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Preface

This volume contains the papers presented at the 1st international workshop on
Model Based Engineering for Robotics (RoSym’10). held on October 5th, 2010
in Oslo, Norway in conjunction with the MODELS 2010 Conference.

The main objectives of this workshop are to organize common discussions
within Model-base Engineering (MBE) and Robotics experts on how MBE can
help robotics people and to share issues that robotics people have encountered
with MBE. Current engineering approaches for robotic systems have indeed been
demonstrated to be insufficient to bypass following constraints that robotics
embedded systems are currently facing:

— the problem space is huge: as uncertainty of the environment and the number
and type of resources available to the robot increase, the definition of the best
matching between current situation and correct robot resource exploitation
becomes overwhelming even for the most skilled robot engineer,

— the solution space is huge: in order to enhance robustness of complex robotic
systems, existing cognitive methods and techniques need to exploit robotic-
specific resources adequately. This means that the robotic system engineer
should master highly heterogeneous technologies in order to integrate them
in a consistent and effective way.

One ideal process for developing robotic software components is to enable
the design and implementation of highly complex and robust robotic systems to
involve in less effort as possible. Robotics systems are complex and embedded
ones; thanks to MBE that has already demonstrated its efficiency on complex
and embedded systems. We expect MBE to be a real promising solution for the
development process of robotics software and systems.

Potentially, new MBE techniques have to be developed for robotics which
can also be applicable to other domains. Since robotics is a very challenging
domain, we are confident that new techniques may possibly open new way for
Model Based Engineering.

September 2010 Laurent Rioux
Davide Brugali
Sebastien Gerard
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Abstract. Robotic systems are becoming increasingly complex, as their
tasks and working environments become ever richer. As a result, there is
an urgent need to provide robots with self-awareness and self-adaptation
capabilities that allow them to autonomously deal, among other things,
with software and hardware failures, changes in the environment, or in-
teractions with other systems. The use of high-level models that can be
adapted at run-time by the robot itself, promises to significantly boost
the applicability and performance of robotic systems. This paper reports
our experience in applying the DiVA model-driven adaptive approach to
a robotics case study, describing its benefits and limitations for robotics.

1 Introduction

With increased flexibility and ease of use, robots are at the dawn of a new era,
turning them into ubiquitous helpers to improve our quality of life by delivering
efficient services in our homes, offices, and public places. In order to achieve
such flexibility, the management of uncertainties will be a key component of
success [17]. Enabling robots to manage the different sources of uncertainty they
must deal with (e.g., changes in the environment, altered requirements, software
and hardware failures, etc.) requires providing them with self-awareness and self-
adaptation capabilities [2]. This implies enabling robots to build and dynamically
adapt models of themselves and their environments.

The Strategic Research Agenda (SRA) [17], delivered one year ago by the
European Robotics Technology Platform, defines adaptation as a change to the
process or the method of execution performed by the system itself, generally at

* This work has been partially funded by the EXPLORE project (Spanish MICINN,
TIN2009-08572,http://www.dsie.upct.es/proyectos/web_explore/) and the DiVA
project (EU FP7 STREP, contract 215412, http://www.ict-diva.eu/)



runtime. Adaptation may involve cognitive decision making and can take place
over both short and long timescales, affecting any level of the system. According
to the SRA, future robots, and later groups of robots, will adapt their hardware
and software to changes of the environment, work piece, and processes.

Among the mid- and long-term challenges related to adaptation (spanning
dimensions such as control, learning, modeling, etc.), the SRA highlights the need
for more automatic (or semi-automatic) use of models for different purposes,
including [...] adaptation and reconfiguration. In this vein, the Model-Driven
Engineering (MDE) paradigm promisses to bring great benefits to robotics [3].

In a context different from robotics, the DiVA Project?® proposes to lever-
age models both at design-time and runtime (models@runtime) to support the
dynamic adaptation of complex software systems. This paper reports our expe-
rience in applying the DiVA approach to a robotics case study, describing its
benefits and limitations for robotics.

The rest of the paper is organized as follows: Section 2 surveys related work;
Section 3 briefly introduces models@runtime in the context of the DiVA Project;
Section 4 describes our experience in applying the DiVA model-driven adaptive
approach to a robotics case study; Section 5 reports the lessons learned and open
challenges; and, Section 6 concludes and presents some future research lines.

2 Related Work

Since the late 90s, great research efforts have been made in self-adaptive and
autonomic software development. As a result, some interesting high-level refer-
ence models and frameworkshave been developed [14,9]. In addition, these efforts
have also resulted in modern execution platforms, such as Fractal [7], OSGi* or
SCA®, which provide APIs for software introspection and reconfiguration. These
platforms currently exhibit some limitations as, for instance, they do not allow
to preview the effects of a reconfiguration until it is actually executed, or to
simulate what-if scenarios in order to evaluate different possible configurations
a priori. Moreover, in the case of complex adaptive systems, a large number of
low level reconfiguration scripts (calls to the reconfiguration API) need to be
manually coded, making the process cumbersome and error prone.

Putting the focus on the robotics domain, some interesting results have been
achieved by the bio-inspired and cognitive system communities on low-level robot
behavior adaptations based, e.g., on genetic algorithm mutations [10]. However,
in order to deal with the increasingly growing complexity of real-word robotic
systems and working environments, higher-level adaptation mechanisms need to
be developed. In this vein, it becomes necessary to shift the focus from low-
level self-adaptive algorithms to higher-level self-adaptive software components
and component-based architectures [9]. Furthermore, the envisaged adoption of
MDE by the robotics community promises not only to help raising the level of

3 http://www.ict-diva.eu/
4 http://www.osgi.org
® http://www.eclipse.org/stp/sca/



abstraction at which robotics systems are designed, but also enable their self-
adaptation using models@runtime.

Although there exist plenty of robotics-specific software architeture styles
and frameworks, commonly supported by platform-specific (and hardly inter-
operable) middlewares [15], most of them currently lack of support for model-
driven robotics software development and self-adaptation [11]. Among the few
model-driven tool-chains for robotics software development, it is worth highlight-
ing Smartsoft [18] and V3CMM [6], both enabling component-based platform-
independent design modelling and platform-specific code generation by means of
model transformations. However, to date, neither Smartsoft nor V3CMM sup-
port runtime software adaptation (V3CMM only supports structural and be-
havioural variability modelling at desing-time). Conversely, the work presented
in [8], addresses robotics software runtime adaptation at an architectural level
although, having not adopted a MDE approach, it strongly dependes on the
Prism-MW?¢ specific middleware platform.

Finally, it is worth highlighting the very interesting initiative started by the
BRICS project”, funded by the 7/ EU Framework Program, where both MDE
and robotic system adaptation (to achieve robust autonomy) play a key role,
although these two goals do not appear explicitly related in the proposal.

3 An Overview of DiVA

The idea of “models@runtime” is to leverage models both at design-time and
runtime to monitor, dynamically adapt or evolve software systems. A dedicated
workshop® is held at MODELS since 2006.

In the context of the DiVA project [16,5], we leverage models@runtime to sup-
port the design and the execution of Dynamic Software Product Lines (DSPL) [12].
At design-time, we describe four facets of a DSPL, that are then leveraged at
runtime to drive the dynamic adaptation process:

— Variability: describes the different features of the system, and their natures
(options, alternatives, etc)

— Environment/Context: describes the relevant aspects of the context we
want to monitor (environment), as well as the current context.

— Reasoning: describes when the system should adapt. It consists in defin-
ing which features (from the variability model) to select, depending on the
current context, using the appropriate formalisms.

— Architecture: describes the configuration of the running system in terms
of architectural concepts.

The role of these models is to formalize how and when a system should adapt.
Thus, adaptation models capture the variability in the system and in its context,
and link changes in the latter with configurations of the former.

