Using Abstract Acceleration in the Verification of Logico-Numerical Data-Flow Programs

Peter Schrammel and Bertrand Jeannet {peter.schrammel,bertrand.jeannet}@inria.fr

INRIA Rhône-Alpes

Synchron'10

Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

- Abstract interpretation (Cousot and Cousot 1977)
 - Termination, but over-approximation
- Acceleration (Finkel and Leroux 2002)
 - Exact result, but no guarantee for termination

Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

- Abstract interpretation (Cousot and Cousot 1977)
 - Termination, but over-approximation
- Acceleration (Finkel and Leroux 2002)
 - Exact result, but no guarantee for termination

Acceleration

- Method for treating loops in numerical automata
- Replace a loop transition au by its transitive closure au^*

< ロ > < 同 > < 回 > < 回 > < 回

Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

- Abstract interpretation (Cousot and Cousot 1977)
 - Termination, but over-approximation
- Acceleration (Finkel and Leroux 2002)
 - Exact result, but no guarantee for termination

Acceleration

- Method for treating loops in numerical automata
- Replace a loop transition au by its transitive closure au^*

Abstract Acceleration (Gonnord and Halbwachs 2006)

• Computation of the convex hull au^{\otimes} of the exact result au^*

Application to Logico-Numerical Data-Flow Programs

Application to e.g. Lustre programs?

Issues

- Input variables:
 - Boolean variables:
 - Encoded as non-determinism in the control flow graph (CFG)
 - Numerical variables
- Implicit control flow → Discover a CFG w.r.t. Boolean variables

Onventional approach:

- Reduction to numerical automaton by enumeration of Boolean states
- \bigcirc \rightarrow Combinatorial explosion

Our approach:

- Symbolic handling of Boolean variables
- Approximation method: Decoupling
- Ontrolled partitioning using heuristics

Outline

Introduction

Abstract Acceleration with Numerical Inputs

- Abstract Acceleration
- Abstract Acceleration with Numerical Inputs
- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

Conclusion

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Introduction

Abstract Acceleration with Numerical Inputs

- Abstract Acceleration
- Abstract Acceleration with Numerical Inputs
- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

Conclusion

Abstract Acceleration

Abstract Acceleration (Gonnord and Halbwachs 2006)

- $\bullet\,$ Computation of a convex polyhedron $\tau^\otimes\,$ close to the exact result τ^*
- Acceleration of self-loops: $\tau : \underbrace{\mathbf{Ax} \leq \mathbf{v}}_{\text{guard } G} \to \underbrace{\mathbf{x'} = \mathbf{Cx} + \mathbf{d}}_{\text{action}}$

Abstract Acceleration

Abstract Acceleration (Gonnord and Halbwachs 2006)

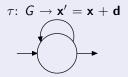
- Computation of a convex polyhedron au^\otimes close to the exact result au^*
- Acceleration of self-loops: $\tau : \underbrace{\mathbf{Ax} \leq \mathbf{v}}_{\text{guard } G} \rightarrow \underbrace{\mathbf{x}' = \mathbf{Cx} + \mathbf{d}}_{\text{action}}$

Accelerable Transitions

- Resets: $G \rightarrow \mathbf{x} := \mathbf{d}$
- Translations: $G \rightarrow \mathbf{x} := \mathbf{x} + \mathbf{d}$
- Translations with resets: $G \rightarrow \mathbf{x} := \mathbf{C}\mathbf{x} + \mathbf{d}$ where $\mathbf{C} = diag(\dots, c_i, \dots), c_i \in \{0, 1\}$
- Periodic affine transformations: $G \rightarrow \mathbf{x} := \mathbf{C}\mathbf{x} + \mathbf{d}$ where $\exists p > 0 : \mathbf{C}^p = \mathbf{C}^{2p}$

Translations

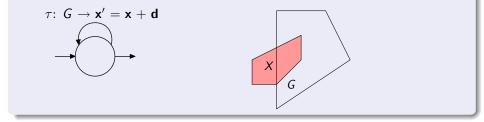
- $\tau: G \rightarrow \mathbf{x'} = \mathbf{x} + \mathbf{d}$
- Accelerated transition: $\tau^{\otimes}(X) = X \sqcup (((X \sqcap G) \nearrow d) \sqcap G(\mathbf{x} d))$



<ロ> (日) (日) (日) (日) (日)

Translations

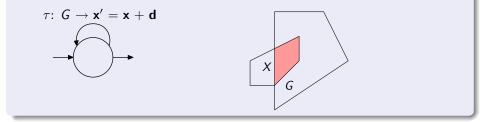
- $\tau: G \rightarrow \mathbf{x'} = \mathbf{x} + \mathbf{d}$
- Accelerated transition: $\tau^{\otimes}(X) = X \sqcup (((X \sqcap G) \nearrow \mathbf{d}) \sqcap G(\mathbf{x} \mathbf{d}))$



