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GoI Components

By combining diagrams, we can construct new partial maps. For example, h given
as follows
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presents a partial map from {l, l′} × N to {l, l′} × N whose value for (l′, n) is calculated
by the following algorithm:

1. Input n to l3.
2. If we get an output m from l1 then input m to l5.
3. If we get an output m from l2 then input m to l4.
4. If we get an output m from l3 then the output of h is (l′,m).
5. If we get an output m from l4 then input m to l2.
6. If we get an output m from l5 then input m to l1.
7. If we get an output m from l6 then the output of h is (l,m).

If there is an infinite loop or no output, then h(l′, n) is undefined. The value of h(l, n) is
calculated by the same algorithm.

3.2 The standard GoI interpretation

For LFP without recursion, we give the standard GoI interpretation, which is a restric-
tion of GoI interpretation of classical linear logic to intuitionistic linear logic. For the
GoI interpretation of classical linear logic, see [15].
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ϕ(l0, n) = (l2, pn)
ϕ(l1, n) = (l2, qn)
ϕ(l2, pn) = (l0, n)
ϕ(l2, qn) = (l1, n)
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d(l0, 〈0, n〉) = (l1, n)
d(l0, 〈i + 1, n〉) = undefined
d(l1, n) = (l0, 〈0, n〉)
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δ(l0, 〈〈i, j〉, n〉) = (l1, 〈i, 〈 j, n〉〉)
δ(l1, 〈i, 〈 j, n〉〉) = (l0, 〈〈i, j〉, n〉)
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ψ(l0, pn) = (l1, n)
ψ(l0, qn) = (l2, n)
ψ(l1, n) = (l0, pn)
ψ(l2, n) = (l0, qn)

!" #$w w = ∅

!" #$cl0 l2
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c(l0, 〈pi, n〉) = (l1, 〈i, n〉)
c(l0, 〈qi, n〉) = (l2, 〈i, n〉)
c(l1, 〈i, n〉) = (l0, 〈pi, n〉)
c(l2, 〈i, n〉) = (l0, 〈qi, n〉)

Fig. 1. Components for the standard GoI iterpretation

In the following, we fix two bijections: α : N + N → N and 〈−,−〉 : N × N → N.
We define maps p, q : N → N by α ◦ inl and α ◦ inr respectively. Figure 1 is the list
of components for the standard GoI interpretation. We use maps p, q and 〈−,−〉 for
tagging. They tell where a natural number came from. An output pn at l2 of ϕ means
a number n which came from l0, and an output qn at l2 means a number n from l1. A
number 〈i, n〉means the i-th copy of n. By the definition, ψ is a right inverse of ϕ, which
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Standard GoI Interpretation
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Fig. 2. The standard GoI interpretation of LFP without recursion

corresponds to the tensor cell of proof nets [12]. Components d, δ,w and c correspond
to dereliction !A ! A, comultiplication !A !!!A, weakening !A ! I and contraction
!A!!A⊗!A of linear logic respectively. In fact, we have

!" #$ !" #$ !" #$=x d x !" #$ !" #$ !" #$x δ = x !" #$ !" #$ !" #$
!" #$x c
x

x
=!" #$ !" #$ ∅x =w

where we define dotted line box, which corresponds to ! of linear logic, as follows.

T f := !" #$''' '''f (l, 〈i, n〉) T f)→ (l′, 〈 j,m〉) ∆⇐⇒ (l, n)
f)→ (l′,m) ∧ i = j

In Figure 2, we define the standard GoI interpretation of LFP without recursion. We
interpret each term Θ | Γ;∆ ! M : A by an element in D(|Γ| + |∆|, 1). On the left hand
side of the interpretation of M, the i-th port counted from the bottom corresponds to the
i-th variable in Γ for 1 ≤ i ≤ |Γ|, and the |Γ| + j-th port corresponds to the j-th variable
in ∆ for 1 ≤ j ≤ |∆|. In the definition, πs are the appropriate permutations, and we
write diagrams as if the length of Γ and ∆ were 1. We can infer precise definitions from
Figure 2.

We can inductively show soundness of the standard GoI interpretation. However,
the standard GoI interpretation identifies certain terms that ought to be distinguished:
the interpretation of let !x be M in !(λx.Ax) for a term M ∈ Term(!A) is equal to the
interpretation of !(λx.Ax). Because of this equality, the standard GoI interpretation does
not extend to an adequate interpretation of the whole LFP. In fact, we have !(λx.Ax) ⇓ as
well as let !x be µx.Ax in !(λx.Ax) ⇑. The reason of this undesirable equality is that the
interpretation of a term is not strict on its arguments. This means that the interpretation
of a term does not necessary evaluate its free variables. If a term Θ | Γ, x : A;∆ ! M : B
does not have free x, then the GoI interpretation [M] of M ignores x, i.e. the port on the
right hand side of [M] has no path to the port for x on the left hand side of [M].
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Additionally, the language contains function types and products:

θ ::= σ | θ × θ′ | θ → θ.

What is peculiar about the types above is that pairs of terms may
share identifiers but functions may not share identifiers with their
arguments. This is made explicit by the following typing rules (also
known as the affine λ-calculus).

Terms have types, described by typing judgments of the form Γ #
M : θ, where Γ = x1 : θ1, . . . xn : θn is a variable type
assignment, M is a term and θ the type of the term.

Identity
x : θ # x : θ

Γ # M : θ Weakening
Γ, x : θ′ # M : θ

Γ, x : θ′ # M : θ
→ Introduction

Γ # λx.M : θ′ → θ

Γ # F : θ′ → θ ∆ # M : θ′
→ Elimination

Γ, ∆ # FM : θ

Γ # M : θ′ Γ # N : θ × Introduction
Γ # 〈M, N〉 : θ′ × θ

The language also contains a number of (functional) constants for
state manipulation and (structured) control.

1 : exp constant
0 : exp constant

skip : com no-op
asg : cell× exp → com assignment
der : cell → exp dereferencing
seq : com× com → com sequencing
seq : com× exp → exp sequencing with boolean
op : exp× exp → exp logical operations
if : exp× com× com → com branching

while : exp× com → com iteration
newvar : (cell → com) → com local variable
newvar : (cell → exp) → exp local variable.

Product has syntactic precedence over arrow, which associates to
the right.

For now we are omitting parallel composition of commands and
recursion, but we shall consider them in later sections.

This “functionalised” syntax may seem peculiar but a more con-
ventional syntax can be readily encoded into this. For example, a
program such as

bool x;
if (y) { x = z && t; }
else { x = z || t; }

can be written using the functionalised syntax as:

newvar(λx.if y (asg((and(deref z)(deref t)), x))

(asg((or((deref z), (deref t))), x))).

Obviously, the former is more readable but the latter is more conve-
nient for presenting the semantics. The difference is not substantial.

Note that the only rule that allows sharing of identifiers is that of
product formation (× Introduction). It helps to introduce a new
constant into the language:

shareθ : θ → θ × θ,

and we revise the product rules by requiring disjoint environments
in introduction and formulating elimination as a pattern-matching
rule:

Γ # M : θ′ ∆ # N : θ × Introduction
Γ, ∆ # 〈M, N〉 : θ′ × θ

Γ # M : θ′′ × θ′ ∆, x : θ′′, y : θ′ # N : θ
× Elimination.

Γ, ∆ # match M with 〈x, y〉.N : θ

It is a simple exercise to show that this type system is as expressive
as bSCI by translating each product term 〈M, N〉 which share an
identifier x : θ into the equivalent term

〈M, N〉 ≡ match share(x)with 〈y, z〉.〈M, N〉[x/y, x/z].

where identifiers y : θ, z : θ are fresh.

Applying this translation repeatedly we obtain terms in which all
identifiers occur exactly once; however it must be pointed out that
this is not a new proper type system because reduction does not
preserve this property. However, this “linearised” presentation will
be seen to be highly convenient for synthesis.

For example, the term x=x+1 can be written, using share as

x : cell # (match sharecell x with 〈z, y〉.)asg (z, add(der y, 1)).

2.1 Operational semantics
We call terms Γ # M : θ semi-closed if all free identifiers are of
type cell. The operational semantics of the language is given by a
big-step rule of the form M, s ⇓ T, s′ where M is a semi-closed
term, s : domΓ → {0, 1} a state and T a terminal (0, 1, skip,
lambda abstraction or a tuple).

B, s ⇓ b, s′ V, s′ ⇓ v, s′′

asg〈V, B〉, s ⇓ skip, (s′′ | v (→ b)

V, s ⇓ v, s′

der B ⇓ s′(v), s′

C, s ⇓ skip, s′ M, s′ ⇓ T, s′′

seq〈C, M〉, s ⇓ T, s′′

M, s⊕ (v (→ 0) ⇓ T, s′ ⊕ (v (→ b)

newvar(λv.M), s ⇓ T, s′

B1, s ⇓ b1, s1 B2, s1 ⇓ b2, s2
b = b1 op b2

op〈B1, B2〉, s ⇓ b, s2

B, s ⇓ b, s′ Mi, s
′ ⇓ i, s′′

if〈B, M1, M0〉, s ⇓ T, s′′

B, s ⇓ 0, s′

while〈B, C〉, s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

M, s ⇓ λx.M ′, s

MM ′′, s ⇓ M ′[M ′′/x], s

M, s ⇓ 〈M1, M2〉, s N [Mi/xi], s ⇓ T, s

match M with 〈x, y〉.N, s ⇓ T, s

shareM, s ⇓ 〈M, M〉, s
If a term has no free variables we say it is closed. If for a closed
term M, ∅ ⇓ T, ∅ we write M ⇓.
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Imperative constants in GoS

seq : I ! com ! com " com
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Features of GoS
• finite state IAMs (cf GoI)

• esp. the diagonal  δ : G → G ⊗ G

• synthesizable in hardware

• “atomic” tokens (cf GoI)

• “routing” deduced from context

• timing independent

• compatible with asynchronous (GoS II @ MFPS ʻ10)

• compatible with synchronous (RA @ Concur ʻ10)

• full functional interface

• FFI, ABI



Limitations of GoS

Can’t be implemented finite-state.
GMO @ APAL’08
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Solution: systematic replication

(λfλx.fx||fx)(λc.c||c)

(λc1c2.c1||c2)(λf1f2λx1x2x3x4.f1x1x2||f2x3x4)



Type-directed transformation
thing like λf1f2λx1x2.f1(x1)||f2(x2); in complicated terms this
quickly becomes very difficult to handle. This becomes even more
difficult if we want to apply this function to terms which them-
selves require transformation. For example, if applied to λc.c||c,
which needs itself to change to λc1c2.c1||c2, the original function
should actually be λf1f2λx1x2x3x4.f1x1x2||f2x3x4.

In this paper we give a systematic method of obtaining such
terms, which we then know how to compile into hardware.

2. Type systems
In this section we will present a realistic shared-memory higher-
order concurrent programming language with synchronisation
primitives, and give several typing systems for the language.
The first type system is Idealized Concurrent Algol (ICA), the
most general one, which is essentially the simply-typed lambda
calculus with special constants for state manipulation and con-
currency. It represents an extension of the idealized Algol lan-
guage proposed by Reynolds (1981) with parallel composition and
semaphores (Ghica and Murawski, 2008).