5 http://csse.usc.edu/ softarch/Prism/
" http://www.best-of-robotics.org/
8 http://www.comp.lancs.ac.uk/ bencomo/MRT/



It is important to note that designers do not specify the whole possible set
of architecture configurations in extension. Instead, each feature of the variabil-
ity model is refined into an aspect model that can be easily woven into a base
model (which contains components and bindings that should be present in all
configurations). This way, the system is designed in intention, and configurations
are explicitly built when needed. When a configuration is built (by aspect weav-
ing) it is first validated by checking some invariants. Then if the configuration
is valid, we rely on a model comparison (between the current configuration and
the newly produced one) to infer a safe migration path that is actually executed
to adapt the running system. This prevent designers from writing low-level and
error-prone reconfiguration scrips. Interested readers are referred to [16,5] for
more details about the use Aspect-Oriented Modeling in DiVA.

4 Applying Models@Runtime to a Robotics Case Study

4.1 Case Study Description

To illustrate how DiVA can address adaptation in robotics, we present a simple
case study developed using its current version. This experience will allow us to
later discuss the advantages and drawbacks of DiVA in the context of robotics.

The case study takes place in a room, containing a number of obstacles, where
two commercial robots (e-pucks ?) are initially placed at arbitrary positions. One
of them plays the role of Victim, while the other plays the role of Rescuer.

The goal of the Victim is to help the Rescuer find it as soon as possible.
To achieve this, it indicates its position using an acoustic or light signal. The
Victim uses the Bluetooth to communicate both changes in its signaling policy
and its current state, which can be: ¢) OK, ii) Wounded, or 1) KO. The Victim
is equipped with infrared (IR) proximity sensors to detect close objects, which
it can avoid adopting different strategies, namely:i) surround the obstacle, or
i1) change the movement direction. The first action has a greater impact on
energy consumption. Additionally, the Victim can adopt different strategies to
improve its visibility, namely: ¢) run randomly, i) walk randomly, or iii) stay
still, in descending order in terms of visibility and resource consumption.

The goal of the Rescuer is to find the Victim in the shortest time possible
with the available resources. It is equipped with three sensors for this purpose,
each one having a different precision and consumption: ) camera, i) micro-
phones (which can identify the direction of sound), and i) IR proximity sen-
sors. It can receive Bluetooth communications from the Victim, allowing it to
select the most appropriate sensor and strategy to find it. The Rescuer uses the
same obstacle avoidance strategies as the Victim. Both robots are equipped with
sensors to measure environmental light and noise, and their battery level.

Robots are expected to dynamically adapt their behaviour depending on their
context (i.e., their role, battery level, light conditions, etc.) in order to achieve
their goals using the most appropriate sensors and strategies.

9 http://www.e-puck.org



4.2 Modeling Dynamic Variability and Adaptation

As described in Section 3, DiVA considers four facets of a DSPL: Variability,
Environment/Context, Reasoning, and Architecture. Next, we present the adap-
tation models developed for the case study using the DiVA Eclipse-based editors.

Fig. 1 shows how the context of both robots is modeled. In both cases, three
boolean contex variables capture the changes in the environmental light and
noise, and in the robot battery. The Rescuer includes two additional context
variables: Signal Notification and Victim State, which capture the changes in
the Victim’s signaling policy and state. Note that, whenever the Rescuer has no
information about the Victim, these variables are set to the UNKNOWN value. For
the Victim, only one additional variable is modelled: State, which is set by one
of the Victim’s internal components according, e.g., to the time it has been lost.

In robotics, we can think of three sources of contextual information having
impact in robot software adaptation: i) the environment, i7) the robot internal
state and resources, and i) the perception of (and, eventually, the communica-
tion and collaboration with) other systems, either robotics or not.

Fig. 2 shows the variability model including the dependencies among the
variants and the adaptation constraints. The variants represent different possible
realizations of a variability dimension. For instance, there are three variants for
the Search Strategy dimension, one for each of the strategies the Rescuer can use
to find the Victim. As the caridinality of this dimension is set to [1..1], one (and
only one) of the strategies needs to be selected for each particular configuration
of the Rescuer. The Detailed strategy involves the highest search accuracy, and
thus requires the camera and microphones variants (see Dependency column).
The Available and Required expressions correspond to contexts in which the
variant respectively can or must be used. For example, given the importance of
energy consumption, it only makes sense to consider the Detailed strategy when
the battery of the robot is not low.

The next step is to model the properties relevant for the system, i.e., the func-
tional and extra-functional properties that need to be optimized. Each property
has a name and a direction, the later specifying if it should be minimized (0)
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Fig. 1. Context model for the robot playing the role of (a) Rescuer and (b) Victim.
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Fig. 2. Model of the variability and constraints for (a) Rescuer and (b) Victim.
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Fig. 3. Selected properties for (a) Rescuer and (b) Victim.

or maximized (1). As shown in Fig. 3, we have selected to minimize the power
consumption, and maximize the search and signaling accuracy.

Fig. 4 shows the impact of variants (rows) on each property (columns). When
a dimension has an impact on a certain property, for each of its variant a quali-
tative appreciation of this impact has to be specified. For example, the Signaling
dimension affects both the power consumption and the signaling accuracy. In
particular, the Light Generator has a low power consumption and signaling ac-
curacy, while the Acoustic Generator has a medium power consumption and
a high accuracy. This table is the base to make different trade-offs among the
variants and to select the optimal configuration for the actual context.

Finally, Fig. 5 shows the robot adaptation rules. These are Priority Rules,
i.e., they capture the relevant system properties depending on the context. For
example, the rule Battery is low specifies that when the battery is low, optimiz-
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Fig. 5. Robot adaptation rules for (a) Rescuer and (b) Victim.

ing power consumption has a high priority. Conversely, the Battery is ok rule
specifies that this is a secondary concern when the battery is OK.

It is worth noting that DiVA allows the simulation of the previous adapta-
tion models provided the user inputs a sequence of contexts (set of values for
the context variables). For each context, the simulator calculates and shows (it
must be said that not in a very friendly and readable way) the best possible
architecture configuration. This facility, has allowed us to perform multiple tests
on the models developed as part this work, although we decided not include
the screenshots showing the results for the sake of simplicity and for the space
limitations.

4.3 Runtime Architecture to Support Dynamic Variability

In order to support actual runtime adaptation in robotics, we can consider the
three-layer architecture developed as part of the DiVA project (see Fig. 6(a)).
In the platform-independent model-based layer, the components produce and
consume models, i.e., when the context model is updated, the Reasoner calcu-
lates a derived variability model accordingly. For all the features included in the
variability model, the Weaver composes the corresponding architectural model,
which then is checked and submitted to the proxy layer. The Proxy layer is re-
sponsible for bridging the gap between design-time models and the runtime. The



Causal Link component receives the architectural model and reconfigures the ar-
chitecture being executed by the robot. Additionally, the Monitoring component
observes runtime events generated at runtime by the probes in order to create
and update the context model. Finally, the Robotic layer basically contains all
the specific components of the robot (e.g. see Fig. 6(b)).

5 New Challenges for Runtime Adaptation in Robotics

Models@Runtime have demostrated promissing results for dynamically adapting
business system architectures. However, the experience reported in this paper
shows that several issues remain in this approach when applied to robotics. In
this section, we present a set of problems and challenges that we feel that are of
particular importance and that need to be addressed in the next stage of Model-
Driven Engineering for robotics. These challenges are the result of the lessons
learned from the experience described in Section 4.

— Cooperative adaptation engines. In DiVA, as in most adaptation approaches,
it is not easy to design several adaptation engines that need to cooperate. In
robotics, this is a fundamental requirement as robots often need to cooperate
with other systems (e.g., other robots). Thus, designers should be able to
model all adaptation engines and their relations.
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Fig. 6. (a) Runtime architecture to support dynamic variability in robotics. (b) Case
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— Multi-layer adaptation engines. Robots might belong to teams and, even-
tually, to other higher-order communities. Thus, they might need to adapt
themselves according to both individual and global adaptation strategies.
The current versions of DiVA can not manage layered engines in which the
adaptation can be driven both locally and a globally.