イロン イヨン イヨン イヨン

Translations

- $\tau: G \rightarrow \mathbf{x'} = \mathbf{x} + \mathbf{d}$
- Accelerated transition: $\tau^{\otimes}(X) = X \sqcup (((X \sqcap G) \nearrow d) \sqcap G(\mathbf{x} d))$



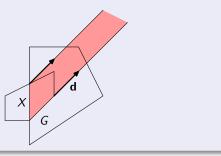
<ロ> (日) (日) (日) (日) (日)

Translations

• $\tau: G \rightarrow \mathbf{x'} = \mathbf{x} + \mathbf{d}$

• Accelerated transition:
$$\tau^{\otimes}(X) = X \sqcup (((X \sqcap G) \nearrow \mathbf{d}) \sqcap G(\mathbf{x} - \mathbf{d}))$$

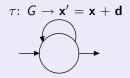


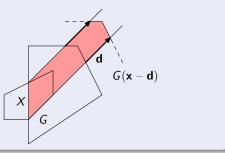


・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Translations

- $\tau: G \rightarrow \mathbf{x'} = \mathbf{x} + \mathbf{d}$
- Accelerated transition: $\tau^{\otimes}(X) = X \sqcup ((X \sqcap G) \nearrow d) \sqcap G(x d))$



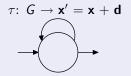


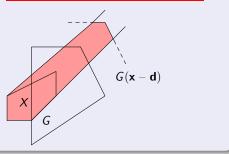
<ロ> (日) (日) (日) (日) (日)

Translations

- $\tau: G \rightarrow \mathbf{x'} = \mathbf{x} + \mathbf{d}$
- Accelerated transition:

$$\tau^{\otimes}(X) = X \sqcup (((X \sqcap G) \nearrow \mathbf{d}) \sqcap G(\mathbf{x} - \mathbf{d}))$$





<ロ> (日) (日) (日) (日) (日)

Outline

Introduction

2 Abstract Acceleration with Numerical Inputs

Abstract Acceleration

Abstract Acceleration with Numerical Inputs

- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

Conclusion

• Extension to numerical inputs
$$\boldsymbol{\xi}$$
:

$$\tau: \underbrace{\begin{pmatrix} \mathbf{A} & \mathbf{L} \\ 0 & \mathbf{J} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \boldsymbol{\xi} \end{pmatrix} \leq \begin{pmatrix} \mathbf{v} \\ \mathbf{k} \end{pmatrix}}_{\mathbf{A}\mathbf{x} + \mathbf{L}\boldsymbol{\xi} \leq \mathbf{v} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k}} \xrightarrow{\rightarrow} \underbrace{\mathbf{x}' = \begin{pmatrix} \mathbf{C} & \mathbf{T} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \boldsymbol{\xi} \end{pmatrix} + \mathbf{u}}_{\mathbf{x}' = \mathbf{C}\mathbf{x} + \mathbf{T}\boldsymbol{\xi} + \mathbf{u}}$$

ightarrow No interaction between inputs and state variables in the guard

- Translations
- Translations with resets
- $L \neq 0$ ("general guards"):

No more accelerable \rightarrow approximated solution

Translations with Simple Guards

•
$$\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{G} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{D}$$

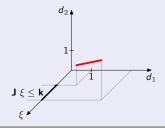
Example:
$$\tau(X): \begin{vmatrix} x_1+x_2 \leq 4\\ 1 \leq \xi \leq 2 \end{vmatrix} \rightarrow \begin{vmatrix} x_1'=x_1+2\xi-1\\ x_2'=x_2+\xi \end{vmatrix}$$

Translations with Simple Guards

•
$$\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{G} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{D}$$

• $\tau(X) = (X \sqcap G) + D \qquad \qquad D = \{\mathbf{d} \mid \exists \boldsymbol{\xi} : \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \land \mathbf{d} = \mathbf{T}\boldsymbol{\xi} + \mathbf{u}\}$

Example:
$$\tau(X)$$
: $\begin{vmatrix} x_1 + x_2 \leq 4 \\ 1 \leq \xi \leq 2 \end{vmatrix} \rightarrow \begin{vmatrix} x_1' = x_1 + 2\xi - 1 \\ x_2' = x_2 + \xi \end{vmatrix}$

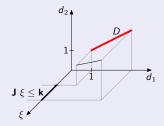


Translations with Simple Guards

•
$$\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{G} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{D}$$