The next typing system, (Basic) Syntactic Control of Interfer-
ence (SCI) is an affine version of ICA in which contraction is dis-
allowed over function application and parallel execution. SCI was
initially proposed by Reynolds as a programming language which
would facilitate Hoare-style correctness reasoning because covert
interference between terms is disallowed (Reynolds, 1978, 1989).
SCI turned out to be semantically interesting and it was studied
extensively (Reddy, 1996; O’Hearn et al., 1999; McCusker, 2007,
2010). The restriction on contraction in SCI makes it particularly
well suited for hardware compilation because any term in the lan-
guage has a finite-state model and can therefore be compiled as a
static circuit (Ghica, 2007; Ghica and Smith, 2010).

The third type system, Syntactic Control of Concurrency (SCC)
is a half-way house between the unrestricted ICA and the con-
strained SCI (Ghica et al., 2006). In SCC, contraction is allowed
in all contexts, but static bounds on the number of contractions in
non-sequential contexts are enforced through the type system. In
fact, SCC with all contraction bounds set to unit is equivalent to
SCI. SCC has been initially proposed as a framework for model
checking concurrent programs, because this language also enjoys
a finite-state model property at all terms (Ghica and Murawski,
2006). Evidently, this property recommends it as a more flexible
alternative to SCI for hardware compilation. Shared memory con-
currency and semaphores cannot type in SCI because they require
contraction in non-sequential contexts, but can be handled by the
SCC system.

2.1 Idealized Concurrent Algol (ICA)
The primitive types of the language are commands, memory cells,
semaphores and expressions. For simplicity we only consider
boolean expressions, but finite-integer expressions can be added
in a conceptually straightforward manner.

σ ::= com | var | sem | exp.

The type constructors are product and function:

θ ::= θ × θ | θ → θ | σ.

Terms are described by typing judgements of the form

x1 : θ1, . . . , xk : θk # M : θ,

where we denote the set of identifier type assignments on the left
by Γ. By convention, if we write Γ, Γ′ it assumes that the two type
assignments have disjoint sets of identifiers.

The term formation rules of the language are those of the simply
typed lambda calculus:

Identity
x : θ # x : θ

Γ # M : θ Weakening
Γ, x : θ′ # M : θ

Γ, x : θ, y : θ # M : θ′

Contraction
Γ, x : θ # M [x/y] : θ′

Γ, x : θ′ # M : θ
Abstraction

Γ # λx.M : θ′ → θ

Γ # M : θ → θ′ Γ # N : θ Application
Γ # MN : θ′

Γ # Mi : θi Product
Γ # 〈M1, M2〉 : θ1 × θ2

The constants of the language are described below:

0, 1 : exp are the boolean constants;
skip : com is the only command constant (“no-op”);
asg : var × exp → com is assignment to memory cell, denoted by

“:=” when used in infix notation;
der : var → exp is dereferencing of memory cell, also denoted by

“!”;
seq : com× com → com is command sequencing, denoted by “;”

when used in infix notation;
seq : com× exp → exp is sequencing of command with expres-

sion, denoted by “;” when used in infix notation, resulting in an
expression with side effects;

par : com → com → com is parallel composition of commands,
denoted by “||” when used in infix notation;

neg : exp → exp is boolean negation;
or : exp× exp → exp is boolean disjunction;
if : exp× com× com → com is branching;
while : exp× com → com is iteration;
grab : sem → com is semaphore grab;
release : sem → com is semaphore release;
newvar : (var → com) → com is local variable declaration in

block command;
newvar : (var → exp) → exp is local variable declaration in block

expression;
newsem : (sem → com) → com is semaphore declaration in block

command;
newsem : (sem → exp) → exp is semaphore declaration in block

expression;
recθ : (θ → θ) → θ is a fix-point operator.

Local variable and semaphore binding is presented with a quantifier-
style type in order to avoid introducing new variable binders in the
language. Local variable declaration can be sugared into a more
familiar syntax as newvar(λx.M) ≡ newvar x in M.

The language ICA is a highly expressive programming language
in which a large variety of algorithms and programming constructs
can be coded. Its operational semantics, which defines the imper-
ative and shared-variable concurrency primitives in the usual way
in the framework of a call-by-name lambda-calculus, along with a
fully abstract game semantic model are given by Ghica and Mu-
rawski (2008).

2.2 Syntactic Control of Interference (SCI)
SCI is the affine version of ICA. It has the same type structure as
ICA. However, since contraction in concurrent contexts is not al-
lowed semaphores can play no meaningful role and can be omitted
from the definition of the language. The only changes as compared
to ICA are the removal of explicit contraction and a new rule for
function application:

Γ ! M : θ → θ′ Γ′ ! N : θ Application (new)
Γ, Γ′ ! MN : θ′

The immediate consequence of this restriction is that nested appli-
cation is no longer possible, i.e. terms such as

f : com → com ! f(f(skip))

are illegal. Elimination of nested application means that the usual
operational unfolding of recursion no longer preserves typing,
therefore the recθ operator must be also eliminated. A restricted
recursion operator can be reintroduced but we will not consider it
here.

The second consequence of this restriction plays out in conjunc-
tion with the chosen types of sequential and parallel composition:

seq : com× com → com

par : com → com → com.

The uncurried type of seq allows the typing of normal imperative
programs because contraction can be achieved via product forma-
tion. Terms such as λc.c; c are possible, but λc.c||c are not.

Despite its restrictions SCI is still expressive enough to allow
many interesting programs. Its finite state model makes it perfectly
suited for hardware compilation (Ghica, 2007; Ghica and Smith,
2010).

2.3 Syntactic Control of Concurrency (SCC)
The SCC type system allows contraction in all contexts but only
when static bounds on the numbers of non-sequential contractions
are respected. The types of the language are given by the grammar

σ ::= com | exp | var | sem

γ ::= θn, n ∈ N

θ ::= σ | θ × θ | γ → θ.

If a bound in θn is unit we may omit it. SCC types have the
following sub-typing relation

n1 ≤ n2 θ1 ≤ θ2

θn1
1 ≤ θn2

2

γ2 ≤ γ1 θ1 ≤ θ2

γ1 → θ1 ≤ γ2 → θ2

Type judgements have form

x1 : γ1, . . . , xk : γk ! M : θ.

If a type assignment environment is Γ = {xi : θni
i | 1 ≤ i ≤ k}

we define

n · Γ def
= {xi : θn·ni

i | 1 ≤ i ≤ k}.
The typing rules are like in ICA except for the management of
bounds in contraction and function application, plus a new rule for
sub-typing:

Γ, x : θm, y : θn ! M : θ′
Contraction (new)

Γ, x : θm+n ! M [x/y] : θ′

Γ ! M : θn → θ′ Γ′ ! N : θ Application (new)
Γ, n · Γ′ ! MN : θ′

Γ ! M : θ θ ≤ θ′
Subtyping

Γ ! M : θ′

Note that λc.c||c is typeable in SCC, but the type is not the same as
for λc.c; c:

c:com ! c:com ! par:com → com→com

c:com ! par c:com→com d:com ! d:com

c:com, d:com ! par c d : com

c:com2 ! par c c : com

! λc:com2.par c c : com2→com

As in SCI, a general fix-point combinator cannot be typed. All
other constants are inherited from ICA and receive, where needed,
unit bound, except that newvar and newsem are replaced by a
family of constants which can accept a local variable (semaphore,
respectively) for any given bound

newvar : (varn → com) → com

newvar : (varn → exp) → exp

newsem : (semn → com) → com

newsem : (semn → exp) → exp.

The SCC type system can be used to write a large variety of im-
perative, concurrent or higher order programs such as producer-
consumer (Ghica and Murawski, 2006). In practice the restriction
is felt mainly because general recursion is ruled out and in the def-
inition of higher-order functions where concurrency bounds must
be specified by the programmer. Without type inference the pro-
grammer needs to specify guarantees as well, which is inconvenient
and will be also addressed in this paper. Consider for example a
producer-consumer program where the producer and the consumer
are given as arguments. In ICA such a program would have signa-
ture

λprod : exp.λcons : exp → com.M

whereas in SCC it must be given as, for example

λprod : exp.λcons : exp1 → com.M,

which means that any argument consumer is not allowed to use its
own argument more than once in non-sequential contexts.

EXAMPLE 2.1.

1. ! λf.λx.f(f(x)) : (comn → com)n+1 → comn2
→ com

2. ! λf.λx.f(x); f(x) : (comn → com)1 → comn → com
3. ! λf.λx.f(x)||f(x) : (comn → com)2 → com2n → com
4. ! λf.f(f(skip)) : (comn → com)n+1 → com
5. ! λg.g(λx.g(λy.x)) : ((comn → com)n → com)n+1 → com.

In the above, n is a positive integer constant which must be pro-
vided by the environment (the user).

The term of “concurrency bound” is meant to encompass two
kinds of run-time interleaving. The first is the genuine concurrency
expressed in a term such as f(x)||f(x) and the second is that
occurring in a term such as f(f(x)). We feel justified in calling
the latter “concurrent” because the computations associated with
the two instances of f are interleaved during execution. In fact, in
loc. cit. it is shown how a term of that form can be syntactically
“pulled apart” using semaphores and side-effects into a term of
shape · · · f · · · || · · · f · · · || · · ·x · · · which has precisely the same
interleaving of effects as the original.

Note that some terms are not typeable, for example the applica-
tion of term (5) to term (4) above. Many ICA programs have SCC
typing; in fact all beta-normal form ICA programs and all ICA pro-
grams with beta-redexes of first order or base types are SCC ty-
peable (Ghica et al., 2006, Lemma 10). Loc. cit. also gives a fully
abstract game semantic model of SCC.
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thing like λf1f2λx1x2.f1(x1)||f2(x2); in complicated terms this
quickly becomes very difficult to handle. This becomes even more
difficult if we want to apply this function to terms which them-
selves require transformation. For example, if applied to λc.c||c,
which needs itself to change to λc1c2.c1||c2, the original function
should actually be λf1f2λx1x2x3x4.f1x1x2||f2x3x4.

In this paper we give a systematic method of obtaining such
terms, which we then know how to compile into hardware.

2. Type systems
In this section we will present a realistic shared-memory higher-
order concurrent programming language with synchronisation
primitives, and give several typing systems for the language.
The first type system is Idealized Concurrent Algol (ICA), the
most general one, which is essentially the simply-typed lambda
calculus with special constants for state manipulation and con-
currency. It represents an extension of the idealized Algol lan-
guage proposed by Reynolds (1981) with parallel composition and
semaphores (Ghica and Murawski, 2008).

The next typing system, (Basic) Syntactic Control of Interfer-
ence (SCI) is an affine version of ICA in which contraction is dis-
allowed over function application and parallel execution. SCI was
initially proposed by Reynolds as a programming language which
would facilitate Hoare-style correctness reasoning because covert
interference between terms is disallowed (Reynolds, 1978, 1989).
SCI turned out to be semantically interesting and it was studied
extensively (Reddy, 1996; O’Hearn et al., 1999; McCusker, 2007,
2010). The restriction on contraction in SCI makes it particularly
well suited for hardware compilation because any term in the lan-
guage has a finite-state model and can therefore be compiled as a
static circuit (Ghica, 2007; Ghica and Smith, 2010).

