
logo

Timing analysis and predictability of architectures
Cache analysis

Claire Maiza

Verimag/INP

01/12/2010

Claire Maiza Synchron 2010 01/12/2010 1 / 18

logoTiming Analysis
Fr

eq
ue

nc
y

Exec-timeLB BCET WCET UB

Analysis-guaranteed timing bounds

Overest.

Claire Maiza Synchron 2010 01/12/2010 2 / 18

logoStatic Timing Analysis

Input
Executable

CFG
Recon-

struction

Control-
flow Graph

Loop
Bound

Analysis

Value
Analysis

Control-
flow

Analysis

Annotated
CFG

Basic
Block

Timing Info

Micro-
architectural

Analysis

Path
Analysis

Legend:

Data

Phase

Claire Maiza Synchron 2010 01/12/2010 3 / 18

logoTiming anomalies

When local worst-case does not lead to the global worst-case

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

Scheduling anomaly. Speculation anomaly.

Claire Maiza Synchron 2010 01/12/2010 4 / 18

logoClassification of architectures

Timing compositional
I No timing anomalies
I e. g., ARM7

Compositional with bounded effects
I Timing anomalies but no domino effects
I e. g., TriCore (probably)

Non-compositional architectures
I Timing anomalies, domino effects
I e. g., PPC 755

from Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009

Claire Maiza Synchron 2010 01/12/2010 5 / 18

logoWhy LRU is predictable?
LRU (Least Recently Used) “forgets” about past quickly:

?
?
?
?

a
a
?
?
?

b

b
a
?
?

c

c
b
a
?

d

d
c
b
a

FIFO (First In First Out):

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d

d
?
a
b

Claire Maiza Synchron 2010 01/12/2010 6 / 18

logoPreemption does not come for free!

The preempting task “disturbs” the state of
performance-enhancing features like caches and pipelines.
Once the preempted task resumes its execution, the disturbance
may cause additional cache misses.
The additional execution time due to additional cache misses is
known as the cache-related preemption delay.

T1

T2

= CRPD

= Task Activation

Claire Maiza Synchron 2010 01/12/2010 7 / 18

logoHow to take preemption cost into account?

Where to account for preemption cost?

Integrate into WCET Analysis: [Schneider, 2000]
I assume cache misses everywhere
I very pessimistic but easy to use in schedulability analysis

WCET Analysis + CRPD Analysis: [Lee et al., 1996]
I WCETbound + n · CRPDbound ≥

execution time of task with up to n preemptions
I more precise but only supported by very few schedulability

analyses

Claire Maiza Synchron 2010 01/12/2010 8 / 18

logoCRPD Analyses

Preempted Task:
How many useful memory blocks are in the cache?
Preempting Task:
How much damage can the preempting task do to the cache
contents of any task?
Preempted + Preempting Task
How much damage can the preempting task do to the useful
cache contents of the preempted task?

Claire Maiza Synchron 2010 01/12/2010 9 / 18

logoUseful Cache Block Analysis

What may be cached?

What may be reused?

Forward May-Analysis!

Backward May-Analysis!

minimal distance
≤ associativity?

Minimal distance to reuse
Program point P

Useful = may be cached and may be reused

Claire Maiza Synchron 2010 01/12/2010 10 / 18

logoUseful Cache Block Analysis
Combination of two LRU-may-analyses:

What may be cached?

What may be reused?

Forward May-Analysis!

Backward May-Analysis!

Minimal age

Minimal distance to reuse
P

Minimal age + Minimal distance to reuse ≤ associativity
=⇒ Memory block may be useful

Claire Maiza Synchron 2010 01/12/2010 11 / 18

logoImprovement: Path Analysis
Some blocks are never useful at the same time:

≤ associativity
associativity ≥

y

y

P

Literature:
[Tomiyama and Dutt, 2000, Negi et al., 2003, Staschulat et al., 2007]

Claire Maiza Synchron 2010 01/12/2010 12 / 18

logoAnalysis of Preempted and Preempting Task:
“Deeper” Combination [Altmeyer et al., 2010]
Definition (Resilience)

The resilience resP(m) of memory block m at program point P is the
greatest l, such that all possible next accesses to m,

a) that would be hits without preemption,
b) would still be hits in case of a preemption with l accesses at P.

preempted task

m is useful
res(m) = 4

m
a1
a2

a3

m

[m,_,_,_,_,_,_,_]

[a3,e4,e3,e2,e1,a2,a1,m]

[m,a3,e4,e3,e2,e1,a2,a1]

preempting task

{e1,e2,e3,e4}

Claire Maiza Synchron 2010 01/12/2010 13 / 18

logoAnalysis of Preempted and Preempting Task:
“Deeper” Combination [Altmeyer et al., 2010]
Definition (Resilience)

The resilience resP(m) of memory block m at program point P is the
greatest l, such that all possible next accesses to m,

a) that would be hits without preemption,
b) would still be hits in case of a preemption with l accesses at P.

preempted task

m is useful
res(m) = 4

m
a1
a2

a3

m

[m,_,_,_,_,_,_,_]

[a3,e4,e3,e2,e1,a2,a1,m]

[m,a3,e4,e3,e2,e1,a2,a1]

preempting task

{e1,e2,e3,e4}

Claire Maiza Synchron 2010 01/12/2010 13 / 18

logoDo existing approaches work
for FIFO, PLRU, etc.?