— Model the impact of context dimensions during simulation. To obtain a cor-
rect simulation, it would be interesting to model the impact of selecting
certain context dimensions. For instance, if the Bluetooth variant is deac-
tivated, it should not be possible to update the context (e.g., the state of
other robots). However, during the simulation step provided by DiVA, all the
context variables can be modified at any time, even if the variant controlling
the update of these variables is deactivated. This is a major drawback for
simulation. In fact, designers need to modify the context model themselves
to obtain a correct simulation at each adaptation step.

— Context sharing. DiVA allows the description of the relevant aspects to be
monitored (environment) as well as the current context. However, it does
not support context sharing, sometimes necessary in robotics (e.g., to allow
cooperating robots to share their local maps to obtain a global one).

— Context uncertainty management. If we add the possibility of sharing context
models, we also need to manage the confidence of the shared information.
Thus, it is important to know how safe or acurate is the information shared
by each robot, as it can (willingly or not) provide others with useless or even
dangerous information. Coupling context information with fuzzy logic could
simplify the design of context models [4].

— Using Model@runtime for implementing not only the system architecture but
also its components. Current approaches, such as DiVA, mainly model the
system architecture. As a consequence, the adaptation engine can only work
at that level (adding or removing components or bindings among them,
changing the value of component attributes, etc.) To support other kinds
of adaptation, it can be interesting to use models@runtime for component
implementation [13]. This would allow us to also adapt some parts of the
component implementation.

These six challenges are not exhaustive. They just aim to describe some of
the new requirements that need to be managed to make models@runtime usable
in the context of adaptive robotic systems.

6 Conclusions and Future Work

This paper reports our experience of using the DiVA model-driven approach
to design and implement an adaptive robotic system. Both the benefits and
the drawbacks of such an approach have been described. This paper makes the
following claims that, in our opinion, are worth being discussed at the workshop:

— As a community, we need to take the next step and adopt the perspective that
robotics systems are software intensive systems and their architecture has to



be properly modeled. As stated in [1] software architecture is, fundamentally,
a composition of architectural design decisions (dimensions in DiVA). These
design decisions (that fix some variation points) should be represented as
first-class entities in the software architecture and it should be possible to
add, remove and change architectural design decisions against limited effort.
For that, a “models@runtime” approach like DiVA provides a first answer.

— Models should be used both at design- and at run-time. There is a clear
benefit of modeling adaptive robotic systems, as the same models can be
used to simulate the robot behavior in a particular context, and then directly
executed by the robot at run-time.

— Robotic system are adaptive systems. They should be resource- and context-
aware. As systems with limited resources, robots cannot always be confident
in the context and cannot always collect the same level of information.

— Robotic systems should be designed to support cooperation with other sys-
tems. In that direction, model-driven engineering for robotics research should
share some knowledge and design principles with model-driven engineering
for Systems of Systems.

For the future, we plan to address some of the challenges identified in Sec-
tion 5. In particular, in the short- and mid-term, we will work in two main
directions: extending the DiVA framework so it can manage several adaptation
engines, and supporting a better context representation.
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Abstract. Coming from the Artificial Intelligence (Al) and 8mntic Web
(SW) circles, ontologies are used mainly to represtomains. The Model
Driven Engineering (MDE) field gave birth to Doma8pecific Languages to
represent a particular technical domain. Abstractfrom their uses, we
consider as many others researchers that ontolaggésnodels are closer than
their original fields could get to think. Furtherrap their building or
development are facing the same problems. Thegastly and need experts’
interviews in order to grasp specific knowledge atdicture it. Likewise,
ontologies and DSL can benefit from each other doesnan reusing
construction methodologies and even reusing knaydemhodelled in another
format. In this paper we first present the ontadsgand DSL definition we use
and some methodologies of development enablingetise of knowledge (as
alignment, fusion). We then present how we progoseuse the knowledge of
a robotic ontology to develop robotic DSLs withmetPROTEUS project in
order to inject ready-made domain information te DISL.

1 Introduction

Following (Caplat, 2008), (Guizzardi, 2007), andaé@vic, 2005), we consider
ontologies and models/metamodels as highly closause both technologies with the
best interests and find the connection points, w®mpare them on several criteria.
The key connection points to use ontologies andetsodre about the abstraction
levels that they represent (and then the necesdmtyaction level to bind them) and
more the applications and tools that are availdbteboth technologies (and then
check which are reusable or interchangeable).

Observing DSLs and ontologies, the first noteworthgmark is on the
building/development methodology that is identicah ontology as a DSL can be
built/developed through inquiry, domain survey anddelling. Then we postulate
that for the same objective, we should find the esazoncepts represented (with
different formats) and then that we can find eqigintiitems from the DSL to the
ontology.

1 The PROTEUS project is a three-years funded bythech National Research Agency
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In order to check such hypothesis, we built in palrgfrom the same use-cases and
experts interviews robotic ontology and robotic DiiLthe scope of the PROTEUS
ANR Project. One of the DSLs is built from the PREYJS ontology knowledge and
the others from scratch. Here is only presenteddéheslopment methodology of a
Robotic Architecture DSL whose requirements arelogly based.

In this paper, we first present a definition of @ogy and DSL and their
application. In section 3, we then present ouryaiglgrid and in the last section, we
present how we propose to reuse the knowledge robatic ontology to develop
robotic DSLs within the PROTEUS project in orderitgect ready-made domain
information to the DSL.

2 Ontology, DSL: some definitions

We first present a short state of the Art on org@e and DSLs within the view
adopted in the PROTEUS project. In the first pad,describe ontology as a structure
of the data and in the second part, we describ®8ie (Domain Specific Language
as a language designed for, and intended to baldeefa specific kind of concern.

2.1 Ontology

The ontology is one of the favourite tools of thenfantic Web (SW). The SW
proposes different tools using normalized data bickw helps structuring Web data
and associating “semantics” to data. A syntacifedas added to the data available on
the Web and is claimed to be the semantic enrichniies this layer which aims at
enabling a mutual machine-machine or man-machidenstanding.

Ontology is defined by (Gruber, 1993) as an explispecification of a
conceptualization. In (Gruber and Lytras, 2004)Mas Gruber refines its definition
of this type of Knowledge Base (KB) taking into auat the necessary cooperation of
experts of the domain to come to an agreement ensémantics, the ontological
commitment: Every ontology is a treaty — a social agreemenimong people with
some common motive in sharin@. 5). The process of negotiation is orienteddcd
the objective of the conceptualization more thawatals its structure. T. Gruber
strongly emphasizes the idea of a viewpoint cariethe ontology:

“The ontology is a representation artefact (a speation), distinct from the world
it models, and that it is a designed artefact, bfdgl a purpose. [...] | would try to
emphasize that we design ontolodi€¢&ruber et Lytras, 2004, p. 1)

(Lassila and McGuinness, 2001) identify more orsldésrmal ontologies and
(Uschold and Gininger, 1996) organize them acogrth their uses:

- For human communication (not ambiguous ontologgyiformal);

- For computer systems interoperability (excharggenét);

- For system design (formal encoding and metadata).

We can define a formal ontology as a modelling méwledge of the World. The
knowledge is organized on a network of conceptsoAimlogy, then, consist in a set
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of definitions of basic categories (things, relatip properties) which enables to
describe the things of the domain of interest,rtipeoperties and the relations the
things maintain among each others. Then, hieraathielations isa relations) or
horizontal relations among concepts or instancegigorously defined. The concept
properties can have values in finite and predefiméervals and the strictly defined
axioms impose logical constraints enabling the rmdnbf logical inferences
applicable on data (properties inheritance, tramsir inverse properties...). Via these
inferences, new knowledge can be discovered. Deghis mechanism, domain
experts and knowledge engineers should be invatvéte ontology building.

