
Using Abstract Acceleration in the Verification of

Logico-Numerical Data-Flow Programs

Peter Schrammel and Bertrand Jeannet
{peter.schrammel,bertrand.jeannet}@inria.fr

INRIA Rhône-Alpes

Synchron’10

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 1 / 29

Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

Abstract interpretation (Cousot and Cousot 1977)

◮ Termination, but over-approximation

Acceleration (Finkel and Leroux 2002)

◮ Exact result, but no guarantee for termination

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 2 / 29

Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

Abstract interpretation (Cousot and Cousot 1977)

◮ Termination, but over-approximation

Acceleration (Finkel and Leroux 2002)

◮ Exact result, but no guarantee for termination

Acceleration

Method for treating loops in numerical automata

Replace a loop transition τ by its transitive closure τ∗

c

τ

=⇒ c′ c′′
τ∗

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 2 / 29

Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

Abstract interpretation (Cousot and Cousot 1977)

◮ Termination, but over-approximation

Acceleration (Finkel and Leroux 2002)

◮ Exact result, but no guarantee for termination

Acceleration

Method for treating loops in numerical automata

Replace a loop transition τ by its transitive closure τ∗

c

τ

=⇒ c′ c′′
τ∗

Abstract Acceleration (Gonnord and Halbwachs 2006)

Computation of the convex hull τ⊗ of the exact result τ∗

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 2 / 29

Introduction

Application to Logico-Numerical Data-Flow Programs

Application to e.g. Lustre programs?

Issues
1 Input variables:

◮ Boolean variables:
⋆ Encoded as non-determinism in the control flow graph (CFG)

◮ Numerical variables

2 Implicit control flow → Discover a CFG w.r.t. Boolean variables
1 Conventional approach:

1 Reduction to numerical automaton by enumeration of Boolean states
2 → Combinatorial explosion

2 Our approach:

1 Symbolic handling of Boolean variables
2 Approximation method: Decoupling
3 Controlled partitioning using heuristics

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 3 / 29

Abstract Acceleration with Numerical Inputs

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 4 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 5 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Abstract Acceleration

Abstract Acceleration (Gonnord and Halbwachs 2006)

Computation of a convex polyhedron τ⊗ close to the exact result τ∗

Acceleration of self-loops: τ : Ax ≤ v
︸ ︷︷ ︸

guard G

→ x′ = Cx + d
︸ ︷︷ ︸

action

c

τ

=⇒ c′ c′′
τ⊗

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 6 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Abstract Acceleration

Abstract Acceleration (Gonnord and Halbwachs 2006)

Computation of a convex polyhedron τ⊗ close to the exact result τ∗

Acceleration of self-loops: τ : Ax ≤ v
︸ ︷︷ ︸

guard G

→ x′ = Cx + d
︸ ︷︷ ︸

action

c

τ

=⇒ c′ c′′
τ⊗

Accelerable Transitions

Resets: G → x := d

Translations: G → x := x + d

Translations with resets: G → x := Cx + d where
C = diag(. . . , ci , . . .), ci ∈ {0, 1}

Periodic affine transformations: G → x := Cx + d where ∃p > 0 : Cp = C2p

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 6 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X) = X ⊔
(
((X ⊓ G) ր d) ⊓ G(x − d)

)

τ : G → x′ = x + d

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 7 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X) = X ⊔
(
((X ⊓G) ր d) ⊓ G(x − d)

)

τ : G → x′ = x + d

X

G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 7 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X) = X ⊔
(
((X ⊓ G) ր d) ⊓ G(x − d)

)

τ : G → x′ = x + d

X

G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 7 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X) = X ⊔
(
((X ⊓ G) ր d) ⊓ G(x − d)

)

τ : G → x′ = x + d

X

d

G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 7 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X) = X ⊔
(

((X ⊓ G) ր d) ⊓ G(x − d))

τ : G → x′ = x + d

X

d

G

G (x – d)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 7 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X) = X ⊔
(
((X ⊓ G) ր d) ⊓ G(x − d)

)

τ : G → x′ = x + d

X

G

G (x – d)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 7 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration with Numerical Inputs

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 8 / 29

Abstract Acceleration with Numerical Inputs Abstract Acceleration with Numerical Inputs

Abstract Acceleration with Numerical Inputs

Extension to numerical inputs ξ:

τ :

(
A L

0 J

) (
x

ξ

)

≤

(
v

k

)

︸ ︷︷ ︸

Ax+Lξ≤v ∧ Jξ≤k

→ x′ =
(

C T
)
(

x

ξ

)