Plain answer: No!

Claire Maiza Synchron 2010 01/12/2010 14 / 18

logoDo existing approaches work
for FIFO, PLRU, etc.?

Plain answer: No!

Counterexample for FIFO [Burguière et al., 2009]:

[b,a] a
[b,a] e∗ [e,b] b [e,b] c∗ [c,e] e

[c,e] 2 misses

[x,b] a∗ [a,x] e∗ [e,a] b∗ [b,e] c∗ [c,b] e∗ [e, c] 5 misses

ECBs
= {x}

2 useful cache blocks
1 block loaded by the preempting task
associativity = 2
But: number of additional misses= 3

Same result for PLRU.

Claire Maiza Synchron 2010 01/12/2010 14 / 18

logoIdea [Burguière et al., 2009]:
Use Relative Competitiveness Results

Some relative competitiveness results:
PLRU(n) is (1,0)-miss-competitive relative to LRU(1 + log2n).
FIFO(n) is (n

n−r+1 , r)-miss-competitive relative to LRU(r).

=⇒ Performing WCET and CRPD analyses assuming LRU(1 + log2n)
replacement should give correct bounds for PLRU(n).

Can we also make use of non-(1,0)-competitiveness?

Claire Maiza Synchron 2010 01/12/2010 15 / 18

logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18

logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18

logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18

logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18

logoApplying Relative Competitiveness

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) ≤ [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

In WCET analysis:
Take into account k ·mLRU(s) + c misses
In CRPD analysis:
Take into account k ·mLRU(s)

CRPD + c misses

Claire Maiza Synchron 2010 01/12/2010 17 / 18

logoSummary

CRPD bounded using a number of reloads:
I a miss is the worst-case
I the reload cost is bounded

For LRU, the CRPD can be bounded by analyzing
I the preempted task: useful cache block analysis
I the preempting task
I both, the preempted and the preempting task

F Resilience Analysis

Approaches do not carry over to FIFO, PLRU, etc. immediately
I First approach: relative competitiveness

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logoAltmeyer, S., Burguière, C., and Wilhelm, R. (2009).
Computing the maximum blocking time for scheduling with
deferred preemption.
In Workshop on Software Technologies for Future Dependable
Distributed Systems.

Altmeyer, S., Maiza, C., and Reineke, J. (2010).
Resilience analysis: Tightening the crpd bound for set-associative
caches.
In LCTES ’10: Proceedings of the ACM SIGPLAN/SIGBED 2010
conference on Languages, compilers, and tools for embedded
systems, pages 153–162, New York, NY, USA. ACM.

Burguière, C., Reineke, J., and Altmeyer, S. (2009).
Cache-related preemption delay computation for set-associative
caches—pitfalls and solutions.
In Proceedings of 9th International Workshop on Worst-Case
Execution Time (WCET) Analysis.

Chiou, D. T. (1999).

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logo
Extending the reach of microprocessors: column and curious
caching.
PhD thesis.
Supervisor-Arvind, and Supervisor-Rudolph, Larry.

Kirk, D. B. and Strosnider, J. K. (1990).
Smart (strategic memory allocation for real-time) cache design
using the mips r3000.
In IEEE Real-Time Systems Symposium, pages 322–330.

Lee, C.-G., Hahn, J., Min, S. L., Ha, R., Hong, S., Park, C. Y., Lee,
M., and Kim, C. S. (1996).
Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling.
In Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS’96), page 264, Washington, DC, USA. IEEE Computer
Society.

Lee, S., Lee, C.-G., Lee, M., Min, S. L., and Kim, C.-S. (1998).

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logo
Limited preemptible scheduling to embrace cache memory in
real-time systems.
In LCTES ’98: Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems, pages
51–64, London, UK. Springer-Verlag.

Mueller, F. (1995).
Compiler support for software-based cache partitioning.
SIGPLAN Not., 30(11):125–133.

Negi, H. S., Mitra, T., and Roychoudhury, A. (2003).
Accurate estimation of cache-related preemption delay.
In Proceedings of the 1st ACM international conference on
Hardware/software codesign and system synthesis
(CODES+ISSS’03), pages 201–206, New York, NY, USA. ACM.