Ontologies are used in several domains. In SW, ebahent is tagged. The tag is
understood by software systems which enables ih&sroperability (as for Web
Services). These tags, normalized and understamtdglifuman and Software agents,
give semantics to the Web. In Artificial Intellige (Al), the ontologies can be used
to mime human behaviours, as for example, humamukge with linguistic
ontologies. In system design (Architecture, Engimgg the ontologies used are
formal and propose a complex and rigid modellinkméwledge usable by software
agents.

The challenges on ontologies are improvements owladge sharing on the Web,
systems interoperability, Man-Machine/Machine-maehcommunication and then
step in ontology building (Buitelaast al, 2005) and update (Cimiano and \tker,
2005), use and reuse of ontologies (annotation @si@ruh and Staab, 2003),
fusion/merging/alignment (Noy and Musen, 1999)) awdtology language
development (RDF (Brickleyt al, 2004), OWL (McGuinnesst al, 2004), Topic
Maps (Biezunsket al, 1999) etc.).

T. Gruber considers that ontologies are always snofénformal and formal parts.
The ontologies that are said to be semi-formal ragénly informal and he finally
concludes thatdll practical ontologies are semifornial

2.2 Domain Specific Language

According to (Bezivin, 2004), initially, the objectechnologies were supposed to
be an integration technology as it was theoreticplbssible to take into account
homogeneously, processes, rules, functions, dicough objects. Nowadays, we
return to less hegemonic vision where the diffeqgmtgramming and management
paradigms coexist and models are no more considenéd as documentary or
guiding means for a human activity of programmingy, that they can be used to feed
tools for software automatic production. The MDEais integrated vision through
DSL based on different paradigms. Indeed, Metansodet! Models are used to ease
the whole software lifecycle management, i.e. thmlec generation but also,
integration and interoperability, documentation eyation and the automation of
software applications deployment. The differentlevof Models are represented by
MO - data level/instances, M1 - model level, M2 etamodel level, M3 - meta-meta-
level.

A Domain Specific Language is a formal languagel, #wen a grammar, tailored to
a specific application domain. It is then a metaelat a notation level. Constructs
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and abstractions of the domain are offered withie fanguage increasing its
expressiveness in comparison to General Purposgubges (GPL). A DSL (or its
graphical representation, the DSML - Domain Spedifiodelling Language -) is a
textual representation of a domain and enablespleeification of a M1 - model in
accordance with a defined metamodel (M2). The D8abées to build and read a
model. It adds symbols, represents the concepdtamodel and enables to handle
them.

A model is an abstraction of the reality (as a EBéae) and therefore is only a
specific viewpoint on the reality.

The metamodel (MM) is a self defining model andoalsnderlies model(s)
(whether explicitly or not). The MM establishes ttencepts which are useful in a
specific Domain of interest and the rules of usgetber. |.e. it defines the relations
among the concepts in a distorted view of the 8dnawhich is to say according to a
certain viewpoint of the domain.

A large collection of M2 standard metamodels existeepresent specific domains
(as well as UML profiles). They are sometimes cedplith specific tools enabling
to tackle specific principles or methodology. Th®IG proposes the MOF meta-meta
language on which generic meta-languages (UML) elsag specific meta-languages
are built (OMG, 2006). MOF enables to develop Daonlanguages (DSL) and UML
enables to develop Profiles (as MARTE for Modellargd Analysis of Real-Time and
Embedded Systems). Other metamodel implementatwasavailable for BPMN
(Business Process Model and Notation) or InfornmatManagement Metamodel
(IMM) systems (SysML) for example

The semantics of the Models is not straightforwasediailable. It is more inherent
to the use of the model (in reading it, transfomnify edit it, modify it...). l.e. the
semantics are in the interpretation of a model #redrules applied to transform it
(any rules of decoding/recoding). The rules endblenrich, filter, add, specialize
(and even«retro-engineered”) information of thedel to generate another model. A
semi-automated way for interpreting models is adé through transformation
languages as QVT (Query, Views, Transformation, TQ¥008)) or ATL (ATL,
2010) (Lemesle, 1998, and Bezivin, 2004). Howewamme constraint expression
languages express semantics as they constrainttrerietation of the information. It
is the case for the OMG standard OCL (Object Cairdgs Language) or through a
verification tool as PRAXIS (Blanc, 2008).

Even if DSL has for main requirement the provenststency of the model, it
appears that the same fundamental questions aeel poghe two domains. What to
model, how to model it, how to reconcile user neadd system requirements? But
also, what does semantics means? What is graryusnd what is viewpoint? How
concepts evolve? Then we pose a humber of criter@mpare ontologies and DSL.
We present them on the next section.

2 The Catalog of OMG Modelling and Metadata Spediiices is available at:
http://www.omg.org/technology/documents/modelingcsatalog.htm
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3 Ontology/DSL Comparison

In order to fix the gain of using an ontology inngearison to building a DSL, we
ordered our observation on a comparison grid betvee¢ology and DSL. We present
this grid here (Tab. 1) as well as other workstandntology/DSL fusion or reuse.
The main comparison criteria are the design donthim,building methodology, the
application domain and the technologies and te&i®ther comparison grid could be
seen in the challenges described by (Wadteral, 2009) regarding 5 challenges,
tooling, language interoperability, formal semastidearning curve and domain
analysis (p.1).

3.1 Design Domain and Domain Design

Ontology and DSLs are modelling means to repreaetibmain. They are used by
designers of application in engineering field ftee tDSL and a more Artificial
Intelligence and Knowledge Engineering fields fbe tOntology. They are meeting
the needs of structuring data and information fipligation use.

3.2 Building Methodology

According to (Tairaset al., 2009), the ontology building methodology has @ear
guidelines than the DSL development methodology.

Some useful guidelines for ontology have been phbli by ((Biebow and Szulman,
1999), (Noy and Mc Guiness, 2001), (Gomez-Paeal, 2003)). These building
methodologies are usually supported by a tool @etsgely, TERMINAE, PROTEE,
ONTOWEB). Though, they are based on more informahgiples of user
needs/requirement gathering as described in RUBcfien, 2001), (Passing, 2006)),
or in Object Oriented Design Methodologies in gaher

The basic iterative steps to build/develop an aglDSL are usually:

1) Need and requirement phase: Find what are the usmd (from experts,
domain documents, definition of the use of the nhodgplanation of the
business processes of the users, and eventualy;swhusable);

2) Design phase: It's a knowledge capture and strimggyshase where the data
collected is organized and structured to be useithin the model;

3) Evaluation: the obtained model is evaluated to khekether it satisfies the
specification requirements.

For the DSL, the evaluation is based not only andbsign result but also on the
DSL support tools developed in an 4) Implementatitvase, where the necessary
tools for executable DSLs are developed (i.e. ctenmir an application generator
that translates DSL constructs in an existing laiggufor example).

This 4" phase is considered as differential in DSL vsolmfies. The ontology
support tools are not considered as part of thelogy design process. However, an
ontology is not solely a KB; when it is used, inoes with a set of supporting tools as
editors, reasoners, etc.



6 Gaélle Lortal, Saadia Dhouib

The building of ontology and developing of DSL batimsider as highly useful to
reuse existing works. Then in the requirement phasesable DSLs or ontologies are
envisaged. Several integration methodologies haea leveloped in the both fields.
(Pinto and Martins, 2000), describe several typemtegration reusing an existing
ontology to build a new one.

1) Integration enables to easily collate large onti@e@nd to reconcile several
knowledge sources in keeping their autonomy;

2) Merging integration enables to create a uniquecamgistent ontology;

3) Alignment/Mapping integration is done by creatifmgké among ontologies
which often have a complementary coverage of adeodomain.