The third type system, Syntactic Control of Concurrency (SCC)
is a half-way house between the unrestricted ICA and the con-
strained SCI (Ghica et al., 2006). In SCC, contraction is allowed
in all contexts, but static bounds on the number of contractions in
non-sequential contexts are enforced through the type system. In
fact, SCC with all contraction bounds set to unit is equivalent to
SCI. SCC has been initially proposed as a framework for model
checking concurrent programs, because this language also enjoys
a finite-state model property at all terms (Ghica and Murawski,
2006). Evidently, this property recommends it as a more flexible
alternative to SCI for hardware compilation. Shared memory con-
currency and semaphores cannot type in SCI because they require
contraction in non-sequential contexts, but can be handled by the
SCC system.

2.1 Idealized Concurrent Algol (ICA)
The primitive types of the language are commands, memory cells,
semaphores and expressions. For simplicity we only consider
boolean expressions, but finite-integer expressions can be added
in a conceptually straightforward manner.

σ ::= com | var | sem | exp.

The type constructors are product and function:

θ ::= θ × θ | θ → θ | σ.

Terms are described by typing judgements of the form

x1 : θ1, . . . , xk : θk # M : θ,

where we denote the set of identifier type assignments on the left
by Γ. By convention, if we write Γ, Γ′ it assumes that the two type
assignments have disjoint sets of identifiers.

The term formation rules of the language are those of the simply
typed lambda calculus:

Identity
x : θ # x : θ

Γ # M : θ Weakening
Γ, x : θ′ # M : θ

Γ, x : θ, y : θ # M : θ′

Contraction
Γ, x : θ # M [x/y] : θ′

Γ, x : θ′ # M : θ
Abstraction

Γ # λx.M : θ′ → θ

Γ # M : θ → θ′ Γ # N : θ Application
Γ # MN : θ′

Γ # Mi : θi Product
Γ # 〈M1, M2〉 : θ1 × θ2

The constants of the language are described below:

0, 1 : exp are the boolean constants;
skip : com is the only command constant (“no-op”);
asg : var × exp → com is assignment to memory cell, denoted by

“:=” when used in infix notation;
der : var → exp is dereferencing of memory cell, also denoted by

“!”;
seq : com× com → com is command sequencing, denoted by “;”

when used in infix notation;
seq : com× exp → exp is sequencing of command with expres-

sion, denoted by “;” when used in infix notation, resulting in an
expression with side effects;

par : com → com → com is parallel composition of commands,
denoted by “||” when used in infix notation;

neg : exp → exp is boolean negation;
or : exp× exp → exp is boolean disjunction;
if : exp× com× com → com is branching;
while : exp× com → com is iteration;
grab : sem → com is semaphore grab;
release : sem → com is semaphore release;
newvar : (var → com) → com is local variable declaration in

block command;
newvar : (var → exp) → exp is local variable declaration in block

expression;
newsem : (sem → com) → com is semaphore declaration in block

command;
newsem : (sem → exp) → exp is semaphore declaration in block

expression;
recθ : (θ → θ) → θ is a fix-point operator.

Local variable and semaphore binding is presented with a quantifier-
style type in order to avoid introducing new variable binders in the
language. Local variable declaration can be sugared into a more
familiar syntax as newvar(λx.M) ≡ newvar x in M.

The language ICA is a highly expressive programming language
in which a large variety of algorithms and programming constructs
can be coded. Its operational semantics, which defines the imper-
ative and shared-variable concurrency primitives in the usual way
in the framework of a call-by-name lambda-calculus, along with a
fully abstract game semantic model are given by Ghica and Mu-
rawski (2008).

2.2 Syntactic Control of Interference (SCI)
SCI is the affine version of ICA. It has the same type structure as
ICA. However, since contraction in concurrent contexts is not al-
lowed semaphores can play no meaningful role and can be omitted
from the definition of the language. The only changes as compared
to ICA are the removal of explicit contraction and a new rule for
function application:

Γ ! M : θ → θ′ Γ′ ! N : θ Application (new)
Γ, Γ′ ! MN : θ′

The immediate consequence of this restriction is that nested appli-
cation is no longer possible, i.e. terms such as

f : com → com ! f(f(skip))

are illegal. Elimination of nested application means that the usual
operational unfolding of recursion no longer preserves typing,
therefore the recθ operator must be also eliminated. A restricted
recursion operator can be reintroduced but we will not consider it
here.

The second consequence of this restriction plays out in conjunc-
tion with the chosen types of sequential and parallel composition:

seq : com× com → com

par : com → com → com.

The uncurried type of seq allows the typing of normal imperative
programs because contraction can be achieved via product forma-
tion. Terms such as λc.c; c are possible, but λc.c||c are not.

Despite its restrictions SCI is still expressive enough to allow
many interesting programs. Its finite state model makes it perfectly
suited for hardware compilation (Ghica, 2007; Ghica and Smith,
2010).

2.3 Syntactic Control of Concurrency (SCC)
The SCC type system allows contraction in all contexts but only
when static bounds on the numbers of non-sequential contractions
are respected. The types of the language are given by the grammar

σ ::= com | exp | var | sem

γ ::= θn, n ∈ N

θ ::= σ | θ × θ | γ → θ.

If a bound in θn is unit we may omit it. SCC types have the
following sub-typing relation

n1 ≤ n2 θ1 ≤ θ2

θn1
1 ≤ θn2

2

γ2 ≤ γ1 θ1 ≤ θ2

γ1 → θ1 ≤ γ2 → θ2

Type judgements have form

x1 : γ1, . . . , xk : γk ! M : θ.

If a type assignment environment is Γ = {xi : θni
i | 1 ≤ i ≤ k}

we define

n · Γ def
= {xi : θn·ni

i | 1 ≤ i ≤ k}.
The typing rules are like in ICA except for the management of
bounds in contraction and function application, plus a new rule for
sub-typing:

Γ, x : θm, y : θn ! M : θ′
Contraction (new)

Γ, x : θm+n ! M [x/y] : θ′

Γ ! M : θn → θ′ Γ′ ! N : θ Application (new)
Γ, n · Γ′ ! MN : θ′

Γ ! M : θ θ ≤ θ′
Subtyping

Γ ! M : θ′

Note that λc.c||c is typeable in SCC, but the type is not the same as
for λc.c; c:

c:com ! c:com ! par:com → com→com

c:com ! par c:com→com d:com ! d:com

c:com, d:com ! par c d : com

c:com2 ! par c c : com

! λc:com2.par c c : com2→com

As in SCI, a general fix-point combinator cannot be typed. All
other constants are inherited from ICA and receive, where needed,
unit bound, except that newvar and newsem are replaced by a
family of constants which can accept a local variable (semaphore,
respectively) for any given bound

newvar : (varn → com) → com

newvar : (varn → exp) → exp

newsem : (semn → com) → com

newsem : (semn → exp) → exp.

The SCC type system can be used to write a large variety of im-
perative, concurrent or higher order programs such as producer-
consumer (Ghica and Murawski, 2006). In practice the restriction
is felt mainly because general recursion is ruled out and in the def-
inition of higher-order functions where concurrency bounds must
be specified by the programmer. Without type inference the pro-
grammer needs to specify guarantees as well, which is inconvenient
and will be also addressed in this paper. Consider for example a
producer-consumer program where the producer and the consumer
are given as arguments. In ICA such a program would have signa-
ture

λprod : exp.λcons : exp → com.M

whereas in SCC it must be given as, for example

λprod : exp.λcons : exp1 → com.M,

which means that any argument consumer is not allowed to use its
own argument more than once in non-sequential contexts.

EXAMPLE 2.1.

1. ! λf.λx.f(f(x)) : (comn → com)n+1 → comn2
→ com

2. ! λf.λx.f(x); f(x) : (comn → com)1 → comn → com
3. ! λf.λx.f(x)||f(x) : (comn → com)2 → com2n → com
4. ! λf.f(f(skip)) : (comn → com)n+1 → com
5. ! λg.g(λx.g(λy.x)) : ((comn → com)n → com)n+1 → com.

In the above, n is a positive integer constant which must be pro-
vided by the environment (the user).

The term of “concurrency bound” is meant to encompass two
kinds of run-time interleaving. The first is the genuine concurrency
expressed in a term such as f(x)||f(x) and the second is that
occurring in a term such as f(f(x)). We feel justified in calling
the latter “concurrent” because the computations associated with
the two instances of f are interleaved during execution. In fact, in
loc. cit. it is shown how a term of that form can be syntactically
“pulled apart” using semaphores and side-effects into a term of
shape · · · f · · · || · · · f · · · || · · ·x · · · which has precisely the same
interleaving of effects as the original.

Note that some terms are not typeable, for example the applica-
tion of term (5) to term (4) above. Many ICA programs have SCC
typing; in fact all beta-normal form ICA programs and all ICA pro-
grams with beta-redexes of first order or base types are SCC ty-
peable (Ghica et al., 2006, Lemma 10). Loc. cit. also gives a fully
abstract game semantic model of SCC.

2.2 Syntactic Control of Interference (SCI)
SCI is the affine version of ICA. It has the same type structure as
ICA. However, since contraction in concurrent contexts is not al-
lowed semaphores can play no meaningful role and can be omitted
from the definition of the language. The only changes as compared
to ICA are the removal of explicit contraction and a new rule for
function application:

Γ ! M : θ → θ′ Γ′ ! N : θ Application (new)
Γ, Γ′ ! MN : θ′

The immediate consequence of this restriction is that nested appli-
cation is no longer possible, i.e. terms such as

f : com → com ! f(f(skip))

are illegal. Elimination of nested application means that the usual
operational unfolding of recursion no longer preserves typing,
therefore the recθ operator must be also eliminated. A restricted
recursion operator can be reintroduced but we will not consider it
here.

The second consequence of this restriction plays out in conjunc-
tion with the chosen types of sequential and parallel composition:

seq : com× com → com

par : com → com → com.

The uncurried type of seq allows the typing of normal imperative
programs because contraction can be achieved via product forma-
tion. Terms such as λc.c; c are possible, but λc.c||c are not.

Despite its restrictions SCI is still expressive enough to allow
many interesting programs. Its finite state model makes it perfectly
suited for hardware compilation (Ghica, 2007; Ghica and Smith,
2010).

2.3 Syntactic Control of Concurrency (SCC)
The SCC type system allows contraction in all contexts but only
when static bounds on the numbers of non-sequential contractions
are respected. The types of the language are given by the grammar

σ ::= com | exp | var | sem

γ ::= θn, n ∈ N

θ ::= σ | θ × θ | γ → θ.

If a bound in θn is unit we may omit it. SCC types have the
following sub-typing relation

n1 ≤ n2 θ1 ≤ θ2

θn1
1 ≤ θn2

2

γ2 ≤ γ1 θ1 ≤ θ2

γ1 → θ1 ≤ γ2 → θ2

Type judgements have form

x1 : γ1, . . . , xk : γk ! M : θ.

