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logoStatic Timing Analysis
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logoTiming anomalies

When local worst-case does not lead to the global worst-case
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logoClassification of architectures

Timing compositional
I No timing anomalies
I e. g., ARM7

Compositional with bounded effects
I Timing anomalies but no domino effects
I e. g., TriCore (probably)

Non-compositional architectures
I Timing anomalies, domino effects
I e. g., PPC 755

from Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009
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logoWhy LRU is predictable?
LRU (Least Recently Used) “forgets” about past quickly:
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logoPreemption does not come for free!

The preempting task “disturbs” the state of
performance-enhancing features like caches and pipelines.
Once the preempted task resumes its execution, the disturbance
may cause additional cache misses.
The additional execution time due to additional cache misses is
known as the cache-related preemption delay.

T1

T2

= CRPD

= Task Activation
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logoHow to take preemption cost into account?

Where to account for preemption cost?

Integrate into WCET Analysis: [Schneider, 2000]
I assume cache misses everywhere
I very pessimistic but easy to use in schedulability analysis

WCET Analysis + CRPD Analysis: [Lee et al., 1996]
I WCETbound + n · CRPDbound ≥

execution time of task with up to n preemptions
I more precise but only supported by very few schedulability

analyses
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logoCRPD Analyses

Preempted Task:
How many useful memory blocks are in the cache?
Preempting Task:
How much damage can the preempting task do to the cache
contents of any task?
Preempted + Preempting Task
How much damage can the preempting task do to the useful
cache contents of the preempted task?
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logoUseful Cache Block Analysis

What may be cached?

What may be reused?

Forward May-Analysis!

Backward May-Analysis!

minimal distance 
≤ associativity?

Minimal distance to reuse
Program point P

Useful = may be cached and may be reused
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logoUseful Cache Block Analysis
Combination of two LRU-may-analyses:

What may be cached?

What may be reused?

Forward May-Analysis!

Backward May-Analysis!

Minimal age

Minimal distance to reuse
P

Minimal age + Minimal distance to reuse ≤ associativity
=⇒ Memory block may be useful
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logoImprovement: Path Analysis
Some blocks are never useful at the same time:

≤ associativity
associativity ≥

y

y

P

Literature:
[Tomiyama and Dutt, 2000, Negi et al., 2003, Staschulat et al., 2007]
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logoAnalysis of Preempted and Preempting Task:
“Deeper” Combination [Altmeyer et al., 2010]
Definition (Resilience)

The resilience resP(m) of memory block m at program point P is the
greatest l, such that all possible next accesses to m,

a) that would be hits without preemption,
b) would still be hits in case of a preemption with l accesses at P.

preempted task

m is useful
res(m) = 4

m
a1
a2

a3

m

[m,_,_,_,_,_,_,_]

[a3,e4,e3,e2,e1,a2,a1,m]

[m,a3,e4,e3,e2,e1,a2,a1]

preempting task

{e1,e2,e3,e4}
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logoDo existing approaches work
for FIFO, PLRU, etc.?

Plain answer: No!
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logoDo existing approaches work
for FIFO, PLRU, etc.?

Plain answer: No!

Counterexample for FIFO [Burguière et al., 2009]:

[b,a] a
[b,a] e∗ [e,b] b [e,b] c∗ [c,e] e

[c,e] 2 misses

[x,b] a∗ [a,x] e∗ [e,a] b∗ [b,e] c∗ [c,b] e∗ [e, c] 5 misses

ECBs
= {x}

2 useful cache blocks
1 block loaded by the preempting task
associativity = 2
But: number of additional misses= 3

Same result for PLRU.
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logoIdea [Burguière et al., 2009]:
Use Relative Competitiveness Results

Some relative competitiveness results:
PLRU(n) is (1,0)-miss-competitive relative to LRU(1 + log2n).
FIFO(n) is ( n

n−r+1 , r)-miss-competitive relative to LRU(r).

=⇒ Performing WCET and CRPD analyses assuming LRU(1 + log2n)
replacement should give correct bounds for PLRU(n).

