mall or amusement center.  

The NEDO’s “Intelligent RT Software Project” [1] was started to promote the Robot 

Technology (RT) as the basic technology to solve various problems in real life. One 

of the purposes of this NEDO project is the development of intelligent mobile robot 

for providing personal mobility. In the scope of this project, we aim to develop the 

versatile intelligent RT modules which are able to provide safe and convenient 

transportation service for disabled people to create barrier-free society. We also try to 

make the development of intelligent mobile robot easier by applying RT technology. 

The National Institute of Advanced Industrial Science and Technology (AIST) 

developed RT-Middleware to solve efficiency of the development of robot [2]. RT-

Middleware modularized robot functional component and defined its structure as RT-

Component. The project has been actively implementing RT-Component for efficient 

robot development. 

Some personal mobile robots that adopted RT-Components have been developed 

under the supervision of NEDO project [3][4]. However, these robots have not fully 

realized the model-based design process. Therefore the resources from these 

researches have some difficulties to reuse. 

If we achieved to an intelligent mobile robot with model-based design, the robot 

software components can be reused in other researches easily. 

mailto:m109056@shibaura-it.ac.jp
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2 Purpose 

This paper presents the design and development of our model-based intelligent 

mobile robot. We adopt model-based design to make robot models independent from 

specific hardware and software platform so that other developers will be able to refer 

our models and customize it to meet their robot specification. 

We make use of existing RT-Components which have been developed by the 

NEDO’s “Intelligent RT Software Project” in this research to reduce our development 

effort, as well as to extend the reusability of RT modules. We also employ the 

extended and common interfaces of RT-Component in mobile robots which were 

proposed in the working group of the “Intelligent RT Software Project” [5]. These 

interfaces cover standard specification of robot position information defined in OMG 

Robotic Localization Service (RLS) [6]. By using these standard RT-Components and 

interfaces, our proposed robot model will be more versatile. 

3 Mobile Robot 

We are developing autonomous mobile robot for transporting passenger to some 

designated positions. Our mobile robot will have to provide following functions as the 

minimum requirement for the mission. 

1. Autonomous navigation to target position. 

2. Ensuring safety of passenger and surrounding environment and people. 

3. Allowing control by passenger 

 

 Additional requirements are discussing on requirement diagrams. 

4 Models 

This paper shows the progress of our model-based design. We adopt the 

international standard modeling language SysML (OMG System Modeling 

Language)[7] in our design process.  The following diagrams in this paper are made of 

SysML. 

4.1 Context diagram 

Our mobile robot will operate in outdoor environment with pedestrians, bicycles, 

cars, and in different road conditions such as grass, steps, slopes, and so on. The robot 

must be able to avoid the obstacles and make correct path planning in different 

situations. Figure 1 shows our expecting objects, environment, and disturbance 

elements. Disturbance elements are the possible noise sources that may affect the 

robot’s sensing ability. 
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Fig. 1 Context diagram 

4.2 Requirement diagrams 

Our system requirement is described in the three following diagrams. Our models 

focus on the requirements of mobility, safety of operation and extending of RT 

modules reusability. 

Figure 2 shows the basic requirements, namely “Safety Locomotion” and 

“Extending RT-Module Reusability”. These are the top-level requirements. “Safety 

Locomotion” is composed of the requirements about locomotion, which are 

“Controlled by Passenger”, “Autonomous Locomotion” and “Enhanced Safety”.  

Figure 3 shows the requirements and functions of robot locomotion. Most of them 

are requirements for self locomotion. These requirements are represented from 

abstract levels to the concrete description with device or software block. 

Figure 4 shows the requirement of the safety of operation. We discussed the 

requirement for robot’s function to avoid dangerous situations, such as collision, 

malfunction and sudden break avoidance, or passenger and environment’s safety. Our 

mobile robot meets these requirements by the corresponding software modules and 

“Emergency Lamp” notification. 
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Fig. 2 Requirement diagram 

 

Fig. 3 Requirements of autonomous locomotion 
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Fig. 4 Requirements of safety  
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4.3 Structure 

We separated the required components of our mobile robot, and decided the 

interfaces between these components. By implementing the common interfaces that 

were proposed by the working group of the “Intelligent RT Software Project”, our 

mobile robot can easily adopt and apply existing RT-Components. 

In addition, our models separated device specific components from components for 

transporting functions. Thus our models are independent from specific device 

(especially wheeled platform), and are able to be reused easily. 

Figure 5 shows Internal Block Diagram (IBD) of our robot’s software structure. 