If a type assignment environment is Γ = {xi : θni
i | 1 ≤ i ≤ k}

we define

n · Γ def
= {xi : θn·ni

i | 1 ≤ i ≤ k}.
The typing rules are like in ICA except for the management of
bounds in contraction and function application, plus a new rule for
sub-typing:

Γ, x : θm, y : θn ! M : θ′
Contraction (new)

Γ, x : θm+n ! M [x/y] : θ′

Γ ! M : θn → θ′ Γ′ ! N : θ Application (new)
Γ, n · Γ′ ! MN : θ′

Γ ! M : θ θ ≤ θ′
Subtyping

Γ ! M : θ′

Note that λc.c||c is typeable in SCC, but the type is not the same as
for λc.c; c:

c:com ! c:com ! par:com → com→com

c:com ! par c:com→com d:com ! d:com

c:com, d:com ! par c d : com

c:com2 ! par c c : com

! λc:com2.par c c : com2→com

As in SCI, a general fix-point combinator cannot be typed. All
other constants are inherited from ICA and receive, where needed,
unit bound, except that newvar and newsem are replaced by a
family of constants which can accept a local variable (semaphore,
respectively) for any given bound

newvar : (varn → com) → com

newvar : (varn → exp) → exp

newsem : (semn → com) → com

newsem : (semn → exp) → exp.

The SCC type system can be used to write a large variety of im-
perative, concurrent or higher order programs such as producer-
consumer (Ghica and Murawski, 2006). In practice the restriction
is felt mainly because general recursion is ruled out and in the def-
inition of higher-order functions where concurrency bounds must
be specified by the programmer. Without type inference the pro-
grammer needs to specify guarantees as well, which is inconvenient
and will be also addressed in this paper. Consider for example a
producer-consumer program where the producer and the consumer
are given as arguments. In ICA such a program would have signa-
ture

λprod : exp.λcons : exp → com.M

whereas in SCC it must be given as, for example

λprod : exp.λcons : exp1 → com.M,

which means that any argument consumer is not allowed to use its
own argument more than once in non-sequential contexts.

EXAMPLE 2.1.

1. ! λf.λx.f(f(x)) : (comn → com)n+1 → comn2
→ com

2. ! λf.λx.f(x); f(x) : (comn → com)1 → comn → com
3. ! λf.λx.f(x)||f(x) : (comn → com)2 → com2n → com
4. ! λf.f(f(skip)) : (comn → com)n+1 → com
5. ! λg.g(λx.g(λy.x)) : ((comn → com)n → com)n+1 → com.

In the above, n is a positive integer constant which must be pro-
vided by the environment (the user).

The term of “concurrency bound” is meant to encompass two
kinds of run-time interleaving. The first is the genuine concurrency
expressed in a term such as f(x)||f(x) and the second is that
occurring in a term such as f(f(x)). We feel justified in calling
the latter “concurrent” because the computations associated with
the two instances of f are interleaved during execution. In fact, in
loc. cit. it is shown how a term of that form can be syntactically
“pulled apart” using semaphores and side-effects into a term of
shape · · · f · · · || · · · f · · · || · · ·x · · · which has precisely the same
interleaving of effects as the original.

Note that some terms are not typeable, for example the applica-
tion of term (5) to term (4) above. Many ICA programs have SCC
typing; in fact all beta-normal form ICA programs and all ICA pro-
grams with beta-redexes of first order or base types are SCC ty-
peable (Ghica et al., 2006, Lemma 10). Loc. cit. also gives a fully
abstract game semantic model of SCC.



Step 1: Inferring bounds

3. Type inference for SCC
SCC is an assume-guarantee type system where the assume bounds
must be provided by the context but the guarantee can be computed
via type inference, rather than being supplied by the programmer.
In this section we will give a decidability result for SCC type
inference. Without loss of generality we will restrict the algorithm
to higher-order closed terms. ICA typing can be determined with a
variant Hindley-Milner-style algorithm, and we assume it. It is well
known that affine typing plus explicit contraction is as expressive
as conventional typing and we will assume our ICA type inference
algorithm uses this strategy. The details of such an algorithm are
standard and will be omitted.

We further assume that each type θ → θ′ is decorated with a
fresh variable n, as in θn → θ′, to form a skeleton for an SCC
type. For instance, the type (com → com) → com will be anno-
tated as (comn1 → com)n2 → com. The variables which occur in
covariant positions in the type of the term are called assumes and
those that occur in contravariant positions guarantees.

Once this annotated type expression is constructed the next
step is to obtain a set of numeric constraints on the bounds. This
is done by defining a function recursively on the derivation tree,
which produces a set of constraints as a result. First we define the
constraints at the level of the type system:

|θn| = {n}
|θ × θ′| = |θ| ∪| θ′|
|θn → θ′| = {n} ∪ |θ′|
|θn1

1 ≥ θn2
2 | = (n1 ≥ n2) ∧ |θ1| ≥ |θ2|

|γ1 → θ1 ≥ γ2 → θ2| = |γ2 ≥ γ1| ∧| θ1 ≥ θ2|

|Γ ≥ Γ′| =
^

x:γ∈Γ
x:γ′∈Γ′

|γ ≥ γ′|

The notation can be extended to |Γ = Γ′| in the obvious way.
The required constraints are indicated as annotations on the

derivation rules:

x : (θ′)n & x : θ ! n ≥ 1 ∧ |θ′ ≥ θ|

∅ & k : θ ! V
n∈|θ| n ≥ 1

Γ′ & M : θ ! C

Γ, x : (θ′)n & M : θ ! |Γ = Γ′|

Γ′, x : γ & M : θ ! C

Γ & λx : γ.M : γ → θ ! |Γ = Γ′|

Γ′ & Mi : θi ! Ci

Γ & 〈M1, M2〉 : θ1 × θ2 ! |Γ = Γ′|
The key rules are for contraction

Γ′, x : θn1 , y : θn2 & M : θ′ ! C

Γ, x : θn & M [x/y] : θ′ ! |Γ = Γ′| ∧ n ≥ n1 + n2

and application

Γ & M : θk
1 → θ2 ! C ∆ & N : (θ1)

′ ! C′

Γ′, ∆′ & MN : θ′2 ! |∆ ≤ ∆′| ∧| Γ = Γ′| ∧

0

BB@
^

x:θn∈∆

x:θn′
∈∆′

n′ ≥ k · n

1

CCA

Note that the environments Γ, Γ′ and ∆, ∆′ in each rule above
differ only in the choice of variables used as bounds.

In Fig. 1 we show an example annotated derivation tree, for the
term λfx.f(f(x)).

Given a closed term M and its derivation tree, let C(M) be
the constraint system generated from the conjunction of all the
annotations in the derivation tree. For the example in Fig. 1,
C(λfx.f(f(x))) is

n2 ≥ n4 + n5 ∧ n5 ≥ n1 · n7 ∧ n6 ≥ n1 ∧ n3 ≥ n1 · n8

∧ n8 ≥ n6 · n9 ∧ n9 ≥ 1 ∧ n7 ≥ 1 ∧ n4 ≥ 1

We say that a constraint system is solved for a given mapping
of assumes into non-negative integer constants if constant bounds
for all the guarantees consistent with the constraint system can be
found if they exist. The mapping of guarantees into non-negative
integers is the solution of the system.

The first result of this paper is:

THEOREM 3.1. For any closed ICA term M it is decidable
whether C(M) can be solved, in which case a solution can be
constructed.

Proof. This theorem is proved by giving an algorithm for solving
the constraint system then showing that the algorithm terminates.

We start by substituting all assumes with the provided constants.
Note that all inequations in the constraint system have one of the
following forms:

n ≥ n′ + n′′ n ≥ n′ · n′′ n ≥ n′ n ≥ k, k ∈ N.

We define the relation n , n′ if n appears on the left on a constraint
and n′ on the right. (In what follows, the order of arguments to +
and · is irrelevant for the purpose of working out if a constraint is
of a particular form.) The algorithm is:

1. Construct the set S of solutions of the system in the abstract
domain of positive integers formed by quotienting Z0,+ over
the equivalence relation a ≡ b ⇐⇒ a = b∨(a ≥ 2 ∧ b ≥ 2),
defining +, ·, ≥ on this domain in the obvious way.

2. For all constraint systems in S repeat
(a) Replace all variables assigned 0 (1, respectively) at (1) with

0 (1, respectively).
(b) Add equations n = 0 or n = 1 respectively for each such

replacement.
(c) Delete all inequations of the form n ≥ 0 · n′, and replace

all inequations of the form n ≥ 0 + n′ and n ≥ 1 · n′ with
n ≥ n′.

(d) Construct the , relation on its set of variables.
(e) Repeat until , is well founded:

i. Pick a cycle n1 , n2 · · ·nj , n1, or a single variable
n1 where n1 , n1 (treating it as a one-element cycle).

ii. If the system contains any inequations of the form n ≥
n′ + n′′, n ≥ n′ + k, n ≥ n′ · n′′, or n ≥ n′ · k, where
n, n′, n′′ are variables involved in the cycle and k is a
constant discard the current solution and break to (2).

iii. Pick a fresh variable n.
iv. Replace all occurrences of ni with n, adding equations

of the form ni = n for each such replacement.
v. Delete all inequations of the form n ≥ n.

(f) Repeat until all RHSs of all equations are constant expres-
sions:

i. Choose a ,-minimal element n.



Example

f : (comn1 → com)n4 " f : (comn1 → com) ! n4 ≥ 1

g : (comn6 → com)n7 " g : comn6 → com ! n7 ≥ 1 x : comn9 " x : com ! n9 ≥ 1

g : (comn6 → com)n7 , x : comn8 " g(x) : com ! n8 ≥ n6 · n9

f : (comn1 → com)n4 , g : (comn1 → com)n5 , x : comn3 " f(g(x)) : com ! n5 ≥ n1 · n7 ∧ n6 ≥ n1 ∧ n3 ≥ n1 · n8

f : (comn1 → com)n2 , x : comn3 " f(f(x)) : com ! n2 ≥ n4 + n5

" λfλx.f(f(x)) : (comn1 → com)n2 → comn3 → com) ! true

Figure 1. Annotated SCC derivation tree for λfx.f(f(x))

f : (com2 → com)1 " f
!=⇒ f3 : com→ com→ com " f3

g : (com2 → com) " g !=⇒ g : com→ com→ com " g x : com1 " x !=⇒ x : com " x

g : (com2 → com), x : com2 " g(x)
!=⇒ g : com→ com→ com, x1, x2 : com " g(x1x2)

f : (com2 → com)1, g : (com2 → com)2, x : com4 " f(fx) !=⇒ f3, g, g′ : com→ com→ com, x1, x2, x′1, x′2 : com " f3(gx1x2)(g′x′1x′2)

f : (com2 → com)3, x : com4 " f(fx) !=⇒ f3, f1, f2 : (com→ com→ com)→ com, x1, x2, x′1, x′2 : com " f3(f1xx)(f2xx)

" λfx.f(f(x)) !=⇒ " λf3f2f1x1x2x′1x′2.f3(f1x1x2)(f2x′1x′2)