(Mernick et al 2005) identify three patterns of design basedaanexisting

language:

. Piggyback domain-specific features on part oéxgisting language;

. Specialisation by restricting an existing langelag

. Extension: by extending an existing language wétv features.

Here are two ways of considering the reuse of imgslata but that can be equally
used in any type of models.

3.3 Application Domain

As for their origin, ontology and DSL are modeleddor different application. We
mainly recover ontologies in Al application (Cld&sition, Knowledge Base,
Dictionaries, and Natural Language Generation) oebWapplication (Automatic
Annotation, Web-Services Orchestration). DSL arentb in engineering fields as
Systems modelling, Code Generation, Functional aod-functional verification,
Simulations...

As their applications are different, their desigmalg are different. They mainly
differ on the automation, security and robustnesell they should provide when
encapsulated in the final application.

3.4 Technologies and Tools

A lot of applications are affiliated to DSL and olagies but in two main different
ways. We then consider some Specification toolsleta-tools, used to design/build
the (Meta-)models, vs. end-use tools.

The specification tools are on the order of Degiyi: Editor, Modeller, Ontology
GUI, ontology editor, development framework, modeinposition tool, development
graphical environment, inference engine or Conscstetools: Model checker,
reasoning engines... The end-use tools are on ther @fdan orchestration engine
based on an ontology, a Web GUI adapting to theeginof the user, the simulation
engine playing a model... They are not specificaligdrd on an ontology or a model
and it is on these technologies that we can testdlrerage and the semantics abilities
of DSL and ontologies modelling the same domairef@mple.
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Table 1. Ontology/DSL Comparison grid

Comparison Ontology DSL
criteria
Knowledge Engineering Engineering in general (Computer
science engineering, System
Design engineering, Electronics - for
Domain example: real time embedded
systems, robotic systems, avionics
systems-)
Ontology Building DSL development
* User need and requirementg «  User need and requirements
capture capture
L * Reuse possibilities * Reuse possibilities
Building / . .
» Domain knowledge and e Domain knowledge and
Development . . . .
Methodology structuring relations structuring re_latlons
» Evaluation ¢ Implementation of executable

DSL tools (i.e. a compiler or
translator, ...)
»  Evaluation

Classification, Automatic Systems  modelling, Code
Aoplication Annotation, Web-Services Generation, Functional and nop-
ppica Orchestration, Knowledge Base,| functional verification,
Domains . . . .

Dictionaries, Natural Language | Simulations, ...

Generation, ...

Ontology GUI, inference engine,DSL  development framework
ontology editor, reasoning (AMMA,  Eclipse GMT,...),
engines, ... Modeler,model composition tool
DSL development graphica
environment (DSL  Toolkit

Technologies

and Tools Microsoft, Papyrus,...), Codg
generator, Model checker,
transformation languages
(ATL,...),...

Format RDF, OWL, Topic Maps,... MOF, EMF, EMOF, CMOF,
SMOF,...

3.5 Rationale for the use of ontology in the design piess of DSLs

Several works have used ontologies for their seimardr structural
complementarity with DSLs (with the limitations wertined in the previous section).
Two main types of ontologies are referred; (1) thetology as theexplicit
specification of a conceptualizatiqMorin et al, 2009), (Walter, 2009) and (2) the
Ontology as the metaphysical study of the naturdeihg and existence (Kurtev,
2007). (Kurtev, 2007) is designing a meta-langug@:sML) based on the
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metaphysical principles of Ontology. It resultsimigh-level DSL close to the formal
ontology metamodels. (Moriet al, 2009) and (Walter, 2009) are combining the
ontologies with DSL at a meta-level to extend tlogerage of a DSL (Walter and
Ebert, 2009) or to integrate a variability viewpostraightforwardly in a DSML
(Morin et al, 2009). In the PROTEUS project, the ontology gsigZirstly used to
represent the domain, i.e. inferring informatioonfra KB that complements with the
Architecture DSL and then to develop the DSLs, ag.a representation of experts’
knowledge.

4  On the use of ontology for the development of theRROTEUS
DSLs

4.1  The Proteus Project

In (PROTEUS, 2009), the robotic market is descrilbbsdexisting and going on
growing at a fast pace. It is then of utmost imaoce to help French industries have
their share of it. The PROTEUS project (Platefopoer la Robotique Organisant les
Transferts Entre Utilisateurs et Scientifiques niegrRobotic Platform to facilitate
transfer between Industries and academics) goa seate a portal for the French
robotic community. Such a portal, to be of use| bé constituted of many parts and
one key point is a toolset, the technological pathe platform.

The PROTEUS platform will enable to gain new skills order to create or
improve new products, new process or new servigeprbviding easier way to
collaborate inside a community. The software crbdteough the project will include
components and architecture description allowiagigiers to create complex systems
where they should be able to assess and validaterigesoftware technologies.
Moreover, the link to real robots will allow thegeneric technologies to be inserted
in hardware.

The shared infrastructure provided will take intea@unt the definition of the so
called standardized robot architecture for someciipedomain as well as generic
capabilities through the use of formal representatiassociated with generator tools.
The platform should enable the community to usénmzots operated by engsers in
order to directly assess its achievements (e.gnittog and control algorithms) onto
real industrial robots. The softwaogiented considerations are taken into account
through tools facilitating knowledge transfer, ex@ble environments creation, and
methodologies to make these enabling resource$y eagloitable by diverse and
numerous adopters of the community. The work talbee on this axis will be to
provide a minimal formal language to support thecdiption of scenarios and model
integration facilities (model means here an exteommponent, either stand alone
components or library of components that that ptesiaccess point and capability to
be externally sequenced) and open simulation aatiite.

The robotic fields considered are restricted tontyaaerial and terrestrial robotic
as well as considerations on humanoid robotic.
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4.2 The PROTEUS robotic Ontology

The robotics ontology within PROTEUS is seen aschfor modelling and analyzing

robotic systems. Development, test and validatibembedded systems like mobile
robots involve different knowledge domains. A rdbgthysical structure and control
software are designed in order to fulfil a givepdyof missions. Testing the robot's
functionalities needs a model of a robot as well saasmodel of its nominal

environment. Ontologies can be used to do this tfindend validate it (PROTEUS,

20009).

The ontology has been built from the knowledge aifatics experts involved in
different sub-domain of the field. Their expertisencerns the following domains:
command, control, perception, navigation, localaat traffic control, optimization,
mission planning to simulation. To share their kienlge and models it, the experts
have been brought togethernmodelling meetingsTheir exchanges were supported
by the description of scenario representing the abetheir field within the
autonomous systems domain.

From these modelling meetings the requirementshef Robotic ontology in
PROTEUS were described. The Robotic ontology shdddable to model the
mechanical and electronic component models, as w@agllcontrol architectures,
consistency detection systems and simulators, ds¢abf components, control tasks
or complete subsystems. The ontology should helgetting different versions of a
given robot and follows its evolution. As it contesmodel the robot’s behaviour, its
ability to perform the missions for which it wasstgned; there is also a need for
modelling its environment and its mission in urlzaea (PROTEUS, 2009).

The resulting OWL DL ontology (in its primary veosi) consists of 205 concepts
linked with 73 relations (OWL properties). A screbat of this ontology is presented
in Fig.1. The ontology is organized around a kemmology describing the main
concepts of the field and extended with severaldaain ontologies describing the
following topics: Robotic Components, InformatioMission, Environment, and
Simulation.

This first version of the robotic ontology has bemfidated by the industrial users
involved in the PROTEUS project but extensions’inefent is planned for the
follow-up of the PROTEUS project.

In the PROTEUS project, the ontology is used ndy em represent the domain
and to develop the Robotic Architecture DSL as gmé=d in this paper, but also to
validate DSLs manually developed on Communicatiwch Algorithm.

And then it is also plan to use this ontology:

1) To normalize the robotic domain;

2) To support inference at run-time;

3) To automatically transform Ontology in DSL.
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impactsHardwareComponent!