•
$$\tau(X) = (X \sqcap G) + D$$
 $D = \{\mathbf{d} \mid \exists \boldsymbol{\xi} : \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \land \mathbf{d} = \mathbf{T}\boldsymbol{\xi} + \mathbf{u}\}$

Example:
$$\tau(X)$$
: $\begin{vmatrix} x_1 + x_2 \leq 4 \\ 1 \leq \xi \leq 2 \end{vmatrix} \rightarrow \begin{vmatrix} x'_1 = x_1 + 2\xi - 1 \\ x'_2 = x_2 + \xi \end{vmatrix}$



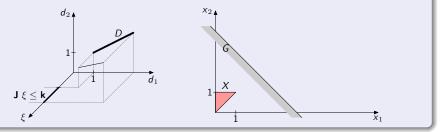
Translations with Simple Guards

•
$$\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{G} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{D}$$

• $\tau(X) = (X \sqcap G) + D$ $D = \{\mathbf{d} \mid \exists \boldsymbol{\xi} : \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \land \mathbf{d} = \mathbf{T}\boldsymbol{\xi} + \mathbf{u}\}$

•
$$\tau^{\otimes}(X) = X \sqcup \tau((X \sqcap G) \nearrow D)$$

Example:
$$\tau(X): \begin{vmatrix} x_1+x_2 \leq 4 \\ 1 \leq \xi \leq 2 \end{vmatrix} \rightarrow \begin{vmatrix} x_1' = x_1+2\xi - 1 \\ x_2' = x_2+\xi \end{vmatrix}$$

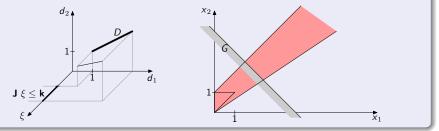


Translations with Simple Guards

•
$$\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{G} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{D}$$

• $\tau(X) = (X \sqcap G) + D$ • $\tau^{\otimes}(X) = X \sqcup \tau((X \sqcap G) \nearrow D)$ $D = \{\mathbf{d} \mid \exists \boldsymbol{\xi} : \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \land \mathbf{d} = \mathbf{T}\boldsymbol{\xi} + \mathbf{u}\}$

Example:
$$\tau(X): \begin{vmatrix} x_1+x_2 \leq 4 \\ 1 \leq \xi \leq 2 \end{vmatrix} \rightarrow \begin{vmatrix} x_1' = x_1+2\xi - 1 \\ x_2' = x_2+\xi \end{vmatrix}$$



Translations with Simple Guards • $\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{\mathbf{x}} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{\mathbf{x}}$ $D = \{ \mathbf{d} \mid \exists \boldsymbol{\xi} : \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \land \mathbf{d} = \mathbf{T}\boldsymbol{\xi} + \mathbf{u} \}$ • $\tau(X) = (X \sqcap G) + D$ • $\tau^{\otimes}(X) = X \sqcup \tau((X \sqcap G) \nearrow D)$ Example: $\tau(X)$: $\begin{vmatrix} x_1 + x_2 \le 4 \\ 1 < \xi < 2 \end{vmatrix} \rightarrow \begin{vmatrix} x'_1 = x_1 + 2\xi - 1 \\ x'_2 = x_2 + \xi \end{vmatrix}$ d_2 d₁ $\mathbf{J} \ \xi \leq \mathbf{k}$ * X1

Translations with Resets and Simple Guards

•
$$\tau : \underbrace{\mathsf{Ax} \leq \mathsf{v}}_{G} \land \mathsf{J\xi} \leq \mathsf{k} \to \mathsf{x'} = \mathsf{Cx} + \underbrace{\mathsf{T\xi} + \mathsf{u}}_{D}$$

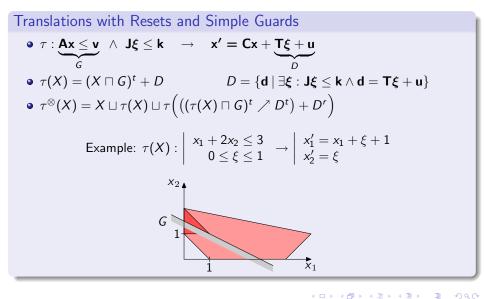
Example:
$$\tau(X)$$
: $\begin{vmatrix} x_1 + 2x_2 \leq 3 \\ 0 \leq \xi \leq 1 \end{vmatrix} \rightarrow \begin{vmatrix} x'_1 = x_1 + \xi + 1 \\ x'_2 = \xi \end{vmatrix}$

Translations with Resets and Simple Guards

•
$$\tau : \underbrace{\mathbf{A}\mathbf{x} \leq \mathbf{v}}_{G} \land \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \quad \rightarrow \quad \mathbf{x'} = \mathbf{C}\mathbf{x} + \underbrace{\mathbf{T}\boldsymbol{\xi} + \mathbf{u}}_{D}$$