+ u

︸ ︷︷ ︸

x′=Cx+Tξ+u

L = 0 (“simple guards”):
◮ → No interaction between inputs and state variables in the guard
◮ Translations
◮ Translations with resets

L 6= 0 (“general guards”):
◮ No more accelerable → approximated solution

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 9 / 29

Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

Example: τ(X) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 10 / 29

Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G) + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

Example: τ(X) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ

d1

d2

ξ

1

1

J ξ ≤ k

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 10 / 29

Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G) + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

Example: τ(X) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ

d1

d2

ξ

1

1

D

J ξ ≤ k

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 10 / 29

Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G) + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

τ⊗(X) = X ⊔ τ
(
(X ⊓G) ր D

)

Example: τ(X) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ

d1

d2

ξ

1

1

D

J ξ ≤ k

x1

x2

1

1
X

G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 10 / 29

Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G) + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

τ⊗(X) = X ⊔ τ
(

(X ⊓ G) ր D
)

Example: τ(X) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ

d1

d2

ξ

1

1

D

J ξ ≤ k

x1

x2

1

1

G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 10 / 29

Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G) + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

τ⊗(X) = X ⊔ τ
(
(X ⊓ G) ր D

)

Example: τ(X) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ

d1

d2

ξ

1

1

D

J ξ ≤ k

x1

x2

1

1

G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 10 / 29

Abstract Acceleration with Numerical Inputs Translations with Resets and Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Resets and Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = Cx + Tξ + u
︸ ︷︷ ︸

D

Example: τ(X) :

∣
∣
∣
∣

x1 + 2x2 ≤ 3
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = ξ

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 11 / 29

Abstract Acceleration with Numerical Inputs Translations with Resets and Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Resets and Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = Cx + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G)t + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

Example: τ(X) :

∣
∣
∣
∣

x1 + 2x2 ≤ 3
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = ξ

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 11 / 29

Abstract Acceleration with Numerical Inputs Translations with Resets and Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Resets and Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = Cx + Tξ + u
︸ ︷︷ ︸

D

τ(X) = (X ⊓ G)t + D D = {d | ∃ξ : Jξ ≤ k ∧ d = Tξ + u}

τ⊗(X) = X ⊔ τ(X) ⊔ τ
((

(τ(X) ⊓ G)t ր Dt
)

+ Dr
)

Example: τ(X) :

∣
∣
∣
∣

x1 + 2x2 ≤ 3
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = ξ

x1

x2

1

1
G

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 11 / 29

Abstract Acceleration with Numerical Inputs General Guards

Abstract Acceleration with Numerical Inputs

General Guards

τ :

(
A L

0 J

) (
x

ξ

)

≤

(
v

k

)

→ x′ =
(

C T
)
(

x

ξ

)

+ u

L 6= 0 =⇒ can code a general affine transformation by a reset to input:
◮ (Ax ≤ v) → x′ = Cx + d ⇐⇒ (Ax ≤ v ∧ ξ = Cx + d) → x′ = ξ

→ Not accelerable

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 12 / 29

Abstract Acceleration with Numerical Inputs General Guards

Abstract Acceleration with Numerical Inputs

General Guards

τ :

(
A L

0 J

) (
x

ξ

)

≤

(
v

k

)

→ x′ =
(

C T
)
(

x

ξ

)

+ u

L 6= 0 =⇒ can code a general affine transformation by a reset to input:
◮ (Ax ≤ v) → x′ = Cx + d ⇐⇒ (Ax ≤ v ∧ ξ = Cx + d) → x′ = ξ

→ Not accelerable

Weakened Guards

G = (∃ξ : G)
︸ ︷︷ ︸

A′x≤v′

∧ (∃x : G)
︸ ︷︷ ︸

J′ξ≤k′

Resort to methods for translation and translation/reset

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 12 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 13 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 14 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Comparison: Translation with general guard

τ(X) :

∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6
x2 − ξ ≤ 2
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = x2 + 1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 14 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Comparison: Translation with general guard

τ(X) :

∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6
x2 − ξ ≤ 2
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = x2 + 1

x1

x2

1

1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 14 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Comparison: Translation with general guard

τ(X) :

∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6
x2 − ξ ≤ 2
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = x2 + 1

Convex hull of the exact result

x1

x2

1

1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 14 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Comparison: Translation with general guard

τ(X) :

∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6
x2 − ξ ≤ 2
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = x2 + 1

Convex hull of the exact result

Widening with delay N = 0 and
3 descending iterations

x1

x2

1

1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 14 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Comparison: Translation with general guard

τ(X) :

∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6
x2 − ξ ≤ 2
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = x2 + 1