SoftwareToSoftwarelnteraction SoftwareToHardwarelnteraction

Fig. 1. Screenshot of a part of the kernel ontology

4.3 From PROTEUS ontology to PROTEUS DSLs

4.3.1 Rationale of the ontology use in the Architecture BL design process

The methodology we followed in PROTEUS is descriledrig.2. We show the
DSL design process that integrates the ontologe. ddsign process consists in four
steps:

1. The requirements of the DSL are gathered from Baltbwing sources: in the

one hand from the ontology and in the other hanthfthe state-of-the-art on
DSL for robotics systems.

2. Building the domain model of the DSL: The purpo$eh@ domain model is
to describe formally the concepts of the domaine Tomain model will be
described by the means of one or more class diagrasnwell as in the form
of textual descriptions.

3. Domain model verification: this step is intended terify that the
aforementioned domain model is covering all theun@mnents expressed in
the first step.

4. UML/textual representation: An alternative for theecification of a DSL is
the use of UML, which is a widely known modellirmpguage that has a lot of
support tools (Giachettet al, 2009). Another alternative is a textual
representation of the DSL.
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State of the art on
DSLs for robotics systems

- 1. DSL Requirements

2. Domain Mode

A 4

B 3. Domain Model Verification

4. UML/textual Representation

Fig. 2. Integrating the ontology in the design procesthefDSL

The ontology is involved in the steps 1 and 2 &f BSL design process. Indeed,
the first requirement of the DSL is to correspoaddbmain concepts defined in the
ontology. The other requirements, coming from tméology, are derived from this
one. From the ontology, we extract all the concéipas are specific to the domain.
Those concepts are then filtered to retain onlyrétevant ones for the DSL. On the
other hand, if some concepts are missing in thelogy, they are added to the
domain model of the DSL.

Table 2. Mapping the ontology to the DSL domain model

Ontology (OWL) Domain model (UML class diagram)
Concept Class

subClassOf Generalization

Property Association

Property:IsA Inheritance

Property:HasA Composition

Cardinality Multiplicity

The table 2 shows the transition from the ontolagytten in OWL DL language, to
the DSL domain model specified as a UML class @&iagrOMG also proposes the
ODM (Ontology Definition Metamodel) which definesat of QVT mappings from
UML to OWL (IBM et al, 2009). Only the automatic transformation from UkaL
OWL is implemented, the transformation from OWLUMIL is not implemented yet.



12 Gaélle Lortal, Saadia Dhouib

So we have not taken advantage of the ODM profestake the transition from
OWL to UML.

4.3.2 Architecture DSL development on Robotic ontology bsed requirements

One of the objectives of the PROTEUS project isptovide domain specific
languages (and related tools like editors, consistecheckers, etc ...) suitable to
specify missions, environments and robot behavidhat have been specified by
robotics experts involved in the project. The dsstons under the PROTEUS project

have lead to the decision of defining three DSLs:

1. The "Architecture DSL" which will ease the defioiti of specific robotic
architectures (reactive, deliberative, hybrid) apdcific components that
form those architectures (sensors, actuators, ptahn

2. The "Control & Communication DSL" that will contrtiie robotic
components and will ease the definition of commaitiicy mechanisms
between components (sending/receiving of eventglata).

3. The "Algorithms DSL" that will ease the definitiaf algorithms which are
to be used, triggered with the “Control & Commutiiga DSL” for
implementing behaviours in the different componeitan architecture
described with the “Architecture DSL".

To assist the development of the PROTEUS DSLs,ave lused the ontology
presented in section 3.2 to build the domain modfléhe DSLs. In this section, we
only present the case of the "Architecture DSL".
The main entry of the design process of PROTEUS<DiSIthe ontology presented in
section 3.2. As stated before, the ontology is wimgad around a kernel ontology and
extended with several sub-domain ontologies desgrithe following topics: Robotic
Components, Information, Mission, Environment aimd@ation.
From this ontology, relevant concepts related tmtic architecture are extracted. In
table 3, we list some of those relevant concepts:

Table 3. Subset of concepts extracted from the PROTEUS agyol

Concept Ontology Source Concept Ontology Soutce
Component kernel WeaponHardware components
SoftwareComponent Kernel PowerHardware components
HardwareComponent Kernel SensorHardware components
Environment kernel EnvironmentParameterSerjsor coemts
ActuatorHardware components ImageSensor components
PhysicDevice components LocalizationSensor compsnen
MotorizationHardware| components ObjectDetection8ens components
PrehensionHardware components ObjectTrackingSensor | components
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From the set of concepts that we have associatdg: tdomain model of the
"Architecture DSL", we have eliminated some consdpat are not relevant for the
definition of the DSL. For example, the conceptchitecture” is too general and is
useless for the specification of a robotic architex:

On the other hand, we have noticed that thereaare snissing concepts that have to
be added to the domain model of the DSL. For exangancepts such as
"ComputingHardware" and "StorageHardware" are pnotained in the first version
of this ontology and are compulsory for an Architee DSL.

5 Conclusion

In this article, we have presented a methodologyréusing ontologies in the
development process of domain specific languagks. fiiethodology is used in the
case of the PROTEUS project and has lead to thmitief of the specification
requirements for the Robotic Architecture DSL of BPREUS. The algorithm DSL
and the control/communication DSL will be develofedn scratch but a comparison
methodology will be set up for validation on theaagy.

As an ontology is used more to classify thingstef World and DSL are more
used to build engineering artefacts, another worke done is to handle an ontology
guided approach to delimitate the borders of thbssme DSLs from the ontology. Is
there tracks in the ontology model of the desigemyioint of the architect? Is it
possible to delimitate the scope of the architectuiewpoint? Isn't a DSL an
engineering viewpoint on a larger domain in itself?
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Abstract. We are designing and developing an autonomous mobile robot based
on model-based engineering approach. In this paper, we will discuss features of
reusability of existing robot modules through this development.

Keywords: Mobile Robot, RT-Middleware, SysML

1 Introduction

In Japan there are a growing number of disabled and elderly people who usually
require personal transportation vehicles, such as car, bicycle and wheelchair.
However, currently people have many difficulties or are unable to use these vehicles
in complex environments such as shopping mall or amusement center.

The NEDO’s “Intelligent RT Software Project” ™ was started to promote the Robot
Technology (RT) as the basic technology to solve various problems in real life. One
of the purposes of this NEDO project is the development of intelligent mobile robot
for providing personal mobility. In the scope of this project, we aim to develop the
versatile intelligent RT modules which are able to provide safe and convenient
transportation service for disabled people to create barrier-free society. We also try to
make the development of intelligent mobile robot easier by applying RT technology.

The National Institute of Advanced Industrial Science and Technology (AIST)
developed RT-Middleware to solve efficiency of the development of robot [2]. RT-
Middleware modularized robot functional component and defined its structure as RT-
Component. The project has been actively implementing RT-Component for efficient
robot development.

Some personal mobile robots that adopted RT-Components have been developed
under the supervision of NEDO project . However, these robots have not fully
realized the model-based design process. Therefore the resources from these
researches have some difficulties to reuse.

If we achieved to an intelligent mobile robot with model-based design, the robot
software components can be reused in other researches easily.
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2 Model-based design of Intelligent Mobile Robot

2 Purpose

This paper presents the design and development of our model-based intelligent
mobile robot. We adopt model-based design to make robot models independent from
specific hardware and software platform so that other developers will be able to refer
our models and customize it to meet their robot specification.

We make use of existing RT-Components which have been developed by the
NEDQO’s “Intelligent RT Software Project” in this research to reduce our development
effort, as well as to extend the reusability of RT modules. We also employ the
extended and common interfaces of RT-Component in mobile robots which were
proposed in the working group of the “Intelligent RT Software Project” ! These
interfaces cover standard specification of robot position information defined in OMG
Robotic Localization Service (RLS) ®l. By using these standard RT-Components and
interfaces, our proposed robot model will be more versatile.