• $\tau(X) = (X \sqcap G)^t + D \qquad \qquad D = \{\mathbf{d} \mid \exists \boldsymbol{\xi} : \mathbf{J}\boldsymbol{\xi} \leq \mathbf{k} \land \mathbf{d} = \mathbf{T}\boldsymbol{\xi} + \mathbf{u}\}$

Example:
$$\tau(X)$$
: $\begin{vmatrix} x_1 + 2x_2 \leq 3\\ 0 \leq \xi \leq 1 \end{vmatrix} \rightarrow \begin{vmatrix} x'_1 = x_1 + \xi + 1\\ x'_2 = \xi \end{vmatrix}$



General Guards
•
$$\tau : \begin{pmatrix} A & L \\ 0 & J \end{pmatrix} \begin{pmatrix} x \\ \xi \end{pmatrix} \le \begin{pmatrix} v \\ k \end{pmatrix} \rightarrow x' = \begin{pmatrix} C & T \end{pmatrix} \begin{pmatrix} x \\ \xi \end{pmatrix} + u$$

• $L \neq 0 \Longrightarrow$ can code a general affine transformation by a reset to input:
• $(Ax \le v) \rightarrow x' = Cx + d \iff (Ax \le v \land \xi = Cx + d) \rightarrow x' = \xi$
• \rightarrow Not accelerable

General Guards
•
$$\tau : \begin{pmatrix} A & L \\ 0 & J \end{pmatrix} \begin{pmatrix} x \\ \xi \end{pmatrix} \le \begin{pmatrix} v \\ k \end{pmatrix} \rightarrow x' = \begin{pmatrix} C & T \end{pmatrix} \begin{pmatrix} x \\ \xi \end{pmatrix} + u$$

• $L \neq 0 \Longrightarrow$ can code a general affine transformation by a reset to input:
• $(Ax \le v) \rightarrow x' = Cx + d \iff (Ax \le v \land \xi = Cx + d) \rightarrow x' = \xi$
• \rightarrow Not accelerable

Weakened Guards

•
$$\overline{G} = (\exists \xi : G) \land (\exists \mathbf{x} : G)$$

 $\mathbf{A}' \mathbf{x} \leq \mathbf{v}' \land (\exists \mathbf{x} : G)$
 $\mathbf{J}' \xi \leq \mathbf{k}'$

Resort to methods for translation and translation/reset

Outline

Introduction

2 Abstract Acceleration with Numerical Inputs

- Abstract Acceleration
- Abstract Acceleration with Numerical Inputs
- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

Conclusion

< ロト < 団ト < 団ト < 団ト

Widening

- Delayed by N iterations
- Widening until convergence
- Descending iterations

Widening

- Delayed by N iterations
- Widening until convergence
- Oescending iterations

Comparison: Translation with general guard

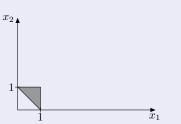
$$\tau(X): \begin{vmatrix} 2x_1 + x_2 + \xi & \leq & 6 \\ x_2 - \xi & \leq & 2 \\ 0 \leq \xi & \leq & 1 \end{vmatrix} \mid \begin{array}{c} x_1' = x_1 + \xi + 1 \\ x_2' = x_2 + 1 \\ x_2' = x_2 + 1 \end{vmatrix}$$

Widening

- Delayed by N iterations
- Widening until convergence
- Oescending iterations

Comparison: Translation with general guard

$$\tau(X): \begin{vmatrix} 2x_1 + x_2 + \xi &\leq 6\\ x_2 - \xi &\leq 2\\ 0 \leq \xi &\leq 1 \end{vmatrix} \to \begin{vmatrix} x_1' = x_1 + \xi + 1\\ x_2' = x_2 + 1 \end{vmatrix}$$



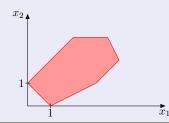
Widening

- Delayed by N iterations
- Widening until convergence
- Oescending iterations

Comparison: Translation with general guard

$$\tau(X): \begin{vmatrix} 2x_1 + x_2 + \xi &\leq 6\\ x_2 - \xi &\leq 2\\ 0 \leq \xi &\leq 1 \end{vmatrix} \to \begin{vmatrix} x_1' = x_1 + \xi + 1\\ x_2' = x_2 + 1 \end{vmatrix}$$

• Convex hull of the exact result



Widening

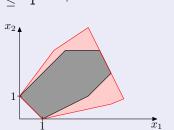
- Delayed by N iterations
- Widening until convergence
- Descending iterations

