
Using Abstract Acceleration in the Verification of

Logico-Numerical Data-Flow Programs

Peter Schrammel and Bertrand Jeannet
{peter.schrammel,bertrand.jeannet}@inria.fr

INRIA Rhône-Alpes
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Introduction

Analysis of Numerical Programs

Reachability analysis of numerical programs

Abstract interpretation (Cousot and Cousot 1977)

◮ Termination, but over-approximation

Acceleration (Finkel and Leroux 2002)

◮ Exact result, but no guarantee for termination
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◮ Exact result, but no guarantee for termination

Acceleration

Method for treating loops in numerical automata

Replace a loop transition τ by its transitive closure τ∗

c

τ

=⇒ c′ c′′
τ∗

Abstract Acceleration (Gonnord and Halbwachs 2006)

Computation of the convex hull τ⊗ of the exact result τ∗
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Introduction

Application to Logico-Numerical Data-Flow Programs

Application to e.g. Lustre programs?

Issues
1 Input variables:

◮ Boolean variables:
⋆ Encoded as non-determinism in the control flow graph (CFG)

◮ Numerical variables

2 Implicit control flow → Discover a CFG w.r.t. Boolean variables
1 Conventional approach:

1 Reduction to numerical automaton by enumeration of Boolean states
2 → Combinatorial explosion

2 Our approach:

1 Symbolic handling of Boolean variables
2 Approximation method: Decoupling
3 Controlled partitioning using heuristics
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Abstract Acceleration with Numerical Inputs Abstract Acceleration

Abstract Acceleration

Abstract Acceleration (Gonnord and Halbwachs 2006)

Computation of a convex polyhedron τ⊗ close to the exact result τ∗

Acceleration of self-loops: τ : Ax ≤ v
︸ ︷︷ ︸

guard G

→ x′ = Cx + d
︸ ︷︷ ︸

action

c

τ

=⇒ c′ c′′
τ⊗
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Computation of a convex polyhedron τ⊗ close to the exact result τ∗

Acceleration of self-loops: τ : Ax ≤ v
︸ ︷︷ ︸

guard G

→ x′ = Cx + d
︸ ︷︷ ︸

action

c

τ

=⇒ c′ c′′
τ⊗

Accelerable Transitions

Resets: G → x := d

Translations: G → x := x + d

Translations with resets: G → x := Cx + d where
C = diag(. . . , ci , . . .), ci ∈ {0, 1}

Periodic affine transformations: G → x := Cx + d where ∃p > 0 : Cp = C2p
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Abstract Acceleration with Numerical Inputs Abstract Acceleration

Example

Translations

τ : G → x′ = x + d

Accelerated transition: τ⊗(X ) = X ⊔
(
((X ⊓ G) ր d) ⊓ G(x − d)

)

τ : G → x′ = x + d
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Abstract Acceleration with Numerical Inputs Abstract Acceleration with Numerical Inputs

Abstract Acceleration with Numerical Inputs

Extension to numerical inputs ξ:

τ :

(
A L

0 J

) (
x

ξ

)

≤

(
v

k

)

︸ ︷︷ ︸

Ax+Lξ≤v ∧ Jξ≤k

→ x′ =
(

C T
)
(

x

ξ

)

+ u

︸ ︷︷ ︸

x′=Cx+Tξ+u

L = 0 (“simple guards”):
◮ → No interaction between inputs and state variables in the guard
◮ Translations
◮ Translations with resets

L 6= 0 (“general guards”):
◮ No more accelerable → approximated solution
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Abstract Acceleration with Numerical Inputs Translations with Simple Guards

Abstract Acceleration with Numerical Inputs

Translations with Simple Guards

τ : Ax ≤ v
︸ ︷︷ ︸

G

∧ Jξ ≤ k → x′ = x + Tξ + u
︸ ︷︷ ︸

D

Example: τ(X ) :

∣
∣
∣
∣

x1 + x2 ≤ 4
1 ≤ ξ ≤ 2

→

∣
∣
∣
∣

x ′
1 = x1 + 2ξ − 1

x ′
2 = x2 + ξ
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Abstract Acceleration with Numerical Inputs General Guards

Abstract Acceleration with Numerical Inputs

General Guards

τ :

(
A L

0 J

) (
x

ξ

)

≤

(
v

k

)

→ x′ =
(

C T
)
(

x

ξ

)

+ u

L 6= 0 =⇒ can code a general affine transformation by a reset to input:
◮ (Ax ≤ v) → x′ = Cx + d ⇐⇒ (Ax ≤ v ∧ ξ = Cx + d) → x′ = ξ

→ Not accelerable
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General Guards

τ :

(
A L

0 J

) (
x

ξ

)

≤

(
v

k

)

→ x′ =
(

C T
)
(

x

ξ

)

+ u

L 6= 0 =⇒ can code a general affine transformation by a reset to input:
◮ (Ax ≤ v) → x′ = Cx + d ⇐⇒ (Ax ≤ v ∧ ξ = Cx + d) → x′ = ξ