3 Mobile Robot

We are developing autonomous mobile robot for transporting passenger to some
designated positions. Our mobile robot will have to provide following functions as the
minimum requirement for the mission.

1. Autonomous navigation to target position.
2. Ensuring safety of passenger and surrounding environment and people.
3. Allowing control by passenger

Additional requirements are discussing on requirement diagrams.

4 Models

This paper shows the progress of our model-based design. We adopt the
international standard modeling language SysML (OMG System Modeling
Language)” in our design process. The following diagrams in this paper are made of
SysML.

4.1  Context diagram

Our mobile robot will operate in outdoor environment with pedestrians, bicycles,
cars, and in different road conditions such as grass, steps, slopes, and so on. The robot
must be able to avoid the obstacles and make correct path planning in different
situations. Figure 1 shows our expecting objects, environment, and disturbance
elements. Disturbance elements are the possible noise sources that may affect the
robot’s sensing ability.
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Fig. 1 Context diagram

4.2  Requirement diagrams

Our system requirement is described in the three following diagrams. Our models
focus on the requirements of mobility, safety of operation and extending of RT
modules reusability.

Figure 2 shows the basic requirements, namely “Safety Locomotion” and
“Extending RT-Module Reusability”. These are the top-level requirements. “Safety
Locomotion” is composed of the requirements about locomotion, which are
“Controlled by Passenger”, “Autonomous Locomotion” and “Enhanced Safety”.

Figure 3 shows the requirements and functions of robot locomotion. Most of them
are requirements for self locomotion. These requirements are represented from
abstract levels to the concrete description with device or software block.

Figure 4 shows the requirement of the safety of operation. We discussed the
requirement for robot’s function to avoid dangerous situations, such as collision,
malfunction and sudden break avoidance, or passenger and environment’s safety. Our
mobile robot meets these requirements by the corresponding software modules and
“Emergency Lamp” notification.
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4.3  Structure

We separated the required components of our mobile robot, and decided the
interfaces between these components. By implementing the common interfaces that
were proposed by the working group of the “Intelligent RT Software Project”, our
mobile robot can easily adopt and apply existing RT-Components.

In addition, our models separated device specific

components from components for

transporting functions. Thus our models are independent from specific device
(especially wheeled platform), and are able to be reused easily.

Figure 5 shows Internal Block Diagram (IBD)

of our robot’s software structure.

Figure 6 shows Block Definition Diagram (BDD) of our robot’s hardware structure.
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5 Conclusion

In this paper, we have presented the basic specification of our mobile robot. The
proposed mobile robot design is fully based on model-based methodology to
overcome the current difficulties of mobile robot development. Highlighted features
of our approach are straightforward, platform independent and reusable model design,
reduced development effort and customizable system configuration.

Based on this basic specification, future work will focus on the detailed design for
each module. Then we will select the suitable RT-Components from the RTC Center
of “Intelligent RT Software Project”.

Besides, we will further extend the reusability of the platform-dependent
component, such as the “Mobile Control” by extracting the platform-independent
parts.
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Abstract. The paper describes a multi-domain model-driven embedded systems
design approach. The main target for this approach is the domain of complex
Industrial Automation and Control Systems (IACS). The special requirements
of the industrial automation sector are taken into account by the novel
approach, utilizing existing model-driven techniques. One of the specific target
areas is the field of Service Robotics. This paper will describe the approach and
introduce a use-case where robotics modules will be configured for customer
tailored applications in the service robotics domain. This approach is currently
being develop in the Framework Seven (FP7) Embedded System Design project
MEDEIA funded by the European Commission.

Keywords: Model-driven development, Automation Component, Service
Robotics

1 Introduction

Today’s production processes will be performed more and more by automated
machines and robots as the level of automation increases steadily. The main trend in
industrial automation is the increasing need for customized and individualized plants.
The production lines have to be constructed and adapted to new production processes
quickly [1]. Such highly automated systems are mainly controlled by embedded hard-
and software which are heterogeneous in nature, which lead to a tremendous increase
in the design complexity. The software engineering costs will increase up to 80% of
the overall system costs in the next 15 years (currently this ratio is about 55%) [2][3].

One of the main current design trends in automation and control systems is to put
components, blocks made of hardware, software and intellectual property together
(like algorithms and data structures)[4]. This in turn calls for common, language
independent models for representing, saving and reusing such components. Neither
the state-of-the-art or current trends in design and engineering in industrial
automation [1][4] are capable of providing an applicable solution to the problem.

The current situation for the design of automation and control systems is
characterized by a huge variety of different approaches in both the specification and
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implementation of plants and systems. Different end-users of an automation system
may use any of the available specification methods, often dependent on their domain.
The specification method is used to describe end users’ needs and wishes. End user
specifications can take several forms, e.g. textual descriptions, Pipe and
instrumentation diagrams, list of sensors and actuators, etc.

When different end-users have to interact, difficulties arise. Every end-user will
use its own description method of specifying its needs for the system. Currently, very
little support exists in automated workflows or even in the interoperability of different
software tools implementing the combined set of specifications, partly because the
specifications themselves have been defined in different forms. The problems are not
only limited to the front end of the development process. In any automation solution,
the implementation of solutions reflecting end-user requirements is completed by
programmers each of whom expresses the solution based upon different preferences
according to the type of plant and various environment conditions.

The paper is organized as follows: section 2 provides an overview of the MEDEIA
approach. The MEDEIA Automation Component Meta-Model is explained in more
detail in section 3. Section 4 will provide a use-case where the MEDEIA approach is
applied to the area of service robotics. Finally, Section 5 will conclude the paper and
talks about future work with MEDEIA.

2 Model-Driven Design for Industrial Automation and Control
Systems

One of the main obstacles for efficient engineering of control systems is that the
various design methodologies as well as the implementation technologies within
plants are diverse according to different available solutions. This aspect makes the
overall design of automation solutions very difficult, especially when different
machines, robots and embedded devices have to work together. To overcome these
limitations of high diversity, the MEDEIA approach aims at a meta-design
architecture for the plant architecture with the following objectives:

— Formal framework for model-driven component-based development of
embedded control: The main focus in the MEDEIA project lies on a formal
framework for the design of heterogeneous embedded automation and control
systems. The main components of the framework are Automation Components
(AC), which in general are a combination of embedded hard- and software.

— Easily understandable modeling method applicable for domain experts: The
focus is to user modeling methods from different domains (e.g. software
engineering, control engineering in manufacturing, etc.) to define a solution that
can be applied in the target areas.

— Integrated modeling of diagnostics: An integrated diagnostics concept will be
developed that analyses faulty and out-of-norm behavior to effectively support
the maintenance process of heterogeneous embedded hard- and software.
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— Integrated simulation and verification of systems design: An integrated
simulation and verification concept will be developed that enables different
configurations of the system architecture, including hardware-in-the-loop to be
simulated.

— Automatic, embedded platform specific code-generation: Automation
Components can be deployed to heterogeneous automation hardware through an
automatic code-generation, based on the Automation Component Model and the
System Model.

2.1  General Approach

As mentioned above, the MEDEIA design methodology is based on the so-called
Automation Components (AC) which are, generally speaking, a combination of
embedded hard- & software. The start of the engineering flow is the
definition/specification of the system requirements.

2.2 Automation Component Model

The determining element within the MEDEIA approach is the Automation
Component (AC) — a combination of embedded hard- and software. The overall plant
or automation application is represented as an AC as well as each single device on the
lowest level. The plant evolves by the aggregation of ACs to more complex ones, or it
is split up into smaller ACs. The abstract meta-model provides the core of each AC.
Fig. 1 depicts the architecture of an AC.