Figure 6 shows Block Definition Diagram (BDD) of our robot’s hardware structure. 

 

 

Fig. 5 Diagram of software structure 
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Fig. 6 Diagram of hardware structure 

5 Conclusion 

In this paper, we have presented the basic specification of our mobile robot. The 

proposed mobile robot design is fully based on model-based methodology to 

overcome the current difficulties of mobile robot development. Highlighted features 

of our approach are straightforward, platform independent and reusable model design, 

reduced development effort and customizable system configuration.  

Based on this basic specification, future work will focus on the detailed design for 

each module. Then we will select the suitable RT-Components from the RTC Center 

of “Intelligent RT Software Project”.  

Besides, we will further extend the reusability of the platform-dependent 

component, such as the “Mobile Control” by extracting the platform-independent 

parts. 
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Abstract. The paper describes a multi-domain model-driven embedded systems 

design approach. The main target for this approach is the domain of complex 

Industrial Automation and Control Systems (IACS). The special requirements 

of the industrial automation sector are taken into account by the novel 

approach, utilizing existing model-driven techniques. One of the specific target 

areas is the field of Service Robotics. This paper will describe the approach and 

introduce a use-case where robotics modules will be configured for customer 

tailored applications in the service robotics domain. This approach is currently 

being develop in the Framework Seven (FP7) Embedded System Design project 

MEDEIA funded by the European Commission.  

Keywords: Model-driven development, Automation Component, Service 

Robotics 

1 Introduction 

Today’s production processes will be performed more and more by automated 

machines and robots as the level of automation increases steadily. The main trend in 

industrial automation is the increasing need for customized and individualized plants. 

The production lines have to be constructed and adapted to new production processes 

quickly [1]. Such highly automated systems are mainly controlled by embedded hard- 

and software which are heterogeneous in nature, which lead to a tremendous increase 

in the design complexity. The software engineering costs will increase up to 80% of 

the overall system costs in the next 15 years (currently this ratio is about 55%) [2][3]. 

One of the main current design trends in automation and control systems is to put 

components, blocks made of hardware, software and intellectual property together 

(like algorithms and data structures)[4]. This in turn calls for common, language 

independent models for representing, saving and reusing such components. Neither 

the state-of-the-art or current trends in design and engineering in industrial 

automation [1][4] are capable of providing an applicable solution to the problem. 

The current situation for the design of automation and control systems is 

characterized by a huge variety of different approaches in both the specification and 
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implementation of plants and systems. Different end-users of an automation system 

may use any of the available specification methods, often dependent on their domain. 

The specification method is used to describe end users’ needs and wishes. End user 

specifications can take several forms, e.g. textual descriptions, Pipe and 

instrumentation diagrams, list of sensors and actuators, etc. 

When different end-users have to interact, difficulties arise. Every end-user will 

use its own description method of specifying its needs for the system. Currently, very 

little support exists in automated workflows or even in the interoperability of different 

software tools implementing the combined set of specifications, partly because the 

specifications themselves have been defined in different forms. The problems are not 

only limited to the front end of the development process. In any automation solution, 

the implementation of solutions reflecting end-user requirements is completed by 

programmers each of whom expresses the solution based upon different preferences 

according to the type of plant and various environment conditions. 

The paper is organized as follows: section 2 provides an overview of the MEDEIA 

approach. The MEDEIA Automation Component Meta-Model is explained in more 

detail in section 3. Section 4 will provide a use-case where the MEDEIA approach is 

applied to the area of service robotics. Finally, Section 5 will conclude the paper and 

talks about future work with MEDEIA. 

2 Model-Driven Design for Industrial Automation and Control 

Systems 

One of the main obstacles for efficient engineering of control systems is that the 

various design methodologies as well as the implementation technologies within 

plants are diverse according to different available solutions. This aspect makes the 

overall design of automation solutions very difficult, especially when different 

machines, robots and embedded devices have to work together. To overcome these 

limitations of high diversity, the MEDEIA approach aims at a meta-design 

architecture for the plant architecture with the following objectives: 

─ Formal framework for model-driven component-based development of 

embedded control: The main focus in the MEDEIA project lies on a formal 

framework for the design of heterogeneous embedded automation and control 

systems. The main components of the framework are Automation Components 

(AC), which in general are a combination of embedded hard- and software.  

─ Easily understandable modeling method applicable for domain experts: The 

focus is to user modeling methods from different domains (e.g. software 

engineering, control engineering in manufacturing, etc.) to define a solution that 

can be applied in the target areas. 