Comparison: Translation with general guard

$$\tau(X): \begin{vmatrix} 2x_1 + x_2 + \xi &\leq 6\\ x_2 - \xi &\leq 2\\ 0 \leq \xi &\leq 1 \end{vmatrix} \to \begin{vmatrix} x_1' = x_1 + \xi + 1\\ x_2' = x_2 + 1 \end{vmatrix}$$

Convex hull of the exact result

• Widening with delay *N* = 0 and 3 descending iterations



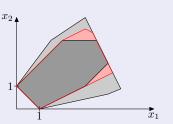
Widening

- Delayed by N iterations
- Widening until convergence
- Oescending iterations

Comparison: Translation with general guard

$$\tau(X): \begin{vmatrix} 2x_1 + x_2 + \xi &\leq 6\\ x_2 - \xi &\leq 2\\ 0 \leq \xi &\leq 1 \end{vmatrix} \quad X_1' = x_1 + \xi + 1\\ x_2' = x_2 + 1 \end{vmatrix}$$

- Convex hull of the exact result
- Widening with delay *N* = 0 and 3 descending iterations
- Abstract acceleration

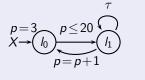


Comparison: Nested loops

$$\tau: \begin{vmatrix} 2x_1 + 2x_2 &\leq p\\ 0 \leq \xi &\leq 1 \end{vmatrix} \rightarrow \begin{vmatrix} x_1' = x_1 + \xi + 1\\ x_2' = \xi\\ p' = p \end{vmatrix}$$

• Widening with delay *N* = 2 and one descending iteration:

 $\{0 \le x_1 \land 1 \le x_1 + x_2 \land 3 \le p\}$



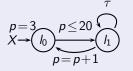
Comparison with Widening II

Comparison: Nested loops

$$\tau: \left| \begin{array}{ccc} 2x_1 + 2x_2 & \leq & p \\ 0 \leq \xi & \leq & 1 \end{array} \right| \rightarrow \left| \begin{array}{ccc} x_1' = x_1 + \xi + \\ x_2' = \xi \\ p' = p \end{array} \right|$$

- Widening with delay N = 2 and one descending iteration: {0 ≤ x₁ ∧ 1 ≤ x₁ + x₂ ∧ 3 ≤ p}
- Inner loop with abstract acceleration. Outer loop: widening with one descending iteration:

 $\{ 0 \le x_1 \le 12 \land 0 \le x_2 \le 3 \land 3 \le p \le 20 \}$ (over-approximated)



<ロ> (日) (日) (日) (日) (日)

Conclusion

Abstract acceleration with numerical inputs

Acceleration vs. Widening

- Different principles:
 - Acceleration is based on the program structure, whereas
 - widening is based on the structure of the abstract domain.
- Approximations are more predictible:

Widening is not monotonous – acceleration is.

- Acceleration of inner loops facilitates widening in nested loops situations.
 - Acceleration also applied in descending iterations.
- Widening needed for
 - handling non-accelerable transitions
 - ensuring convergence in the case of multiple self-loops and nested loops

Outline

Introduction

2 Abstract Acceleration with Numerical Inputs

- Abstract Acceleration
- Abstract Acceleration with Numerical Inputs
- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

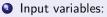
Conclusion

<ロト <問ト < 臣ト < 臣

Application of Acceleration to Data-Flow Programs

Application to e.g. Lustre programs?

Issues



Boolean variables:

Encoded as non-determinism in the control flow graph (CFG)

- Numerical variables $\sqrt{}$
- Implicit control flow → Discover a CFG w.r.t. Boolean variables

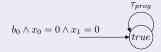
Conventional approach:

- **Q** Reduction to numerical automaton by *enumeration* of Boolean states
- $\bigcirc \rightarrow$ Combinatorial explosion

Our approach:

- Symbolic handling of Boolean variables
- Approximation method: Decoupling
- Ontrolled partitioning using heuristics

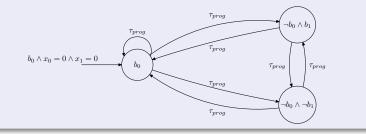
Transformations



Conventional Approach

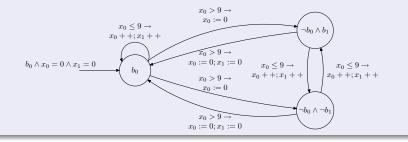
Transformations

Boolean state space enumeration



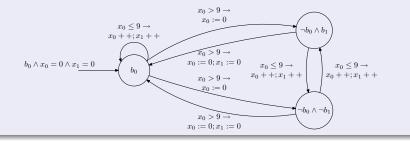
Transformations

- Boolean state space enumeration
- Transition refinement by source and destination location