Model execution

Verification > simulation

Domain % ﬁ Embedded platform

specific models

specific implementations

Automation
Component (AC)
model

N—
T ™~
gl o X@Z

Hierarchical Comm., Internal Interface
aggregation Local I/Os behavior specification

Fig. 1. Automation Component (AC) Model

The MEDEIA AC Model is represented by use of the following characteristic
elements:
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— Interface description: An AC is represented by its interface to the environment.
MEDEIA enforces a detailed interface description, which includes not only data
and action ports, but also timing behavior.

— Internal behavior: In addition to the interface description, MEDEIA also
addresses the description of the internal behavior of the ACs, summarizing into
a stateful description of the AC.

Hierarchical aggregation: As the MEDEIA approach is based on a hierarchical
structure of a plant, each AC will use ACs one level below.

— Communication / local 1/0s: As soon as an AC is related to an embedded
hardware device, additional information is obtained from the communication
and the associated local 1/Os.

— Domain specific models: Supporting different domain specific models, the
system provides the design engineer the possibility to understand, design and
engineer ACs in his familiar way.

— Embedded platform specific implementations: By the use of model
transformations, an AC can be transferred to be executed on real hardware and
also predefined components can be integrated into the general AC model.

— Model execution < simulation: MEDEIA provides a transformation of the AC
model into an executable simulation framework, providing a flexible basis for the
integration into existing plant areas.

— Verification: In addition to simulation, the verification of components by
themselves and their aggregation provides a second basis for increased
engineering efficiency. Therefore, the transformation of the AC model into a
formal description of a well known verification approach is included too.

3 The MEDEIA Automation Component Meta-Model

There are three elements within the MEDEIA architecture that describe the main idea
behind the engineering approach, namely the Domain Specific View (DSV), the
Platform Specific View (PSV) and the Automation Component Model (ACM). The
DSV is the view from the end user and is determined largely by special requirements
and specifications, often unique to the domain itself. The PSV is a developers
perspective that varies insofar as there are often several different means to achieve a
given functionality. The ACM is the common element that links these two elements.
Any relevant information specified within a DSV will be transformed into the ACM
and based on the information available in the ACM, at least the rough architecture of
source code for a given platform will be generated automatically.

3.1  Automation Component Implementation Model (ACIM)

A central point in the MEDEIA Architecture is the Automation Component
Implementation Model (ACIM). It consists of different models, which encapsulate all
information, which needs to be specified to allow the implementation for the desired
platform(s).
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Fig. 2. Automation Component Implementation Model

3.2 Automation Component Model (ACM)

The Automation Component Model (ACM) contains implementation/platform
independent aspects of ACs: behavior, diagnostics, interfaces, and the generic plant
interface and plant behavior.

3.3 Execution System Model (ESM)

Within this model, the concrete hardware for an implementation is modeled.
Information about processor, FPGA, memory, runtime environment, operating
system, etc. is included in the System Model as well as loop points, which represent
sensors and actuators.

3.4  Mapping Model (MM)

The gap between the platform independent ACM and the ESM is closed by the
Mapping Model (MM). Generic plant interfaces and the concrete 1/Os, provided by a
specific system, are mapped as well as the functionalities provided by sub ACs.

3.5 Model Transformation

The transformation between the different models is the second key element within the
MEDEIA approach. As can be seen in Fig. 2, there are different kind of models used
in the MEDEIA framework. It is necessary to define appropriate transformations
between the different models in order to supply the user with an automatic framework
that provides exactly the information the user wants to specify/view/edit at the
moment.
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3.6 Integrated Diagnostics and Plant Specification

As mentioned before, the ACM includes also diagnostics and plant information along
with the behavioral part. Based on diagnostics concepts and information about the
controlled plant, appropriate DSVs have to be used to include the proper information
in the MEDEIA approach.

3.7 Platform Oriented Merged Automation Component Model (POMAC)

Into this additional model all information, necessary for the implementation on
specific platforms, is merged from the ACIM. The amount of information shall be
reduced, increasing the efficiency of the code generation.

4 Service Robotics Domain

The domain of Service Robotics is one of the latest developments in the robotics area.
It is connected with the trend that automation happens more and more outside of
factory automation. The robots being used in this domain are called Service Robots.
Their fields for automation cover:

Laboratory automation (pharmaceutical, chemical, life science industries),
Medical industry, rehabilitation and human care,

Cleaning solutions,

Security and homeland security, and

Space and naval exploration.

In most cases these Service Robotics solutions need sophisticated specialized robots,
tailored to the specific task. In order to react on changing environments and to save
humans from harm, service robots are equipped with additional sensor feedback (e.g.
visual, tactile, distance sensors).

The company Schunk [5] provides such special service robotic solutions based on
very flexible mechatronical modules as shown in the following figures:

< R = '7’-
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S Senvorelectic Servo-electric ) = Servo-electric
;’S . Minger Parallel Gripper Rotary Aduators I Rotary Pan Tilt Actuators
— ) o
¥ -

PSM PDU y PLS

- = 5, £ =
/ -.":‘l Sevo-motors with P Sevoposifoning motor by Servoelecric
by 'y infegrated position control I ] e vith precision gears ! Linear Axes with
a—d / Ci / : balland-screw spindle drive

Fig. 3. PowerCube Module Overview — Standard Modules
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4.1  Demonstrator Description

The solution that is being provided is first being simulated in a virtual environment
beforehand. This virtual environment is called Virtually Robot Configurator (Viro-
Con). This is a software tool for configuration of robot systems, using the Schunk
mechatronics PowerCube modules (e.g. rotary, lineary), providing the following
functionality:

— Virtual assembly of robots (and environment obstacles) with 3D display

— Calculation and graphical representation of working range for any configuration
— Animation via direct manipulation and choose of coordinates

— Calculation of inverse kinematics

— Collision check (self-collision, obstacles)

— Output results in format of text files, pictures (3D area, jpg, bmp, png), videos

A part list is created by the tool, including actuators, connectors and user defined
parameters. Tables are created by the tool for a trajectory (path points of tool center
point positions and axes positions for animation), the structure describing parameters
in DH-style (Denavit-Hartenberg) and tool center point positions in user defined
coordination. A screenshot of the tool is depicted in Fig. 4.

£ Viro-Conzvirtually robotic configurator 1.0.4 =10] x|

g & | B Y ¥ |¢

Spekchern  Screenshot | Konfiguration Arbeitsraum  Manipulation  Animation Steus

¥\

Achsen manpuleren

Ry | ot | [ 2630

oy | st (|2
|

Fig. 4. Viro-Con Configuration 3D-Setup

Once a configuration has been designed in the virtual space, it can be manufactured
and send to the customer. The goal of the demonstration is to cover the whole
workflow from the simulation environment to the generation of control code for the
supervisory controller.

The demonstrator for the use case will be a SCARA robot configuration, as
depicted in Fig. 5. The SCARA robot consists out of different mechatronic
PowerCube modules that are plugged together to form this service robot. The robot
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will be controlled by one embedded controller from Siemens (i.e. Siemens MicroBox
PC) which is equipped with the IEC 61499 control approach. Based on the motions
defined in the Viro-Con tool, the control application for the real-life SCARA robot is
generated and deployed to the Siemens controller.

Mechanical Setup Embedded Hardware Setup

CAN

Fig. 5. Schunk Demonstrator Embedded Hardware Setup

5 Conclusions and Future Work

The goal of MEDEIA is provide a pioneering methodology and a prototypical design
and engineering framework for embedded systems design, which will enable the
industrial automation industry to reduce design time and the costs for the
development of complex control systems. Different meta-models are defined that
enable the user to define the system in its own Domain Specific View. From there it
will be transformed in various other internal models, which will at the end be
transformed in executable code. A formal framework for embedded systems design
will be prototyped, capable of managing the development of component-based design
of embedded industrial control systems. The framework will include methods for
modeling, simulation and verification of different industrial systems. One of the
industrial use-cases in the MEDEIA project is the development of control code for
modular service robotics, which is presented in this paper.
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