Can we also make use of non-(1,0)-competitiveness?
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logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD ) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18



logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD ) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18



logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD ) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18



logoApplying Relative Competitiveness:
A sequence of memory accesses

Notation:
I m = number of misses
I m = number of misses in the case of preemption

mpre = 4 mpost = 2

mpre = mpre = 4 mpost = mpost + mCRPD = 5

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) = mP(t)
pre + mP(t)

post

≤ [k ·mLRU(s)
pre + c] + [k · (mLRU(s)

post + mLRU(s)
CRPD ) + c]

= [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

Claire Maiza Synchron 2010 01/12/2010 16 / 18



logoApplying Relative Competitiveness

Assume P(t) is (k , c)-miss-competitive rel. to LRU(s). Then:

mP(t) ≤ [k ·mLRU(s) + c] + [k ·mLRU(s)
CRPD + c]

In WCET analysis:
Take into account k ·mLRU(s) + c misses
In CRPD analysis:
Take into account k ·mLRU(s)

CRPD + c misses
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logoSummary

CRPD bounded using a number of reloads:
I a miss is the worst-case
I the reload cost is bounded

For LRU, the CRPD can be bounded by analyzing
I the preempted task: useful cache block analysis
I the preempting task
I both, the preempted and the preempting task

F Resilience Analysis

Approaches do not carry over to FIFO, PLRU, etc. immediately
I First approach: relative competitiveness
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logoDeferred Preemption - simplifying the problem
Restrict preemptions to a set of predefined preemption points.
Introduces new problem: blocking time, time until next preemption
point is reached.

T1

T2

BT BT

∗ ∗ ∗ ∗ ∗

Context Switch Costs
Task Activation

∗ Preemption Point

Where to place preemptions points, s.t.
CRPD is minimized, and
Maximum Blocking Time is minimized.

Analysis to determine maximum blocking time for given set of
preemption points: [Lee et al., 1998, Altmeyer et al., 2009]
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logoCache Partitioning - eliminating the problem
Additional cache misses are due to interference on the cache.

=⇒ Cache Partitioning eliminates this interference.

CHAPTER 2. BACKGROUND 13

the cache, and other tasks (processors) are not allowed to replace the content. Cache

analysis can then be applied to each cache partition independently to determine the

WCET of the task (processor). Cache partitioning is less restrictive than cache locking,

as dynamic behavior is still present within the individual partitions.

…………
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(a) Way-based partitioning

set 1
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(b) Set-based partitioning

set 1
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.

2^k
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Figure 2.1: Way-based and set-based cache partitioning

There are two schemes in which cache partitioning can be performed. Way-based par-

titioning [27] allocates a number of ways (columns) to each task (Figure 2.1a). As the

number of ways in caches is quite restricted (typically 4 and at most 16), this scheme

does not support fine-grained partitioning. In practice, way-based partitioning can be

configured so that a task/processor may still read and update cache lines belonging to

another task/processor, though it is not allowed to evict them [131]. A more flexible

scheme is set-based partitioning [66] that allocates a number of sets (rows) to each task

(Figure 2.1b). This type of partitioning translates the cache index (in hardware) such

that each task addresses a restricted part of the cache. For efficient hardware translation,

the number of sets in a partition should be a power of 2.

Software-based Cache Partitioning [Wolfe, 1994, Mueller, 1995]:
I Change layout of instructions and data such that tasks map to

disjoint cache sets
I Particularly difficult for large arrays

Hardware-based Cache Partitioning
[Kirk and Strosnider, 1990, Chiou, 1999]:

I Partition cache by cache sets and/or cache ways
I Increases hardware cost
I Renewed interest in multi-cores with shared caches
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logoCRPD for PLRU: Pitfalls
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5 misses

ECBs
= {x,y}

|UCB(s)| = 4
|ECB(s)| = 2
n = 4
But: number of additional misses= 5
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logoResilience - Domain of the analysis

D : Dca × Dua (1)

with
Dca : M→ {0, . . . , k − 1} (2)

and
Dua : M→ {0, . . . , k − 1,∞} (3)
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logoResilience - Transfer functions

tua : Dua ×M→ Dua

tua(ua,m) :=

λm′.


0 m′ = m
ua(m′) ua(m′) ≥ ua(m)
ua(m′) + 1 ua(m′) < ua(m) ∧ ua(m′) < k − 1
∞ otherwise

(4)

tca : Dca × Dua × 2M ×M→ Dca

tca(ca,ua, UCB,m) :=

λm′.


0 m′ = m ∨m′ /∈ UCB

ca(m′) ca(m′) ≥ ua(m) ∨ ca(m′) = k − 1
ca(m′) + 1 ca(m′) < ua(m)

(5)
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