Transformations

- Boolean state space enumeration
- Transition refinement by source and destination location
- Selimination of Boolean input variables

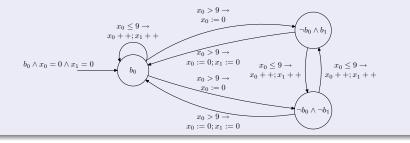


Synchron'10

19 / 29

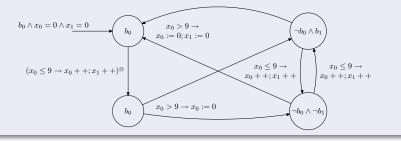
Transformations

- Boolean state space enumeration
- Transition refinement by source and destination location
- Elimination of Boolean input variables
- Convexification of numerical guards



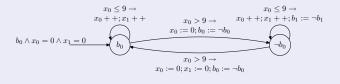
Transformations

- Boolean state space enumeration
- Transition refinement by source and destination location
- Elimination of Boolean input variables
- Convexification of numerical guards
- "Flattening" of accelerable self-loops



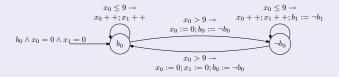
Intuition: Self-loops with Boolean Identity

• Partition until we have a CFG where the Boolean part of the transition function is the identity.



Intuition: Self-loops with Boolean Identity

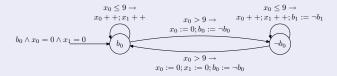
• Partition until we have a CFG where the Boolean part of the transition function is the identity.



• Partitioning not necessary at all!!!

Intuition: Self-loops with Boolean Identity

• Partition until we have a CFG where the Boolean part of the transition function is the identity.

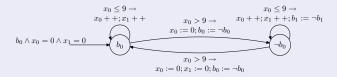


• Partitioning not necessary at all!!!

Acceleration without Partitioning

Intuition: Self-loops with Boolean Identity

• Partition until we have a CFG where the Boolean part of the transition function is the identity.

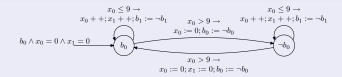


• Partitioning not necessary at all!!!

Acceleration without Partitioning

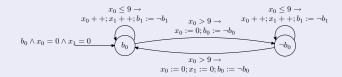
• Partitioning and acceleration are orthogonal!

Problem



● Boolean identity too restrictive → Rarely applicable

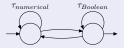
Problem



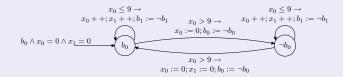
• Boolean identity too restrictive \rightarrow Rarely applicable

Idea: Decoupling

 \bullet Decoupling numerical and Boolean parts of the transition function \rightarrow approximation



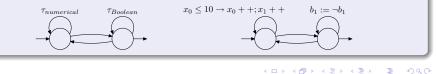
Problem



• Boolean identity too restrictive \rightarrow Rarely applicable

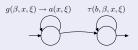
Idea: Decoupling

 \bullet Decoupling numerical and Boolean parts of the transition function \rightarrow approximation



Decoupling Variants

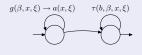
• Numerical equations independent of Boolean equations

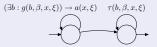


Decoupling Variants

• Numerical equations independent of Boolean equations

• Inputization of Boolean state variables in Numerical equations



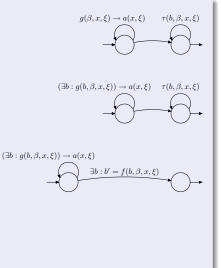


Decoupling Variants

• Numerical equations independent of Boolean equations

 Inputization of Boolean state variables in Numerical equations

 Inputization of unstable Boolean state variables in Boolean equations

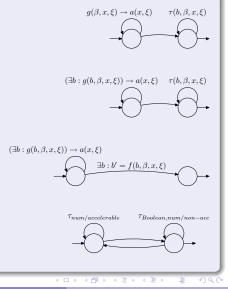


Decoupling Variants

• Numerical equations independent of Boolean equations

 Inputization of Boolean state variables in Numerical equations

- Inputization of unstable Boolean state variables in Boolean equations
- Decoupling accelerable and non-accelerable equations



Outline

Introduction

2 Abstract Acceleration with Numerical Inputs

- Abstract Acceleration
- Abstract Acceleration with Numerical Inputs
- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

Conclusion

<ロト <問ト < 臣ト < 臣

Why partitioning?

Gain in precision!