Convex hull of the exact result

Widening with delay N = 0 and
3 descending iterations

Abstract acceleration

x1

x2

1

1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 14 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening II

Comparison: Nested loops

τ :

∣
∣
∣
∣

2x1 + 2x2 ≤ p

0 ≤ ξ ≤ 1
→

∣
∣
∣
∣
∣
∣

x ′
1 = x1+ξ+1

x ′
2 = ξ

p′ = p

Widening with delay N = 2 and one
descending iteration:
{0 ≤ x1 ∧ 1 ≤ x1 + x2 ∧ 3 ≤ p}

X l0 l1

p=3 p≤20

τ

p=p+1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 15 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening II

Comparison: Nested loops

τ :

∣
∣
∣
∣

2x1 + 2x2 ≤ p

0 ≤ ξ ≤ 1
→

∣
∣
∣
∣
∣
∣

x ′
1 = x1+ξ+1

x ′
2 = ξ

p′ = p

Widening with delay N = 2 and one
descending iteration:
{0 ≤ x1 ∧ 1 ≤ x1 + x2 ∧ 3 ≤ p}

Inner loop with abstract acceleration.
Outer loop: widening with one descending
iteration:
{0 ≤ x1 ≤ 12 ∧ 0 ≤ x2 ≤ 3 ∧ 3 ≤ p ≤ 20}
(over-approximated)

X l0 l1

p=3 p≤20

τ

p=p+1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 15 / 29

Abstract Acceleration with Numerical Inputs Comparison with Widening

Conclusion

Abstract acceleration with numerical inputs

Acceleration vs. Widening

Different principles:
◮ Acceleration is based on the program structure, whereas
◮ widening is based on the structure of the abstract domain.

Approximations are more predictible:
◮ Widening is not monotonous – acceleration is.

Acceleration of inner loops facilitates widening in nested loops situations.
◮ Acceleration also applied in descending iterations.

Widening needed for
◮ handling non-accelerable transitions
◮ ensuring convergence in the case of multiple self-loops and nested loops

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 16 / 29

Application to Logico-Numerical Data-Flow Programs

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 17 / 29

Application to Logico-Numerical Data-Flow Programs

Application of Acceleration to Data-Flow Programs

Application to e.g. Lustre programs?

Issues
1 Input variables:

◮ Boolean variables:
⋆ Encoded as non-determinism in the control flow graph (CFG)

◮ Numerical variables
√

2 Implicit control flow → Discover a CFG w.r.t. Boolean variables
1 Conventional approach:

1 Reduction to numerical automaton by enumeration of Boolean states
2 → Combinatorial explosion

2 Our approach:

1 Symbolic handling of Boolean variables
2 Approximation method: Decoupling
3 Controlled partitioning using heuristics

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 18 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations

true
b0 ∧ x0 = 0 ∧ x1 = 0

τprog

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 19 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations
1 Boolean state space enumeration

b0

¬b0 ∧ b1

¬b0 ∧ ¬b1

b0 ∧ x0 = 0 ∧ x1 = 0

τprog

τprog

τprog

τprog

τprog

τprogτprog

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 19 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations
1 Boolean state space enumeration

2 Transition refinement by source and destination location

b0

¬b0 ∧ b1

¬b0 ∧ ¬b1

b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 > 9 →
x0 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 19 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations
1 Boolean state space enumeration

2 Transition refinement by source and destination location

3 Elimination of Boolean input variables

b0

¬b0 ∧ b1

¬b0 ∧ ¬b1

b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 > 9 →
x0 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 19 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations
1 Boolean state space enumeration

2 Transition refinement by source and destination location

3 Elimination of Boolean input variables

4 Convexification of numerical guards

b0

¬b0 ∧ b1

¬b0 ∧ ¬b1

b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 > 9 →
x0 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 19 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations
1 Boolean state space enumeration

2 Transition refinement by source and destination location

3 Elimination of Boolean input variables

4 Convexification of numerical guards

5 “Flattening” of accelerable self-loops

b0 ¬b0 ∧ b1

¬b0 ∧ ¬b1b0

(x0 ≤ 9 → x0 + +;x1 + +)⊗

b0 ∧ x0 = 0 ∧ x1 = 0

x0 > 9 → x0 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 19 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Partitioning and Acceleration

Intuition: Self-loops with Boolean Identity

Partition until we have a CFG where the Boolean part of the transition
function is the identity.

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 20 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Partitioning and Acceleration

Intuition: Self-loops with Boolean Identity

Partition until we have a CFG where the Boolean part of the transition
function is the identity.