Figure 2. Serialization of λfx.f(f(x))

subtypeθ1→θ2≤θ3→θ4
(M)

def
=

subtypeθ3→θ2≤θ3→θ4

`
subtypeθ1→θ2≤θ3→θ2

(M)
´

We define the transformation as follows:

x : θn ! x : θ !=⇒ x : θ ! x : θ

! k : θ !=⇒ k : θ

Γ ! M : θ2 !=⇒ Γ′ ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ ! λx.M : θn
1 → θ2 !=⇒ Γ′ ! λx1 · · · xn.M ′ : θn

1 → θ2

Γ ! Mi : θi !=⇒ Γ′ ! M ′
i : θi

Γ ! 〈M1, M2〉 : θ1 × θ2 !=⇒ Γ′ ! 〈M ′
1, M

′
2〉 : θ1 × θ2

Γ ! M : θ1 !=⇒ Γ′ ! M ′ : θ1 θ1 ≤ θ2

Γ ! M : θ2 !=⇒ Γ ! subtypeθ1≤θ2
(M ′) : θ2

Γ, x : θn1
1 , y : θn2

1 ! M : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1 : θ1, y1 : θ1, . . . , yn2 : θ1 ! M ′ : θ2

Γ, x : θn1+n2
1 ! M [x/y] : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1+n2 : θ1 !
M [xn1+1/y1] · · · [xn1+n2/yn2 ] : θ2

Γ ! M : θn
1 → θ2 !=⇒ Γ′ ! M ′ : θn

1 → θ2

∆ ! N : θ1 !=⇒ ∆′ ! N ′ : θ1

Γ, n · ∆ ! MN : θ2

!=⇒ Γ′, ∆′
1, . . . , ∆

′
n ! M ′(N ′[∆′

1/∆′]) · · · (N ′[∆′
n/∆′]) : θ2

In the last rule given an identifier type assignment ∆′, by ∆′
k

we understand an identifier type assignment isomorphic to ∆′

where all the identifiers are fresh. The substitution N ′[∆′
k/∆′]

replaces all the identifiers in N ′ which occur in dom(∆′) with the
corresponding fresh identifier from dom(∆′

k).
The correctness of the transformation is formulated as:

THEOREM 4.1. If Γ ! M : θ is a valid SCC term and Γ ! M :
θ !=⇒ Γ′ ! M ′ : θ′ then Γ′ ! M ′ : θ′ is a valid SCC(1) term.
Moreover, if M is a program then M may terminate if and only
if M ′ may terminate.

Proof. The proof of the first part of the theorem is by structural
induction; that of the second, by showing that any sequence of
reductions in the operational semantics of an SCC term corresponds
to a sequence of reductions in the corresponding SCC(1) term, and
vice versa. The small-step operational semantics of ICA is given
in Ghica and Murawski (2008) and is the obvious one. We do not
include it here for lack of space. SCC and SCI have essentially the
same operational semantics as ICA.

Typing. As our induction hypothesis, we take the following
(stronger) hypothesis: for Γ ! M : θ a valid SCC term, and
Γ ! M : θ !=⇒ Γ′ ! M ′ : θ′, then Γ′ ! M ′ : θ′ is a valid SCC(1)
term, θ′ = θ, and Γ′ is Γ with all variables x : θn

1 replaced with at
most n copies of xi : θ1.

It is first necessary to prove that for any SCC type θ, θ is an
SCC(1) type, but this is obvious from the definition of type level
translation, because it cannot produce any bounds greater than 1.

The base case is trivially true by definition for the second rule;
for the first rule, the knowledge that the LHS is typed correctly
implies that n is at least 1, and thus the typing is correct (via the
identity axiom), θ′ = θ by definition, and the use of 1 copy of x
fulfils the requirement to have at most n copies with n ≥ 1.

In the case of Contraction note that N ′[∆′
k/∆′] must have the

same SCC type as N ′ because it is a replacement of variables in
N ′ with other variables of the same type. None of the N ′[∆′

k/∆′]
share free variables with M ′ by definition, and because the type of
M ′ is θn

1 → θ2, the type of M ′(N ′[∆′
1/∆′]) is θn−1

1 → θ2 etc.,
until the type of M ′(N ′[∆′

n/∆′]) is θ2, which proves the case of
Contraction.

The key cases are Subtyping and Application.
For Application, observe that N ′[∆′

k/∆′] must have the same
SCC type as N ′ because it is a replacement of variables in N ′ with
other variables of the same type. None of the N ′[∆′

k/∆′] share
free variables with M ′ by definition, and because the type of M ′ is
θn
1 → θ2, the type of M ′(N ′[∆′

1/∆′]) is θn−1
1 → θ2, and so on,

until the type of M ′(N ′[∆′
n/∆′]) is θ2, proving that the eighth rule

creates a correctly typed SCC(1) expression.
Correctness of Subtyping is proved by induction on the hypoth-

esis, i.e. if M ′ : θ1, then subtypeθ1≤θ2
(M ′) : θ2. Note that the

cases in the definition of subtype mirror the cases in the definition
of ≤ on SCC types (with the third and fourth cases being special
cases of the fifth, needed to make the recursion well-founded), and
thus subtypeθ1≤θ2

is defined whenever θ1 < θ2. The base case
(the first definition) is degenerately true, the fifth case is true by

λfx.f(f(x))
3. Type inference for SCC
SCC is an assume-guarantee type system where the assume bounds
must be provided by the context but the guarantee can be computed
via type inference, rather than being supplied by the programmer.
In this section we will give a decidability result for SCC type
inference. Without loss of generality we will restrict the algorithm
to higher-order closed terms. ICA typing can be determined with a
variant Hindley-Milner-style algorithm, and we assume it. It is well
known that affine typing plus explicit contraction is as expressive
as conventional typing and we will assume our ICA type inference
algorithm uses this strategy. The details of such an algorithm are
standard and will be omitted.

We further assume that each type θ → θ′ is decorated with a
fresh variable n, as in θn → θ′, to form a skeleton for an SCC
type. For instance, the type (com → com) → com will be anno-
tated as (comn1 → com)n2 → com. The variables which occur in
covariant positions in the type of the term are called assumes and
those that occur in contravariant positions guarantees.

Once this annotated type expression is constructed the next
step is to obtain a set of numeric constraints on the bounds. This
is done by defining a function recursively on the derivation tree,
which produces a set of constraints as a result. First we define the
constraints at the level of the type system:

|θn| = {n}
|θ × θ′| = |θ| ∪| θ′|
|θn → θ′| = {n} ∪ |θ′|
|θn1

1 ≥ θn2
2 | = (n1 ≥ n2) ∧ |θ1| ≥ |θ2|

|γ1 → θ1 ≥ γ2 → θ2| = |γ2 ≥ γ1| ∧| θ1 ≥ θ2|

|Γ ≥ Γ′| =
^

x:γ∈Γ
x:γ′∈Γ′

|γ ≥ γ′|

The notation can be extended to |Γ = Γ′| in the obvious way.
The required constraints are indicated as annotations on the

derivation rules:

x : (θ′)n & x : θ ! n ≥ 1 ∧ |θ′ ≥ θ|

∅ & k : θ ! V
n∈|θ| n ≥ 1

Γ′ & M : θ ! C

Γ, x : (θ′)n & M : θ ! |Γ = Γ′|

Γ′, x : γ & M : θ ! C

Γ & λx : γ.M : γ → θ ! |Γ = Γ′|

Γ′ & Mi : θi ! Ci

Γ & 〈M1, M2〉 : θ1 × θ2 ! |Γ = Γ′|
The key rules are for contraction

Γ′, x : θn1 , y : θn2 & M : θ′ ! C

Γ, x : θn & M [x/y] : θ′ ! |Γ = Γ′| ∧ n ≥ n1 + n2

and application

Γ & M : θk
1 → θ2 ! C ∆ & N : (θ1)

′ ! C′

Γ′, ∆′ & MN : θ′2 ! |∆ ≤ ∆′| ∧| Γ = Γ′| ∧

0

BB@
^

x:θn∈∆

x:θn′
∈∆′

n′ ≥ k · n

1

CCA

Note that the environments Γ, Γ′ and ∆, ∆′ in each rule above
differ only in the choice of variables used as bounds.

In Fig. 1 we show an example annotated derivation tree, for the
term λfx.f(f(x)).

Given a closed term M and its derivation tree, let C(M) be
the constraint system generated from the conjunction of all the
annotations in the derivation tree. For the example in Fig. 1,
C(λfx.f(f(x))) is

n2 ≥ n4 + n5 ∧ n5 ≥ n1 · n7 ∧ n6 ≥ n1 ∧ n3 ≥ n1 · n8

∧ n8 ≥ n6 · n9 ∧ n9 ≥ 1 ∧ n7 ≥ 1 ∧ n4 ≥ 1

We say that a constraint system is solved for a given mapping
of assumes into non-negative integer constants if constant bounds
for all the guarantees consistent with the constraint system can be
found if they exist. The mapping of guarantees into non-negative
integers is the solution of the system.

The first result of this paper is:

THEOREM 3.1. For any closed ICA term M it is decidable
whether C(M) can be solved, in which case a solution can be
constructed.

Proof. This theorem is proved by giving an algorithm for solving
the constraint system then showing that the algorithm terminates.

We start by substituting all assumes with the provided constants.
Note that all inequations in the constraint system have one of the
following forms:

n ≥ n′ + n′′ n ≥ n′ · n′′ n ≥ n′ n ≥ k, k ∈ N.

We define the relation n , n′ if n appears on the left on a constraint
and n′ on the right. (In what follows, the order of arguments to +
and · is irrelevant for the purpose of working out if a constraint is
of a particular form.) The algorithm is:

1. Construct the set S of solutions of the system in the abstract
domain of positive integers formed by quotienting Z0,+ over
the equivalence relation a ≡ b ⇐⇒ a = b∨(a ≥ 2 ∧ b ≥ 2),
defining +, ·, ≥ on this domain in the obvious way.

2. For all constraint systems in S repeat
(a) Replace all variables assigned 0 (1, respectively) at (1) with

0 (1, respectively).
(b) Add equations n = 0 or n = 1 respectively for each such

replacement.
(c) Delete all inequations of the form n ≥ 0 · n′, and replace

all inequations of the form n ≥ 0 + n′ and n ≥ 1 · n′ with
n ≥ n′.

(d) Construct the , relation on its set of variables.
(e) Repeat until , is well founded:

i. Pick a cycle n1 , n2 · · ·nj , n1, or a single variable
n1 where n1 , n1 (treating it as a one-element cycle).

ii. If the system contains any inequations of the form n ≥
n′ + n′′, n ≥ n′ + k, n ≥ n′ · n′′, or n ≥ n′ · k, where
n, n′, n′′ are variables involved in the cycle and k is a
constant discard the current solution and break to (2).

iii. Pick a fresh variable n.
iv. Replace all occurrences of ni with n, adding equations

of the form ni = n for each such replacement.
v. Delete all inequations of the form n ≥ n.

(f) Repeat until all RHSs of all equations are constant expres-
sions:

i. Choose a ,-minimal element n.