→ Not accelerable

Weakened Guards

G = (∃ξ : G)
︸ ︷︷ ︸

A′x≤v′

∧ (∃x : G)
︸ ︷︷ ︸

J′ξ≤k′

Resort to methods for translation and translation/reset
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Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations
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Comparison with Widening I

Widening

1 Delayed by N iterations

2 Widening until convergence

3 Descending iterations

Comparison: Translation with general guard

τ(X ) :

∣
∣
∣
∣
∣
∣

2x1 + x2 + ξ ≤ 6
x2 − ξ ≤ 2
0 ≤ ξ ≤ 1

→

∣
∣
∣
∣

x ′
1 = x1 + ξ + 1

x ′
2 = x2 + 1
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Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening II

Comparison: Nested loops

τ :

∣
∣
∣
∣

2x1 + 2x2 ≤ p

0 ≤ ξ ≤ 1
→

∣
∣
∣
∣
∣
∣

x ′
1 = x1+ξ+1

x ′
2 = ξ

p′ = p

Widening with delay N = 2 and one
descending iteration:
{0 ≤ x1 ∧ 1 ≤ x1 + x2 ∧ 3 ≤ p}

X l0 l1

p=3 p≤20

τ

p=p+1
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Abstract Acceleration with Numerical Inputs Comparison with Widening

Comparison with Widening II

Comparison: Nested loops

τ :

∣
∣
∣
∣

2x1 + 2x2 ≤ p

0 ≤ ξ ≤ 1
→

∣
∣
∣
∣
∣
∣

x ′
1 = x1+ξ+1

x ′
2 = ξ

p′ = p

Widening with delay N = 2 and one
descending iteration:
{0 ≤ x1 ∧ 1 ≤ x1 + x2 ∧ 3 ≤ p}

Inner loop with abstract acceleration.
Outer loop: widening with one descending
iteration:
{0 ≤ x1 ≤ 12 ∧ 0 ≤ x2 ≤ 3 ∧ 3 ≤ p ≤ 20}
(over-approximated)

X l0 l1

p=3 p≤20

τ

p=p+1
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Abstract Acceleration with Numerical Inputs Comparison with Widening

Conclusion

Abstract acceleration with numerical inputs

Acceleration vs. Widening

Different principles:
◮ Acceleration is based on the program structure, whereas
◮ widening is based on the structure of the abstract domain.

Approximations are more predictible:
◮ Widening is not monotonous – acceleration is.

Acceleration of inner loops facilitates widening in nested loops situations.
◮ Acceleration also applied in descending iterations.

Widening needed for
◮ handling non-accelerable transitions
◮ ensuring convergence in the case of multiple self-loops and nested loops
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Application to Logico-Numerical Data-Flow Programs

Application of Acceleration to Data-Flow Programs

Application to e.g. Lustre programs?

Issues
1 Input variables:

◮ Boolean variables:
⋆ Encoded as non-determinism in the control flow graph (CFG)

◮ Numerical variables
√

2 Implicit control flow → Discover a CFG w.r.t. Boolean variables
1 Conventional approach:

1 Reduction to numerical automaton by enumeration of Boolean states
2 → Combinatorial explosion

2 Our approach:

1 Symbolic handling of Boolean variables
2 Approximation method: Decoupling
3 Controlled partitioning using heuristics
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Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations

true
b0 ∧ x0 = 0 ∧ x1 = 0

τprog
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Conventional Approach

Transformations
1 Boolean state space enumeration

b0

¬b0 ∧ b1

¬b0 ∧ ¬b1

b0 ∧ x0 = 0 ∧ x1 = 0

τprog

τprog

τprog

τprog

τprog

τprogτprog
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Application to Logico-Numerical Data-Flow Programs Conventional Approach

Conventional Approach

Transformations
1 Boolean state space enumeration

2 Transition refinement by source and destination location

b0

¬b0 ∧ b1

¬b0 ∧ ¬b1

b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 > 9 →
x0 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0;x1 := 0

x0 > 9 →
x0 := 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +
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Application to Logico-Numerical Data-Flow Programs Conventional Approach

Partitioning and Acceleration

Intuition: Self-loops with Boolean Identity

Partition until we have a CFG where the Boolean part of the transition
function is the identity.

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0
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Acceleration without Partitioning

true
b0 ∧ x0 = 0 ∧ x1 = 0
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Partitioning not necessary at all!!!

Acceleration without Partitioning

true
b0 ∧ x0 = 0 ∧ x1 = 0

b0 ∧ x0 ≤ 9 → x0 + +;x1 + +

¬b0 ∨ x0 > 9 → . . .