─ Integrated modeling of diagnostics: An integrated diagnostics concept will be 

developed that analyses faulty and out-of-norm behavior to effectively support 

the maintenance process of heterogeneous embedded hard- and software. 



Model Driven Embedded Systems Design Environment for the Service Robotics Domain  

3 

─ Integrated simulation and verification of systems design: An integrated 

simulation and verification concept will be developed that enables different 

configurations of the system architecture, including hardware-in-the-loop to be 

simulated. 

─ Automatic, embedded platform specific code-generation: Automation 

Components can be deployed to heterogeneous automation hardware through an 

automatic code-generation, based on the Automation Component Model and the 

System Model. 

2.1 General Approach 

As mentioned above, the MEDEIA design methodology is based on the so-called 

Automation Components (AC) which are, generally speaking, a combination of 

embedded hard- & software. The start of the engineering flow is the 

definition/specification of the system requirements.  

2.2 Automation Component Model 

The determining element within the MEDEIA approach is the Automation 

Component (AC) – a combination of embedded hard- and software. The overall plant 

or automation application is represented as an AC as well as each single device on the 

lowest level. The plant evolves by the aggregation of ACs to more complex ones, or it 

is split up into smaller ACs. The abstract meta-model provides the core of each AC.  

Fig. 1 depicts the architecture of an AC. 

Automation

Component (AC)

model

Model execution

à simulation

Domain

specific models

Embedded platform 

specific implementations

Verification

Internal

behavior

Comm.,

Local I/Os

Hierarchical
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Con-
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Fig. 1. Automation Component (AC) Model 

The MEDEIA AC Model is represented by use of the following characteristic 

elements: 
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─ Interface description: An AC is represented by its interface to the environment. 

MEDEIA enforces a detailed interface description, which includes not only data 

and action ports, but also timing behavior.  

─ Internal behavior: In addition to the interface description, MEDEIA also 

addresses the description of the internal behavior of the ACs, summarizing into 

a stateful description of the AC.  

Hierarchical aggregation: As the MEDEIA approach is based on a hierarchical 

structure of a plant, each AC will use ACs one level below.  

─ Communication / local I/Os: As soon as an AC is related to an embedded 

hardware device, additional information is obtained from the communication 

and the associated local I/Os.  

─ Domain specific models: Supporting different domain specific models, the 

system provides the design engineer the possibility to understand, design and 

engineer ACs in his familiar way. 

─ Embedded platform specific implementations: By the use of model 

transformations, an AC can be transferred to be executed on real hardware and 

also predefined components can be integrated into the general AC model. 

─ Model execution ↔ simulation: MEDEIA provides a transformation of the AC 

model into an executable simulation framework, providing a flexible basis for the 

integration into existing plant areas. 

─ Verification: In addition to simulation, the verification of components by 

themselves and their aggregation provides a second basis for increased 

engineering efficiency. Therefore, the transformation of the AC model into a 

formal description of a well known verification approach is included too.  

3 The MEDEIA Automation Component Meta-Model 

There are three elements within the MEDEIA architecture that describe the main idea 

behind the engineering approach, namely the Domain Specific View (DSV), the 

Platform Specific View (PSV) and the Automation Component Model (ACM). The 

DSV is the view from the end user and is determined largely by special requirements 

and specifications, often unique to the domain itself. The PSV is a developers 

perspective that varies insofar as there are often several different means to achieve a 

given functionality. The ACM is the common element that links these two elements. 

Any relevant information specified within a DSV will be transformed into the ACM 

and based on the information available in the ACM, at least the rough architecture of 

source code for a given platform will be generated automatically. 

3.1 Automation Component Implementation Model (ACIM) 

A central point in the MEDEIA Architecture is the Automation Component 

Implementation Model (ACIM). It consists of different models, which encapsulate all 

information, which needs to be specified to allow the implementation for the desired 

platform(s).  
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Fig. 2. Automation Component Implementation Model 

3.2 Automation Component Model (ACM) 

The Automation Component Model (ACM) contains implementation/platform 

independent aspects of ACs: behavior, diagnostics, interfaces, and the generic plant 

interface and plant behavior. 

3.3 Execution System Model (ESM) 

Within this model, the concrete hardware for an implementation is modeled. 

Information about processor, FPGA, memory, runtime environment, operating 

system, etc. is included in the System Model as well as loop points, which represent 

sensors and actuators. 