(n1 = 2)
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ii. Let E be the set of RHSes of inequations having n on
the LHS, and which are all constants.

iii. Replace all occurrences of n on the RHS of any equation
or inequation with the maximum element of E.

(g) Report the resulting set of equations and inequations as one
possible solution to the constraint system.

Correctness. The key point of the correctness argument is that at
step (2e), all remaining constraints of the form n ≥ n′ + n′′ and
n ≥ n′ · n′′ imply that n > n′ and n > n′′, and thus n " n′

implies that n ≥ n′. This has two consequences:
• In any cycle n1 " n2 · · ·nk " n1 all variables are greater than

or equal to each other, and so must be equal, hence step (2(e)iii).
• Constraints as in step (2(e)ii) cannot be satisfied, and so show

that the solution to the constraints in the {0, 1,≥ 2} number
system that is currently being tried is impossible.

If the dependency is well founded then given the form of the
inequations in the system we can proceed to variable elimination
via substitution in a straightforward way.
Termination. The algorithm contains three loops; the outside
loop always terminates because it iterates over a finite set, and
the inside loops always terminate because they always reduce ei-
ther the number of variables, or the number of constraints. We take
the empty relation to be trivially well founded. !
In our running example suppose we take the assume to be n1 = 2,
i.e. function f can use its argument in two concurrent contexts.
Solving the system of constraints gives the following typing where
the guarantees n2, n3 are given the smallest possible values:

λf.λx.f(f(x)) : (com2 → com)3 → com4 → com.

This means that the term will use f in at most 3 non-sequential
contexts and x in 4.

Finally, note that a purely symbolic solution of the constraint
system, which does not require the assumes given as constants, is
not always straightforward, so types cannot always be presented as
in Ex. 2.1. The reason is that for some (pathological) terms, giving
the type symbolically would require a large number of cases. There
are even terms that type in some such cases but not others; one such
example is the term

λq.(λg.g(λx.g(qx)))(λb.(λk.((k(λu.u))(λl.((kb)

(λt.(l(t skip)))))))(λv.λw.wv))

: (comm → comn → com)n2

→ com,

which types only if m ≤ 1.

4. Mapping to SCC(1): serialisation
Using GoS, we know how to compile into hardware terms that only
use contraction in sequential contexts (Ghica and Smith, 2010).
However, contraction in concurrent contexts cannot be compiled
and must be replaced by systematic replication of resources.

We do that by translating any SCC-typed term into another
SCC-typed term in which all bounds are set to the unit value. We
call this type system SCC(1). Perhaps surprisingly, this is actually
possible provided that we introduce new, multivariate binders for
assignable variables. In this section we present the translation,
which we call serialisation because it results in a term in which
all identifiers are used sequentially.

First an informal introduction. Supposed that we want to com-
pile the term in our running example, λf.λx.f(f(x)). We know
that if f : com2 → com then the term has type

(com2 → com)3 → com4 → com,

i.e. it uses 3 instances of f non-sequentially and 4 of x.
In hardware, contraction is used to mediate access to a shared

piece of circuitry from several points in a client. When sharing is
not possible then a circuit can be replicated as much as needed.
We will take the same approach in the programming language, by
replicating identifiers with bounds larger than the unit. The SCC
bounds in fact tell us precisely how many instances of an identifier
must be generated, because the bounds represent the maximum
number of identifiers used in parallel at any given moment.

At the level of types, θn → θ′ becomes θ → θ → · · · → θ′;
note that the expanded type must not be θ × θ → θ′, as product
allows contraction.

This means that our argument f must be changed to have
type com→ com→ com, and we will need three instances of
it, f1, f2, f3. The type of x does not change, but we will need
4 instances of it x1, . . . , x4. The serialised form of the term is
λf1f2f3x1x2x3x4.f1(f2x1x2)(f3x3x4).

An obstacle in the way of a straightforward transformation is
the existence of storage types (var, sem) which can be used from
non-sequential contexts. For example, how can the term

newvar x.x := 0 || x := 1 : com

≡ newvar(λx : var2.x := 0 || x := 1) : com

be serialized when the obvious serialization of the body of the
loop is λx1x2.x1 := 0 || x2 := 1? We can do that simply by
generalising the local variable binder itself and allowing it to bind
several identifiers to the same memory location.

We can now define the transformation in a systematic manner,
inductively on the SCC type derivation inferred in the previous
section. We denote the transformation operation by !=⇒ and we
define type level translation as

σ = σ

θ1 → θ′ = θ → θ′

θn → θ′ = θ → θn−1 → θ′

θ × θ′ = θ × θ′.

For constants we define k : θ = k : θ except for

newvar : (varn → com)→ com

= newvarn : (varn → com)→ com

= newvarn : (var→ · · ·→ var| {z }
n times

→ com)→ com.

Similarly for the other binders.
We need an ancillary transformation in cases when multiple

variables could be assigned different SCC types. A simple example
is λg.g(λx.x); g(λy.y||y), because both occurrences of g must be
assigned the same SCC type, so its arguments have to have the same
SCC type as well. Because the second argument is transformed to
λy1y2.y1||y2, the first argument must receive a dummy variable
and be rewritten to λx2x1.x1. The subtype() construction inserts
dummy variables whenever needed:

subtypeθ≤θ(M)
def
= M

subtypeθm
1 →θ3≤θn

2→θ3
(M)

def
= λx.subtypeθm+1

1 →θ3≤θn
2→θ3

(M)

subtypeθn
1→θ3≤θn

2→θ3
(M)

def
=

λx1 . . . xn.M
`
subtypeθ2≤θ1

(x1) . . . subtypeθ2≤θ1
(x1)

´

subtypeθn
3→θ1≤θn

3→θ2
(M)

def
=

λx1 . . . xn.subtypeθ1≤θ2
(Mx1 . . . xn)



Step 2: Serialization

f : (comn1 → com)n4 " f : (comn1 → com) ! n4 ≥ 1

g : (comn6 → com)n7 " g : comn6 → com ! n7 ≥ 1 x : comn9 " x : com ! n9 ≥ 1

g : (comn6 → com)n7 , x : comn8 " g(x) : com ! n8 ≥ n6 · n9

f : (comn1 → com)n4 , g : (comn1 → com)n5 , x : comn3 " f(g(x)) : com ! n5 ≥ n1 · n7 ∧ n6 ≥ n1 ∧ n3 ≥ n1 · n8

f : (comn1 → com)n2 , x : comn3 " f(f(x)) : com ! n2 ≥ n4 + n5

" λfλx.f(f(x)) : (comn1 → com)n2 → comn3 → com) ! true

Figure 1. Annotated SCC derivation tree for λfx.f(f(x))

f : (com2 → com)1 " f
!=⇒ f3 : com→ com→ com " f3

g : (com2 → com) " g !=⇒ g : com→ com→ com " g x : com1 " x !=⇒ x : com " x

g : (com2 → com), x : com2 " g(x)
!=⇒ g : com→ com→ com, x1, x2 : com " g(x1x2)

f : (com2 → com)1, g : (com2 → com)2, x : com4 " f(fx) !=⇒ f3, g, g′ : com→ com→ com, x1, x2, x′1, x′2 : com " f3(gx1x2)(g′x′1x′2)

f : (com2 → com)3, x : com4 " f(fx) !=⇒ f3, f1, f2 : (com→ com→ com)→ com, x1, x2, x′1, x′2 : com " f3(f1xx)(f2xx)

" λfx.f(f(x)) !=⇒ " λf3f2f1x1x2x′1x′2.f3(f1x1x2)(f2x′1x′2)

Figure 2. Serialization of λfx.f(f(x))

subtypeθ1→θ2≤θ3→θ4
(M)

def
=

subtypeθ3→θ2≤θ3→θ4

`
subtypeθ1→θ2≤θ3→θ2

(M)
´

We define the transformation as follows:

x : θn ! x : θ !=⇒ x : θ ! x : θ

! k : θ !=⇒ k : θ

Γ ! M : θ2 !=⇒ Γ′ ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ ! λx.M : θn
1 → θ2 !=⇒ Γ′ ! λx1 · · · xn.M ′ : θn

1 → θ2

Γ ! Mi : θi !=⇒ Γ′ ! M ′
i : θi

Γ ! 〈M1, M2〉 : θ1 × θ2 !=⇒ Γ′ ! 〈M ′
1, M

′
2〉 : θ1 × θ2

Γ ! M : θ1 !=⇒ Γ′ ! M ′ : θ1 θ1 ≤ θ2

Γ ! M : θ2 !=⇒ Γ ! subtypeθ1≤θ2
(M ′) : θ2

Γ, x : θn1
1 , y : θn2

1 ! M : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1 : θ1, y1 : θ1, . . . , yn2 : θ1 ! M ′ : θ2

Γ, x : θn1+n2
1 ! M [x/y] : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1+n2 : θ1 !
M [xn1+1/y1] · · · [xn1+n2/yn2 ] : θ2

Γ ! M : θn
1 → θ2 !=⇒ Γ′ ! M ′ : θn

1 → θ2

∆ ! N : θ1 !=⇒ ∆′ ! N ′ : θ1

Γ, n · ∆ ! MN : θ2

!=⇒ Γ′, ∆′
1, . . . , ∆

′
n ! M ′(N ′[∆′

1/∆′]) · · · (N ′[∆′
n/∆′]) : θ2

In the last rule given an identifier type assignment ∆′, by ∆′
k

we understand an identifier type assignment isomorphic to ∆′

where all the identifiers are fresh. The substitution N ′[∆′
k/∆′]

replaces all the identifiers in N ′ which occur in dom(∆′) with the
corresponding fresh identifier from dom(∆′

k).
The correctness of the transformation is formulated as:

THEOREM 4.1. If Γ ! M : θ is a valid SCC term and Γ ! M :
θ !=⇒ Γ′ ! M ′ : θ′ then Γ′ ! M ′ : θ′ is a valid SCC(1) term.
Moreover, if M is a program then M may terminate if and only
if M ′ may terminate.

Proof. The proof of the first part of the theorem is by structural
induction; that of the second, by showing that any sequence of
reductions in the operational semantics of an SCC term corresponds
to a sequence of reductions in the corresponding SCC(1) term, and
vice versa. The small-step operational semantics of ICA is given
in Ghica and Murawski (2008) and is the obvious one. We do not
include it here for lack of space. SCC and SCI have essentially the
same operational semantics as ICA.

Typing. As our induction hypothesis, we take the following
(stronger) hypothesis: for Γ ! M : θ a valid SCC term, and
Γ ! M : θ !=⇒ Γ′ ! M ′ : θ′, then Γ′ ! M ′ : θ′ is a valid SCC(1)
term, θ′ = θ, and Γ′ is Γ with all variables x : θn

1 replaced with at
most n copies of xi : θ1.

It is first necessary to prove that for any SCC type θ, θ is an
SCC(1) type, but this is obvious from the definition of type level
translation, because it cannot produce any bounds greater than 1.

The base case is trivially true by definition for the second rule;
for the first rule, the knowledge that the LHS is typed correctly
implies that n is at least 1, and thus the typing is correct (via the
identity axiom), θ′ = θ by definition, and the use of 1 copy of x
fulfils the requirement to have at most n copies with n ≥ 1.