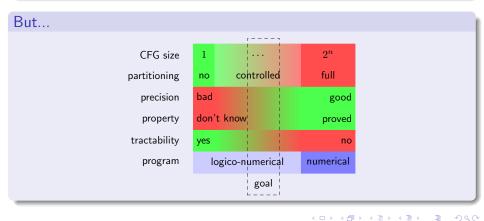
- More targeted application of widening (at loop heads only)
- Section 2 Explicit disjunctive abstract domain → Less precision loss in unions

Partitioning

Why partitioning?

Gain in precision!

- More targeted application of widening (at loop heads only)
- **2** Explicit *disjunctive* abstract domain \rightarrow Less precision loss in unions



Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

$$b_1 \sim b_2 \Leftrightarrow \left\{ egin{array}{ll} orall eta, \mathcal{C} : & \mathcal{A}(b_1, eta, \mathcal{C}) \Rightarrow \mathcal{A}(b_2, eta, \mathcal{C}) \wedge f^{ imes}(b_1, eta, \mathcal{C}) = f^{ imes}(b_2, eta, \mathcal{C}) \ and & vice \ versa \end{array}
ight.$$

Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions Intuition: Same set of actions executed in the same Boolean states. $b_1 \sim b_2 \Leftrightarrow \left\{ egin{array}{ll} orall eta, \mathcal{C} : & \mathcal{A}(b_1, eta, \mathcal{C}) \Rightarrow \mathcal{A}(b_2, eta, \mathcal{C}) \wedge f^{\times}(b_1, eta, \mathcal{C}) = f^{\times}(b_2, eta, \mathcal{C}) \ and & vice \ versa \end{array} ight.$ Example: $\begin{aligned} x_0' &= \left\{ \begin{array}{ll} x_0+1 & \mathrm{if} \ \neg b_0 \wedge \neg b_1 \wedge x_0 \leq 10 \wedge \beta \vee b_0 \wedge \neg b_1 \wedge x_0 \leq 20 \\ 0 & \mathrm{if} \ \neg b_0 \wedge \neg b_1 \wedge x_0 > 10 \wedge x_1 > 10 \\ x_0 & \mathrm{else} \end{array} \right. \\ x_1' &= \left\{ \begin{array}{ll} x_1+1 & \mathrm{if} \ \neg b_0 \wedge \neg b_1 \wedge x_1 \leq 10 \wedge \neg \beta \\ x_1 & \mathrm{else} \end{array} \right. \\ x_2' &= \left\{ \begin{array}{ll} x_2+1 & \mathrm{if} \ \neg b_0 \wedge \neg b_1 \wedge (x_0 \leq 10 \wedge \beta \vee x_1 \leq 10 \wedge \neg \beta) \vee b_0 \wedge \neg b_1 \\ x_2 & \mathrm{else} \end{array} \right. \end{aligned}$

Idea: Equivalence classes w.r.t. numerical actions

• Intuition: Same set of actions executed in the same Boolean states.

 $b_1 \sim b_2 \Leftrightarrow \left\{ egin{array}{ll} orall eta, \mathcal{C} : & \mathcal{A}(b_1, eta, \mathcal{C}) \Rightarrow \mathcal{A}(b_2, eta, \mathcal{C}) \wedge f^{\star}(b_1, eta, \mathcal{C}) = f^{\star}(b_2, eta, \mathcal{C}) \ and & vice \ versa \end{array}
ight.$

Example:

$$\begin{bmatrix} \neg b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 10 \land \beta \\ (x_0, & x_1 + 1, & x_2 + 1) & \text{if } x_1 \le 10 \land \neg \beta \\ (0, & x_1, & x_2) & \text{if } x_0 > 10 \land x_1 > 10 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 20 \\ (x_0, & x_1, & x_2 + 1) & \text{if } x_0 > 20 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0, & x_1, & x_2 \end{pmatrix} & \text{else} \end{cases}$$

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

 $b_1 \sim b_2 \Leftrightarrow \left\{ egin{array}{ll} orall eta, \mathcal{C} : & \mathcal{A}(b_1, eta, \mathcal{C}) \Rightarrow \mathcal{A}(b_2, eta, \mathcal{C}) \wedge f^{\times}(b_1, eta, \mathcal{C}) = f^{\times}(b_2, eta, \mathcal{C}) \ and & vice \ versa \end{array}
ight.$

• Example:

$$\begin{bmatrix} \neg b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 10 \land \beta \\ (x_0, & x_1 + 1, & x_2 + 1) & \text{if } x_1 \le 10 \land \neg \beta \\ (0, & x_1, & x_2) & \text{if } x_0 > 10 \land x_1 > 10 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 20 \\ (x_0, & x_1, & x_2 + 1) & \text{if } x_0 \ge 20 \\ (x_0, & x_1, & x_2 + 1) & \text{if } x_0 > 20 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0, & x_1, & x_2 \end{pmatrix} & \text{else} \end{cases}$$

Nice property: Numerical equations independent of Boolean equations.