3.4 Mapping Model (MM) 

The gap between the platform independent ACM and the ESM is closed by the 

Mapping Model (MM). Generic plant interfaces and the concrete I/Os, provided by a 

specific system, are mapped as well as the functionalities provided by sub ACs. 

3.5 Model Transformation 

The transformation between the different models is the second key element within the 

MEDEIA approach. As can be seen in Fig. 2, there are different kind of models used 

in the MEDEIA framework. It is necessary to define appropriate transformations 

between the different models in order to supply the user with an automatic framework 

that provides exactly the information the user wants to specify/view/edit at the 

moment. 
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3.6 Integrated Diagnostics and Plant Specification 

As mentioned before, the ACM includes also diagnostics and plant information along 

with the behavioral part. Based on diagnostics concepts and information about the 

controlled plant, appropriate DSVs have to be used to include the proper information 

in the MEDEIA approach. 

3.7 Platform Oriented Merged Automation Component Model (POMAC) 

Into this additional model all information, necessary for the implementation on 

specific platforms, is merged from the ACIM. The amount of information shall be 

reduced, increasing the efficiency of the code generation. 

4 Service Robotics Domain 

The domain of Service Robotics is one of the latest developments in the robotics area. 

It is connected with the trend that automation happens more and more outside of 

factory automation. The robots being used in this domain are called Service Robots. 

Their fields for automation cover: 

 Laboratory automation (pharmaceutical, chemical, life science industries), 

 Medical industry, rehabilitation and human care, 

 Cleaning solutions, 

 Security and homeland security, and 

 Space and naval exploration. 

In most cases these Service Robotics solutions need sophisticated specialized robots, 

tailored to the specific task. In order to react on changing environments and to save 

humans from harm, service robots are equipped with additional sensor feedback (e.g. 

visual, tactile, distance sensors). 

The company Schunk [5] provides such special service robotic solutions based on 

very flexible mechatronical modules as shown in the following figures: 

 

Fig. 3.  PowerCube Module Overview – Standard Modules 
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4.1 Demonstrator Description 

The solution that is being provided is first being simulated in a virtual environment 

beforehand. This virtual environment is called Virtually Robot Configurator (Viro-

Con). This is a software tool for configuration of robot systems, using the Schunk 

mechatronics PowerCube modules (e.g. rotary, lineary), providing the following 

functionality: 

─ Virtual assembly of robots (and environment obstacles) with 3D display 

─ Calculation and graphical representation of working range for any configuration 

─ Animation via direct manipulation and choose of coordinates 

─ Calculation of inverse kinematics 

─ Collision check (self-collision, obstacles) 

─ Output results in format of text files, pictures (3D area, jpg, bmp, png), videos 

A part list is created by the tool, including actuators, connectors and user defined 

parameters. Tables are created by the tool for a trajectory (path points of tool center 

point positions and axes positions for animation), the structure describing parameters 

in DH-style (Denavit-Hartenberg) and tool center point positions in user defined 

coordination. A screenshot of the tool is depicted in Fig. 4. 

 

Fig. 4. Viro-Con Configuration 3D-Setup 

Once a configuration has been designed in the virtual space, it can be manufactured 

and send to the customer. The goal of the demonstration is to cover the whole 

workflow from the simulation environment to the generation of control code for the 

supervisory controller.  

The demonstrator for the use case will be a SCARA robot configuration, as 

depicted in Fig. 5. The SCARA robot consists out of different mechatronic 

PowerCube modules that are plugged together to form this service robot. The robot 
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will be controlled by one embedded controller from Siemens (i.e. Siemens MicroBox 

PC) which is equipped with the IEC 61499 control approach. Based on the motions 

defined in the Viro-Con tool, the control application for the real-life SCARA robot is 

generated and deployed to the Siemens controller. 

 

Fig. 5. Schunk Demonstrator Embedded Hardware Setup 

5 Conclusions and Future Work 

The goal of MEDEIA is provide a pioneering methodology and a prototypical design 

and engineering framework for embedded systems design, which will enable the 

industrial automation industry to reduce design time and the costs for the 

development of complex control systems. Different meta-models are defined that 

enable the user to define the system in its own Domain Specific View. From there it 

will be transformed in various other internal models, which will at the end be 

transformed in executable code. A formal framework for embedded systems design 

will be prototyped, capable of managing the development of component-based design 

of embedded industrial control systems. The framework will include methods for 

modeling, simulation and verification of different industrial systems. One of the 

industrial use-cases in the MEDEIA project is the development of control code for 

modular service robotics, which is presented in this paper. 
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