In the case of Contraction note that N ′[∆′
k/∆′] must have the

same SCC type as N ′ because it is a replacement of variables in
N ′ with other variables of the same type. None of the N ′[∆′

k/∆′]
share free variables with M ′ by definition, and because the type of
M ′ is θn

1 → θ2, the type of M ′(N ′[∆′
1/∆′]) is θn−1

1 → θ2 etc.,
until the type of M ′(N ′[∆′

n/∆′]) is θ2, which proves the case of
Contraction.

The key cases are Subtyping and Application.
For Application, observe that N ′[∆′

k/∆′] must have the same
SCC type as N ′ because it is a replacement of variables in N ′ with
other variables of the same type. None of the N ′[∆′

k/∆′] share
free variables with M ′ by definition, and because the type of M ′ is
θn
1 → θ2, the type of M ′(N ′[∆′

1/∆′]) is θn−1
1 → θ2, and so on,

until the type of M ′(N ′[∆′
n/∆′]) is θ2, proving that the eighth rule

creates a correctly typed SCC(1) expression.
Correctness of Subtyping is proved by induction on the hypoth-

esis, i.e. if M ′ : θ1, then subtypeθ1≤θ2
(M ′) : θ2. Note that the

cases in the definition of subtype mirror the cases in the definition
of ≤ on SCC types (with the third and fourth cases being special
cases of the fifth, needed to make the recursion well-founded), and
thus subtypeθ1≤θ2

is defined whenever θ1 < θ2. The base case
(the first definition) is degenerately true, the fifth case is true by
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ii. Let E be the set of RHSes of inequations having n on
the LHS, and which are all constants.

iii. Replace all occurrences of n on the RHS of any equation
or inequation with the maximum element of E.

(g) Report the resulting set of equations and inequations as one
possible solution to the constraint system.

Correctness. The key point of the correctness argument is that at
step (2e), all remaining constraints of the form n ≥ n′ + n′′ and
n ≥ n′ · n′′ imply that n > n′ and n > n′′, and thus n " n′

implies that n ≥ n′. This has two consequences:
• In any cycle n1 " n2 · · ·nk " n1 all variables are greater than

or equal to each other, and so must be equal, hence step (2(e)iii).
• Constraints as in step (2(e)ii) cannot be satisfied, and so show

that the solution to the constraints in the {0, 1,≥ 2} number
system that is currently being tried is impossible.

If the dependency is well founded then given the form of the
inequations in the system we can proceed to variable elimination
via substitution in a straightforward way.
Termination. The algorithm contains three loops; the outside
loop always terminates because it iterates over a finite set, and
the inside loops always terminate because they always reduce ei-
ther the number of variables, or the number of constraints. We take
the empty relation to be trivially well founded. !
In our running example suppose we take the assume to be n1 = 2,
i.e. function f can use its argument in two concurrent contexts.
Solving the system of constraints gives the following typing where
the guarantees n2, n3 are given the smallest possible values:

λf.λx.f(f(x)) : (com2 → com)3 → com4 → com.

This means that the term will use f in at most 3 non-sequential
contexts and x in 4.

Finally, note that a purely symbolic solution of the constraint
system, which does not require the assumes given as constants, is
not always straightforward, so types cannot always be presented as
in Ex. 2.1. The reason is that for some (pathological) terms, giving
the type symbolically would require a large number of cases. There
are even terms that type in some such cases but not others; one such
example is the term

λq.(λg.g(λx.g(qx)))(λb.(λk.((k(λu.u))(λl.((kb)

(λt.(l(t skip)))))))(λv.λw.wv))

: (comm → comn → com)n2

→ com,

which types only if m ≤ 1.

4. Mapping to SCC(1): serialisation
Using GoS, we know how to compile into hardware terms that only
use contraction in sequential contexts (Ghica and Smith, 2010).
However, contraction in concurrent contexts cannot be compiled
and must be replaced by systematic replication of resources.

We do that by translating any SCC-typed term into another
SCC-typed term in which all bounds are set to the unit value. We
call this type system SCC(1). Perhaps surprisingly, this is actually
possible provided that we introduce new, multivariate binders for
assignable variables. In this section we present the translation,
which we call serialisation because it results in a term in which
all identifiers are used sequentially.

First an informal introduction. Supposed that we want to com-
pile the term in our running example, λf.λx.f(f(x)). We know
that if f : com2 → com then the term has type

(com2 → com)3 → com4 → com,

i.e. it uses 3 instances of f non-sequentially and 4 of x.
In hardware, contraction is used to mediate access to a shared

piece of circuitry from several points in a client. When sharing is
not possible then a circuit can be replicated as much as needed.
We will take the same approach in the programming language, by
replicating identifiers with bounds larger than the unit. The SCC
bounds in fact tell us precisely how many instances of an identifier
must be generated, because the bounds represent the maximum
number of identifiers used in parallel at any given moment.

At the level of types, θn → θ′ becomes θ → θ → · · · → θ′;
note that the expanded type must not be θ × θ → θ′, as product
allows contraction.

This means that our argument f must be changed to have
type com→ com→ com, and we will need three instances of
it, f1, f2, f3. The type of x does not change, but we will need
4 instances of it x1, . . . , x4. The serialised form of the term is
λf1f2f3x1x2x3x4.f1(f2x1x2)(f3x3x4).

An obstacle in the way of a straightforward transformation is
the existence of storage types (var, sem) which can be used from
non-sequential contexts. For example, how can the term

newvar x.x := 0 || x := 1 : com

≡ newvar(λx : var2.x := 0 || x := 1) : com

be serialized when the obvious serialization of the body of the
loop is λx1x2.x1 := 0 || x2 := 1? We can do that simply by
generalising the local variable binder itself and allowing it to bind
several identifiers to the same memory location.

We can now define the transformation in a systematic manner,
inductively on the SCC type derivation inferred in the previous
section. We denote the transformation operation by !=⇒ and we
define type level translation as

σ = σ

θ1 → θ′ = θ → θ′

θn → θ′ = θ → θn−1 → θ′

θ × θ′ = θ × θ′.

For constants we define k : θ = k : θ except for

newvar : (varn → com)→ com

= newvarn : (varn → com)→ com

= newvarn : (var→ · · ·→ var| {z }
n times

→ com)→ com.

Similarly for the other binders.
We need an ancillary transformation in cases when multiple

variables could be assigned different SCC types. A simple example
is λg.g(λx.x); g(λy.y||y), because both occurrences of g must be
assigned the same SCC type, so its arguments have to have the same
SCC type as well. Because the second argument is transformed to
λy1y2.y1||y2, the first argument must receive a dummy variable
and be rewritten to λx2x1.x1. The subtype() construction inserts
dummy variables whenever needed:

subtypeθ≤θ(M)
def
= M

subtypeθm
1 →θ3≤θn

2→θ3
(M)

def
= λx.subtypeθm+1

1 →θ3≤θn
2→θ3

(M)

subtypeθn
1→θ3≤θn

2→θ3
(M)

def
=

λx1 . . . xn.M
`
subtypeθ2≤θ1

(x1) . . . subtypeθ2≤θ1
(x1)

´

subtypeθn
3→θ1≤θn

3→θ2
(M)

def
=

λx1 . . . xn.subtypeθ1≤θ2
(Mx1 . . . xn)

new x in C ⇔ newvar (λx.C)

new3 x1, x2, x3 in C ⇔ newvar3. (λx1.x2.x3.C)



Example
f : (comn1 → com)n4 " f : (comn1 → com) ! n4 ≥ 1

g : (comn6 → com)n7 " g : comn6 → com ! n7 ≥ 1 x : comn9 " x : com ! n9 ≥ 1

g : (comn6 → com)n7 , x : comn8 " g(x) : com ! n8 ≥ n6 · n9

f : (comn1 → com)n4 , g : (comn1 → com)n5 , x : comn3 " f(g(x)) : com ! n5 ≥ n1 · n7 ∧ n6 ≥ n1 ∧ n3 ≥ n1 · n8

f : (comn1 → com)n2 , x : comn3 " f(f(x)) : com ! n2 ≥ n4 + n5

" λfλx.f(f(x)) : (comn1 → com)n2 → comn3 → com) ! true

Figure 1. Annotated SCC derivation tree for λfx.f(f(x))

f : (com2 → com)1 " f
!=⇒ f3 : com→ com→ com " f3

g : (com2 → com) " g !=⇒ g : com→ com→ com " g x : com1 " x !=⇒ x : com " x

g : (com2 → com), x : com2 " g(x)
!=⇒ g : com→ com→ com, x1, x2 : com " g(x1x2)

f : (com2 → com)1, g : (com2 → com)2, x : com4 " f(fx) !=⇒ f3, g, g′ : com→ com→ com, x1, x2, x′1, x′2 : com " f3(gx1x2)(g′x′1x′2)

f : (com2 → com)3, x : com4 " f(fx) !=⇒ f3, f1, f2 : (com→ com→ com)→ com, x1, x2, x′1, x′2 : com " f3(f1xx)(f2xx)

" λfx.f(f(x)) !=⇒ " λf3f2f1x1x2x′1x′2.f3(f1x1x2)(f2x′1x′2)

Figure 2. Serialization of λfx.f(f(x))

subtypeθ1→θ2≤θ3→θ4
(M)

def
=

subtypeθ3→θ2≤θ3→θ4

`
subtypeθ1→θ2≤θ3→θ2

(M)
´

We define the transformation as follows:

x : θn ! x : θ !=⇒ x : θ ! x : θ

! k : θ !=⇒ k : θ

Γ ! M : θ2 !=⇒ Γ′ ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ ! λx.M : θn
1 → θ2 !=⇒ Γ′ ! λx1 · · · xn.M ′ : θn

1 → θ2

Γ ! Mi : θi !=⇒ Γ′ ! M ′
i : θi

Γ ! 〈M1, M2〉 : θ1 × θ2 !=⇒ Γ′ ! 〈M ′
1, M

′
2〉 : θ1 × θ2

Γ ! M : θ1 !=⇒ Γ′ ! M ′ : θ1 θ1 ≤ θ2

Γ ! M : θ2 !=⇒ Γ ! subtypeθ1≤θ2
(M ′) : θ2

Γ, x : θn1
1 , y : θn2

1 ! M : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1 : θ1, y1 : θ1, . . . , yn2 : θ1 ! M ′ : θ2

Γ, x : θn1+n2
1 ! M [x/y] : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1+n2 : θ1 !
M [xn1+1/y1] · · · [xn1+n2/yn2 ] : θ2

Γ ! M : θn
1 → θ2 !=⇒ Γ′ ! M ′ : θn

1 → θ2

∆ ! N : θ1 !=⇒ ∆′ ! N ′ : θ1

Γ, n · ∆ ! MN : θ2

!=⇒ Γ′, ∆′
1, . . . , ∆

′
n ! M ′(N ′[∆′

1/∆′]) · · · (N ′[∆′
n/∆′]) : θ2

In the last rule given an identifier type assignment ∆′, by ∆′
k

we understand an identifier type assignment isomorphic to ∆′

where all the identifiers are fresh. The substitution N ′[∆′
k/∆′]

replaces all the identifiers in N ′ which occur in dom(∆′) with the
corresponding fresh identifier from dom(∆′

k).
The correctness of the transformation is formulated as:

THEOREM 4.1. If Γ ! M : θ is a valid SCC term and Γ ! M :
θ !=⇒ Γ′ ! M ′ : θ′ then Γ′ ! M ′ : θ′ is a valid SCC(1) term.
Moreover, if M is a program then M may terminate if and only
if M ′ may terminate.