Schneider, J. (2000).
Cache and pipeline sensitive fixed priority scheduling for
preemptive real-time systems.

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logo
In In Proceedings of the 21st IEEE Real-Time Systems
Symposium (RTSS’2000), pages 195–204.

Staschulat, J. et al. (2007).
Scalable precision cache analysis for real-time software.
Trans. on Embedded Computing Sys., 6(4):25.

Tomiyama, H. and Dutt, N. D. (2000).
Program path analysis to bound cache-related preemption delay in
preemptive real-time systems.
In Proceedings of the 8th ACM international workshop on
Hardware/software codesign (CODES’00), pages 67–71, New
York, NY, USA. ACM.

Wolfe, A. (1994).
Software-based cache partitioning for real-time applications.
J. Comput. Softw. Eng., 2(3):315–327.

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logoDeferred Preemption - simplifying the problem
Restrict preemptions to a set of predefined preemption points.
Introduces new problem: blocking time, time until next preemption
point is reached.

T1

T2

BT BT

∗ ∗ ∗ ∗ ∗

Context Switch Costs
Task Activation

∗ Preemption Point

Where to place preemptions points, s.t.
CRPD is minimized, and
Maximum Blocking Time is minimized.

Analysis to determine maximum blocking time for given set of
preemption points: [Lee et al., 1998, Altmeyer et al., 2009]

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logoCache Partitioning - eliminating the problem
Additional cache misses are due to interference on the cache.

=⇒ Cache Partitioning eliminates this interference.

CHAPTER 2. BACKGROUND 13

the cache, and other tasks (processors) are not allowed to replace the content. Cache

analysis can then be applied to each cache partition independently to determine the

WCET of the task (processor). Cache partitioning is less restrictive than cache locking,

as dynamic behavior is still present within the individual partitions.

…………

P2P1

(a) Way-based partitioning

set 1
2
3
4
5

.

.

.

2^k

4-way cache

P2P1

…………

(b) Set-based partitioning

set 1
2
3
4
5

.

.

.

2^k

4-way cache

Figure 2.1: Way-based and set-based cache partitioning

There are two schemes in which cache partitioning can be performed. Way-based par-

titioning [27] allocates a number of ways (columns) to each task (Figure 2.1a). As the

number of ways in caches is quite restricted (typically 4 and at most 16), this scheme

does not support fine-grained partitioning. In practice, way-based partitioning can be

configured so that a task/processor may still read and update cache lines belonging to

another task/processor, though it is not allowed to evict them [131]. A more flexible

scheme is set-based partitioning [66] that allocates a number of sets (rows) to each task

(Figure 2.1b). This type of partitioning translates the cache index (in hardware) such

that each task addresses a restricted part of the cache. For efficient hardware translation,

the number of sets in a partition should be a power of 2.

Software-based Cache Partitioning [Wolfe, 1994, Mueller, 1995]:
I Change layout of instructions and data such that tasks map to

disjoint cache sets
I Particularly difficult for large arrays

Hardware-based Cache Partitioning
[Kirk and Strosnider, 1990, Chiou, 1999]:

I Partition cache by cache sets and/or cache ways
I Increases hardware cost
I Renewed interest in multi-cores with shared caches

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logoCRPD for PLRU: Pitfalls

1

1 1

a b c d

d 0

1 0

a b c d

b 1

0 0

a b c d

c 0

0 1

a b c d

b 1

0 1

a b c d

a 1

1 1

a b c d

d 0

1 0

a b c d

0 misses

1

0 0

a y c x

d* 0

0 1

a y d x

b* 1

1 1

b y d x

c* 0

1 0

b y d c

b 1

1 0

b y d c

a* 0

1 1

b y a c

d* 1

0 1

b d a c

5 misses

ECBs
= {x,y}

|UCB(s)| = 4
|ECB(s)| = 2
n = 4
But: number of additional misses= 5

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logoResilience - Domain of the analysis

D : Dca × Dua (1)

with
Dca : M→ {0, . . . , k − 1} (2)

and
Dua : M→ {0, . . . , k − 1,∞} (3)

Claire Maiza Synchron 2010 01/12/2010 18 / 18

logoResilience - Transfer functions

tua : Dua ×M→ Dua

tua(ua,m) :=

λm′.


0 m′ = m
ua(m′) ua(m′) ≥ ua(m)
ua(m′) + 1 ua(m′) < ua(m) ∧ ua(m′) < k − 1
∞ otherwise

(4)

tca : Dca × Dua × 2M ×M→ Dca

tca(ca,ua, UCB,m) :=

λm′.


0 m′ = m ∨m′ /∈ UCB

ca(m′) ca(m′) ≥ ua(m) ∨ ca(m′) = k − 1
ca(m′) + 1 ca(m′) < ua(m)

(5)

Claire Maiza Synchron 2010 01/12/2010 18 / 18