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

 $b_1 \sim b_2 \Leftrightarrow \left\{ egin{array}{ll} orall eta, \mathcal{C} : & \mathcal{A}(b_1, eta, \mathcal{C}) \Rightarrow \mathcal{A}(b_2, eta, \mathcal{C}) \wedge f^{\times}(b_1, eta, \mathcal{C}) = f^{\times}(b_2, eta, \mathcal{C}) \ and & vice \ versa \end{array}
ight.$

• Example:

$$\begin{bmatrix} \neg b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 10 \land \beta \\ (x_0, & x_1 + 1, & x_2 + 1) & \text{if } x_1 \le 10 \land \neg \beta \\ (0, & x_1, & x_2) & \text{if } x_0 > 10 \land x_1 > 10 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 20 \\ (x_0, & x_1, & x_2 + 1) & \text{if } x_0 > 20 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0, & x_1, & x_2 \end{pmatrix} & \text{else} \end{cases}$$

- Nice property: Numerical equations independent of Boolean equations.
- Variants: Different quantifications

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

 $b_1 \sim b_2 \Leftrightarrow \left\{ egin{array}{ll} orall eta, \mathcal{C} : & \mathcal{A}(b_1, eta, \mathcal{C}) \Rightarrow \mathcal{A}(b_2, eta, \mathcal{C}) \wedge f^{\times}(b_1, eta, \mathcal{C}) = f^{\times}(b_2, eta, \mathcal{C}) \ and & vice \ versa \end{array}
ight.$

Example:

$$\begin{bmatrix} \neg b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 10 \land \beta \\ (x_0, & x_1 + 1, & x_2 + 1) & \text{if } x_1 \le 10 \land \neg \beta \\ (0, & x_1, & x_2) & \text{if } x_0 > 10 \land x_1 > 10 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land \neg b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0 + 1, & x_1, & x_2 + 1) & \text{if } x_0 \le 20 \\ (x_0, & x_1, & x_2 + 1) & \text{if } x_0 > 20 \\ (x_0, & x_1, & x_2) & \text{else} \end{cases}$$

$$\begin{bmatrix} b_0 \land b_1 \end{bmatrix} \quad (x'_0, x'_1, x'_2) = \begin{cases} (x_0, & x_1, & x_2 \end{pmatrix} & \text{else} \end{cases}$$

- Nice property: Numerical equations independent of Boolean equations.
- Variants: Different quantifications
- Refinement by Boolean backward bisimulation

Some Experimental Results

- \bullet Tool ${\rm NBACCEL}$ based on the abstract domain library ${\rm BddApron}$
- Small, but difficult benchmarks

	Boolean states	time NBACCEL	time NBAC
Escalator 1	9	0.54	-
Escalator 2	259	3.98	1.48
Gate 1	5	0.54	-
Traffic 1	13	0.45	3.52
Traffic 2	16	1.74	-

• Larger benchmarks

	Boolean states	time NBACCEL	time NBAC
LCM quest 0a	72	0.07	0.06
LCM quest 0b	541	0.20	0.31
LCM quest 0c	16432	0.32	0.49
LCM quest 1	32992	2.23	3.46
LCM quest 2	33013	5.22	15.14

-

イロン 不得 とうぼう イ

Outline

Introduction

2 Abstract Acceleration with Numerical Inputs

- Abstract Acceleration
- Abstract Acceleration with Numerical Inputs
- Translations with Simple Guards
- Translations with Resets and Simple Guards
- General Guards
- Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs

- Conventional Approach
- Decoupling
- Partitioning
- Experimental Results

Conclusion

Conclusion

Application of abstract acceleration to logico-numerical data-flow programs

Decoupling and Partitioning

- Acceleration can be applied independently of partitioning.
- Decoupling enlarges the applicability of acceleration.
- Partitioning heuristics w.r.t. numerical actions

Conclusion

Application of abstract acceleration to logico-numerical data-flow programs

Decoupling and Partitioning

- Acceleration can be applied independently of partitioning.
- Decoupling enlarges the applicability of acceleration.
- Partitioning heuristics w.r.t. numerical actions

Current and Future Work

- Combination with dynamic partitioning (also using numerical constraints)
- Backward acceleration
- Application to discretized hybrid systems
 - Non-standard semantics (Benveniste, Caillaud and Pouzet 2010)

Using Abstract Acceleration in the Verification of Logico-Numerical Data-Flow Programs

Peter Schrammel and Bertrand Jeannet {peter.schrammel,bertrand.jeannet}@inria.fr

INRIA Rhône-Alpes

Synchron'10