Partitioning and acceleration are orthogonal!
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Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling

Problem

b0 ¬b0
b0 ∧ x0 = 0 ∧ x1 = 0

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1

x0 ≤ 9 →
x0 + +;x1 + +; b1 := ¬b1x0 > 9 →

x0 := 0; b0 := ¬b0

x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Boolean identity too restrictive → Rarely applicable
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τnumerical τBoolean
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x0 > 9 →
x0 := 0;x1 := 0; b0 := ¬b0

Boolean identity too restrictive → Rarely applicable

Idea: Decoupling

Decoupling numerical and Boolean parts of the transition function →
approximation

τnumerical τBoolean x0 ≤ 10 → x0 + +;x1 + + b1 := ¬b1
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Application to Logico-Numerical Data-Flow Programs Decoupling

Decoupling Variants

Numerical equations independent
of Boolean equations

g(β, x, ξ) → a(x, ξ) τ(b, β, x, ξ)
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Inputization of Boolean state
variables in Numerical equations

(∃b : g(b, β, x, ξ)) → a(x, ξ) τ(b, β, x, ξ)

Inputization of unstable Boolean
state variables in Boolean equations

(∃b : g(b, β, x, ξ)) → a(x, ξ)

∃b : b′ = f(b, β, x, ξ)

Decoupling accelerable and
non-accelerable equations

τnum/accelerable τBoolean,num/non−acc
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Application to Logico-Numerical Data-Flow Programs Partitioning

Outline

1 Introduction

2 Abstract Acceleration with Numerical Inputs
Abstract Acceleration
Abstract Acceleration with Numerical Inputs
Translations with Simple Guards
Translations with Resets and Simple Guards
General Guards
Comparison with Widening

3 Application to Logico-Numerical Data-Flow Programs
Conventional Approach
Decoupling
Partitioning
Experimental Results

4 Conclusion
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Application to Logico-Numerical Data-Flow Programs Partitioning

Why partitioning?

Gain in precision!

1 More targeted application of widening (at loop heads only)

2 Explicit disjunctive abstract domain → Less precision loss in unions
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Application to Logico-Numerical Data-Flow Programs Partitioning

Why partitioning?

Gain in precision!

1 More targeted application of widening (at loop heads only)

2 Explicit disjunctive abstract domain → Less precision loss in unions

But...

CFG size 1 · · · 2n

partitioning no controlled full

precision bad good

property don’t know proved

tractability yes no

program logico-numerical numerical

goal
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Application to Logico-Numerical Data-Flow Programs Partitioning

Partitioning by Numerical Actions

Idea: Equivalence classes w.r.t. numerical actions

Intuition: Same set of actions executed in the same Boolean states.

b1 ∼ b2 ⇔

{
∀β, C : A(b1, β, C) ⇒ A(b2, β, C) ∧ f x(b1, β, C) = f x(b2, β, C)

and vice versa
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and vice versa

Example:

x ′
0 =







x0 + 1 if ¬b0 ∧ ¬b1 ∧ x0 ≤ 10 ∧ β ∨ b0 ∧ ¬b1 ∧ x0 ≤ 20
0 if ¬b0 ∧ ¬b1 ∧ x0 > 10 ∧ x1 > 10
x0 else

x ′
1 =

{
x1 + 1 if ¬b0 ∧ ¬b1 ∧ x1 ≤ 10 ∧ ¬β

x1 else

x ′
2 =

{
x2 + 1 if ¬b0 ∧ ¬b1 ∧ (x0 ≤ 10 ∧ β ∨ x1 ≤ 10 ∧ ¬β) ∨ b0 ∧ ¬b1

x2 else
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Nice property: Numerical equations independent of Boolean equations.
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Nice property: Numerical equations independent of Boolean equations.

Variants: Different quantifications

Refinement by Boolean backward bisimulation
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Application to Logico-Numerical Data-Flow Programs Experimental Results

Some Experimental Results

Tool nbACCel based on the abstract domain library BddApron

Small, but difficult benchmarks

Boolean states time nbACCel time Nbac

Escalator 1 9 0.54 –
Escalator 2 259 3.98 1.48
Gate 1 5 0.54 –
Traffic 1 13 0.45 3.52
Traffic 2 16 1.74 –

Larger benchmarks

Boolean states time nbACCel time Nbac

LCM quest 0a 72 0.07 0.06
LCM quest 0b 541 0.20 0.31
LCM quest 0c 16432 0.32 0.49
LCM quest 1 32992 2.23 3.46
LCM quest 2 33013 5.22 15.14
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Conclusion
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Conclusion

Conclusion

Application of abstract acceleration to logico-numerical data-flow programs

Decoupling and Partitioning

Acceleration can be applied independently of partitioning.

Decoupling enlarges the applicability of acceleration.

Partitioning heuristics w.r.t. numerical actions
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Application of abstract acceleration to logico-numerical data-flow programs

Decoupling and Partitioning

Acceleration can be applied independently of partitioning.

Decoupling enlarges the applicability of acceleration.

Partitioning heuristics w.r.t. numerical actions

Current and Future Work

Combination with dynamic partitioning (also using numerical constraints)

Backward acceleration

Application to discretized hybrid systems
◮ Non-standard semantics (Benveniste, Caillaud and Pouzet 2010)
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Conclusion

Using Abstract Acceleration in the Verification of

Logico-Numerical Data-Flow Programs
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