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Partitioning not necessary at all!!!

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 20 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Partitioning and Acceleration

Intuition: Self-loops with Boolean Identity

Partition until we have a CFG where the Boolean part of the transition
function is the identity.

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Partitioning not necessary at all!!!

Acceleration without Partitioning

true
b0 ∧ x0 = 0 ∧ x1 = 0

b0 ∧ x0 ≤ 9 → x0 + +;x1 + +

¬b0 ∨ x0 > 9 → . . .

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 20 / 29

Application to Logico-Numerical Data-Flow Programs Conventional Approach

Partitioning and Acceleration

Intuition: Self-loops with Boolean Identity

Partition until we have a CFG where the Boolean part of the transition
function is the identity.

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Partitioning not necessary at all!!!

Acceleration without Partitioning

true
b0 ∧ x0 = 0 ∧ x1 = 0

b0 ∧ x0 ≤ 9 → x0 + +;x1 + +

¬b0 ∨ x0 > 9 → . . .

Partitioning and acceleration are orthogonal!
Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 20 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling

Problem

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Boolean identity too restrictive → Rarely applicable

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 21 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling

Problem

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Boolean identity too restrictive → Rarely applicable

Idea: Decoupling

Decoupling numerical and Boolean parts of the transition function →
approximation

τnumerical τBoolean

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 21 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling

Problem

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Boolean identity too restrictive → Rarely applicable

Idea: Decoupling

Decoupling numerical and Boolean parts of the transition function →
approximation

τnumerical τBoolean x0 ≤ 10 → x0 + +;x1 + + b1 := ¬b1

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 21 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling Variants

Numerical equations independent
of Boolean equations

g(β, x, ξ) → a(x, ξ) τ(b, β, x, ξ)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 22 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling Variants

Numerical equations independent
of Boolean equations

g(β, x, ξ) → a(x, ξ) τ(b, β, x, ξ)

Inputization of Boolean state
variables in Numerical equations

(∃b : g(b, β, x, ξ)) → a(x, ξ) τ(b, β, x, ξ)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 22 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling Variants

Numerical equations independent
of Boolean equations

g(β, x, ξ) → a(x, ξ) τ(b, β, x, ξ)

Inputization of Boolean state
variables in Numerical equations

(∃b : g(b, β, x, ξ)) → a(x, ξ) τ(b, β, x, ξ)

Inputization of unstable Boolean
state variables in Boolean equations

(∃b : g(b, β, x, ξ)) → a(x, ξ)

∃b : b′ = f(b, β, x, ξ)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 22 / 29

Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling Variants

Numerical equations independent
of Boolean equations

g(β, x, ξ) → a(x, ξ) τ(b, β, x, ξ)

Inputization of Boolean state
variables in Numerical equations

(∃b : g(b, β, x, ξ)) → a(x, ξ) τ(b, β, x, ξ)

Inputization of unstable Boolean
state variables in Boolean equations

(∃b : g(b, β, x, ξ)) → a(x, ξ)

∃b : b′ = f(b, β, x, ξ)

Decoupling accelerable and
non-accelerable equations

τnum/accelerable τBoolean,num/non−acc

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 22 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 23 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Why partitioning?

Gain in precision!

1 More targeted application of widening (at loop heads only)

2 Explicit disjunctive abstract domain → Less precision loss in unions

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 24 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Why partitioning?

Gain in precision!

1 More targeted application of widening (at loop heads only)

2 Explicit disjunctive abstract domain → Less precision loss in unions

But...

CFG size 1 · · · 2n

partitioning no controlled full

precision bad good

property don’t know proved

tractability yes no

program logico-numerical numerical

goal

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 24 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 25 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa

Example:

x ′
0 =







x0 + 1 if ¬b0 ∧ ¬b1 ∧ x0 ≤ 10 ∧ β ∨ b0 ∧ ¬b1 ∧ x0 ≤ 20
0 if ¬b0 ∧ ¬b1 ∧ x0 > 10 ∧ x1 > 10
x0 else

x ′
1 =

{
x1 + 1 if ¬b0 ∧ ¬b1 ∧ x1 ≤ 10 ∧ ¬β

x1 else

x ′
2 =

{
x2 + 1 if ¬b0 ∧ ¬b1 ∧ (x0 ≤ 10 ∧ β ∨ x1 ≤ 10 ∧ ¬β) ∨ b0 ∧ ¬b1

x2 else

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 25 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa

Example:

[¬b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 10 ∧ β

(x0, x1 + 1, x2 + 1) if x1 ≤ 10 ∧ ¬β

(0, x1, x2) if x0 > 10 ∧ x1 > 10
(x0, x1, x2) else

[b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 20
(x0, x1, x2 + 1) if x0 > 20
(x0, x1, x2) else

[b0 ∧ b1] (x ′
0, x

′
1, x

′
2) =

{
(x0, x1, x2)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 25 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa

Example:

[¬b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 10 ∧ β

(x0, x1 + 1, x2 + 1) if x1 ≤ 10 ∧ ¬β

(0, x1, x2) if x0 > 10 ∧ x1 > 10
(x0, x1, x2) else

[b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 20
(x0, x1, x2 + 1) if x0 > 20
(x0, x1, x2) else

[b0 ∧ b1] (x ′
0, x

′
1, x

′
2) =

{
(x0, x1, x2)

Nice property: Numerical equations independent of Boolean equations.

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 25 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa

Example:

[¬b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 10 ∧ β

(x0, x1 + 1, x2 + 1) if x1 ≤ 10 ∧ ¬β

(0, x1, x2) if x0 > 10 ∧ x1 > 10
(x0, x1, x2) else

[b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 20
(x0, x1, x2 + 1) if x0 > 20
(x0, x1, x2) else

[b0 ∧ b1] (x ′
0, x

′
1, x

′
2) =

{
(x0, x1, x2)

Nice property: Numerical equations independent of Boolean equations.

Variants: Different quantifications

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 25 / 29

Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa

Example:

[¬b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 10 ∧ β

(x0, x1 + 1, x2 + 1) if x1 ≤ 10 ∧ ¬β

(0, x1, x2) if x0 > 10 ∧ x1 > 10
(x0, x1, x2) else

[b0 ∧ ¬b1] (x ′
0, x

′
1, x

′
2) =







(x0 + 1, x1, x2 + 1) if x0 ≤ 20
(x0, x1, x2 + 1) if x0 > 20
(x0, x1, x2) else

[b0 ∧ b1] (x ′
0, x

′
1, x

′
2) =

{
(x0, x1, x2)

Nice property: Numerical equations independent of Boolean equations.

Variants: Different quantifications

Refinement by Boolean backward bisimulation

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 25 / 29

Application to Logico-Numerical Data-Flow Programs Experimental Results

Some Experimental Results

Tool nbACCel based on the abstract domain library BddApron

Small, but difficult benchmarks

Boolean states time nbACCel time Nbac

Escalator 1 9 0.54 –
Escalator 2 259 3.98 1.48
Gate 1 5 0.54 –
Traffic 1 13 0.45 3.52
Traffic 2 16 1.74 –

Larger benchmarks

Boolean states time nbACCel time Nbac

LCM quest 0a 72 0.07 0.06
LCM quest 0b 541 0.20 0.31
LCM quest 0c 16432 0.32 0.49
LCM quest 1 32992 2.23 3.46
LCM quest 2 33013 5.22 15.14

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 26 / 29

Conclusion

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 27 / 29

Conclusion

Conclusion

Application of abstract acceleration to logico-numerical data-flow programs

Decoupling and Partitioning

Acceleration can be applied independently of partitioning.

Decoupling enlarges the applicability of acceleration.

Partitioning heuristics w.r.t. numerical actions

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 28 / 29

Conclusion

Conclusion

Application of abstract acceleration to logico-numerical data-flow programs

Decoupling and Partitioning

Acceleration can be applied independently of partitioning.

Decoupling enlarges the applicability of acceleration.

Partitioning heuristics w.r.t. numerical actions

Current and Future Work

Combination with dynamic partitioning (also using numerical constraints)

Backward acceleration

Application to discretized hybrid systems
◮ Non-standard semantics (Benveniste, Caillaud and Pouzet 2010)

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 28 / 29

Conclusion

Using Abstract Acceleration in the Verification of

Logico-Numerical Data-Flow Programs

Peter Schrammel and Bertrand Jeannet
{peter.schrammel,bertrand.jeannet}@inria.fr

INRIA Rhône-Alpes

Synchron’10

Schrammel and Jeannet (INRIA) Abstract acceleration of logico-numerical programs Synchron’10 29 / 29

	Introduction
	Abstract Acceleration with Numerical Inputs
	Abstract Acceleration
	Abstract Acceleration with Numerical Inputs
	Translations with Simple Guards
	Translations with Resets and Simple Guards
	General Guards
	Comparison with Widening

	Application to Logico-Numerical Data-Flow Programs
	Conventional Approach
	Decoupling
	Partitioning
	Experimental Results

	Conclusion