Proof. The proof of the first part of the theorem is by structural
induction; that of the second, by showing that any sequence of
reductions in the operational semantics of an SCC term corresponds
to a sequence of reductions in the corresponding SCC(1) term, and
vice versa. The small-step operational semantics of ICA is given
in Ghica and Murawski (2008) and is the obvious one. We do not
include it here for lack of space. SCC and SCI have essentially the
same operational semantics as ICA.

Typing. As our induction hypothesis, we take the following
(stronger) hypothesis: for Γ ! M : θ a valid SCC term, and
Γ ! M : θ !=⇒ Γ′ ! M ′ : θ′, then Γ′ ! M ′ : θ′ is a valid SCC(1)
term, θ′ = θ, and Γ′ is Γ with all variables x : θn

1 replaced with at
most n copies of xi : θ1.

It is first necessary to prove that for any SCC type θ, θ is an
SCC(1) type, but this is obvious from the definition of type level
translation, because it cannot produce any bounds greater than 1.

The base case is trivially true by definition for the second rule;
for the first rule, the knowledge that the LHS is typed correctly
implies that n is at least 1, and thus the typing is correct (via the
identity axiom), θ′ = θ by definition, and the use of 1 copy of x
fulfils the requirement to have at most n copies with n ≥ 1.

In the case of Contraction note that N ′[∆′
k/∆′] must have the

same SCC type as N ′ because it is a replacement of variables in
N ′ with other variables of the same type. None of the N ′[∆′

k/∆′]
share free variables with M ′ by definition, and because the type of
M ′ is θn

1 → θ2, the type of M ′(N ′[∆′
1/∆′]) is θn−1

1 → θ2 etc.,
until the type of M ′(N ′[∆′

n/∆′]) is θ2, which proves the case of
Contraction.

The key cases are Subtyping and Application.
For Application, observe that N ′[∆′

k/∆′] must have the same
SCC type as N ′ because it is a replacement of variables in N ′ with
other variables of the same type. None of the N ′[∆′

k/∆′] share
free variables with M ′ by definition, and because the type of M ′ is
θn
1 → θ2, the type of M ′(N ′[∆′

1/∆′]) is θn−1
1 → θ2, and so on,

until the type of M ′(N ′[∆′
n/∆′]) is θ2, proving that the eighth rule

creates a correctly typed SCC(1) expression.
Correctness of Subtyping is proved by induction on the hypoth-

esis, i.e. if M ′ : θ1, then subtypeθ1≤θ2
(M ′) : θ2. Note that the

cases in the definition of subtype mirror the cases in the definition
of ≤ on SCC types (with the third and fourth cases being special
cases of the fifth, needed to make the recursion well-founded), and
thus subtypeθ1≤θ2

is defined whenever θ1 < θ2. The base case
(the first definition) is degenerately true, the fifth case is true by

f : (comn1 → com)n4 " f : (comn1 → com) ! n4 ≥ 1

g : (comn6 → com)n7 " g : comn6 → com ! n7 ≥ 1 x : comn9 " x : com ! n9 ≥ 1

g : (comn6 → com)n7 , x : comn8 " g(x) : com ! n8 ≥ n6 · n9

f : (comn1 → com)n4 , g : (comn1 → com)n5 , x : comn3 " f(g(x)) : com ! n5 ≥ n1 · n7 ∧ n6 ≥ n1 ∧ n3 ≥ n1 · n8

f : (comn1 → com)n2 , x : comn3 " f(f(x)) : com ! n2 ≥ n4 + n5

" λfλx.f(f(x)) : (comn1 → com)n2 → comn3 → com) ! true

Figure 1. Annotated SCC derivation tree for λfx.f(f(x))

f : (com2 → com)1 " f
!=⇒ f3 : com→ com→ com " f3

g : (com2 → com) " g !=⇒ g : com→ com→ com " g x : com1 " x !=⇒ x : com " x

g : (com2 → com), x : com2 " g(x)
!=⇒ g : com→ com→ com, x1, x2 : com " g(x1x2)
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" λfx.f(f(x)) !=⇒ " λf3f2f1x1x2x′1x′2.f3(f1x1x2)(f2x′1x′2)

Figure 2. Serialization of λfx.f(f(x))

subtypeθ1→θ2≤θ3→θ4
(M)

def
=

subtypeθ3→θ2≤θ3→θ4

`
subtypeθ1→θ2≤θ3→θ2

(M)
´

We define the transformation as follows:

x : θn ! x : θ !=⇒ x : θ ! x : θ

! k : θ !=⇒ k : θ

Γ ! M : θ2 !=⇒ Γ′ ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ, x : θn
1 ! M : θ2 !=⇒ Γ′, x1 : θ1, . . . , xn : θ1 ! M ′ : θ2

Γ ! λx.M : θn
1 → θ2 !=⇒ Γ′ ! λx1 · · · xn.M ′ : θn

1 → θ2

Γ ! Mi : θi !=⇒ Γ′ ! M ′
i : θi

Γ ! 〈M1, M2〉 : θ1 × θ2 !=⇒ Γ′ ! 〈M ′
1, M

′
2〉 : θ1 × θ2

Γ ! M : θ1 !=⇒ Γ′ ! M ′ : θ1 θ1 ≤ θ2

Γ ! M : θ2 !=⇒ Γ ! subtypeθ1≤θ2
(M ′) : θ2

Γ, x : θn1
1 , y : θn2

1 ! M : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1 : θ1, y1 : θ1, . . . , yn2 : θ1 ! M ′ : θ2

Γ, x : θn1+n2
1 ! M [x/y] : θ2

!=⇒ Γ′, x1 : θ1, . . . , xn1+n2 : θ1 !
M [xn1+1/y1] · · · [xn1+n2/yn2 ] : θ2

Γ ! M : θn
1 → θ2 !=⇒ Γ′ ! M ′ : θn

1 → θ2

∆ ! N : θ1 !=⇒ ∆′ ! N ′ : θ1

Γ, n · ∆ ! MN : θ2

!=⇒ Γ′, ∆′
1, . . . , ∆

′
n ! M ′(N ′[∆′

1/∆′]) · · · (N ′[∆′
n/∆′]) : θ2

In the last rule given an identifier type assignment ∆′, by ∆′
k

we understand an identifier type assignment isomorphic to ∆′

where all the identifiers are fresh. The substitution N ′[∆′
k/∆′]

replaces all the identifiers in N ′ which occur in dom(∆′) with the
corresponding fresh identifier from dom(∆′

k).
The correctness of the transformation is formulated as:

THEOREM 4.1. If Γ ! M : θ is a valid SCC term and Γ ! M :
θ !=⇒ Γ′ ! M ′ : θ′ then Γ′ ! M ′ : θ′ is a valid SCC(1) term.
Moreover, if M is a program then M may terminate if and only
if M ′ may terminate.

Proof. The proof of the first part of the theorem is by structural
induction; that of the second, by showing that any sequence of
reductions in the operational semantics of an SCC term corresponds
to a sequence of reductions in the corresponding SCC(1) term, and
vice versa. The small-step operational semantics of ICA is given
in Ghica and Murawski (2008) and is the obvious one. We do not
include it here for lack of space. SCC and SCI have essentially the
same operational semantics as ICA.

Typing. As our induction hypothesis, we take the following
(stronger) hypothesis: for Γ ! M : θ a valid SCC term, and
Γ ! M : θ !=⇒ Γ′ ! M ′ : θ′, then Γ′ ! M ′ : θ′ is a valid SCC(1)
term, θ′ = θ, and Γ′ is Γ with all variables x : θn

1 replaced with at
most n copies of xi : θ1.

It is first necessary to prove that for any SCC type θ, θ is an
SCC(1) type, but this is obvious from the definition of type level
translation, because it cannot produce any bounds greater than 1.

The base case is trivially true by definition for the second rule;
for the first rule, the knowledge that the LHS is typed correctly
implies that n is at least 1, and thus the typing is correct (via the
identity axiom), θ′ = θ by definition, and the use of 1 copy of x
fulfils the requirement to have at most n copies with n ≥ 1.

In the case of Contraction note that N ′[∆′
k/∆′] must have the

same SCC type as N ′ because it is a replacement of variables in
N ′ with other variables of the same type. None of the N ′[∆′

k/∆′]
share free variables with M ′ by definition, and because the type of
M ′ is θn

1 → θ2, the type of M ′(N ′[∆′
1/∆′]) is θn−1

1 → θ2 etc.,
until the type of M ′(N ′[∆′

n/∆′]) is θ2, which proves the case of
Contraction.

The key cases are Subtyping and Application.
For Application, observe that N ′[∆′

k/∆′] must have the same
SCC type as N ′ because it is a replacement of variables in N ′ with
other variables of the same type. None of the N ′[∆′

k/∆′] share
free variables with M ′ by definition, and because the type of M ′ is
θn
1 → θ2, the type of M ′(N ′[∆′

1/∆′]) is θn−1
1 → θ2, and so on,

until the type of M ′(N ′[∆′
n/∆′]) is θ2, proving that the eighth rule

creates a correctly typed SCC(1) expression.
Correctness of Subtyping is proved by induction on the hypoth-

esis, i.e. if M ′ : θ1, then subtypeθ1≤θ2
(M ′) : θ2. Note that the

cases in the definition of subtype mirror the cases in the definition
of ≤ on SCC types (with the third and fourth cases being special
cases of the fifth, needed to make the recursion well-founded), and
thus subtypeθ1≤θ2

is defined whenever θ1 < θ2. The base case
(the first definition) is degenerately true, the fifth case is true by
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Figure 8. Event logic for contraction in concurrent contexts.

This, together with the correctness of type inference from ICA to
SCC (Thm. 3.1) and program transformation from SCC to SCC(1)
(Thm. 4.1) lead to the main result,

THEOREM 5.2. Programs in ICA which have an SCC type can
be effectively mapped into delay-insensitive event-logic circuits.

5.4 Example
We show the compilation of three terms with identical ICA types
but distinct SCC and serialised versions. The terms, the inferred
SCC types and the SCC(1) versions are given below, assuming
f : com1 → com.

λfx.f(fx):(com1→com)2→com1→com !=⇒ λf1f2x.f1(f2x)

λfx.fx; fx:(com1→com)1→com1→com !=⇒ λfx.fx; fx

λfx.fx||fx:(com1→com)2→com2→com

!=⇒ λf1f2x1x2.f1x1; f2x2

The compiled versions are in Fig. 9. The actual synthesised cir-
cuits are inside the grey box. The circuits marked Fi, Xi, F, X are
instances of the argument that must be supplied by the designer
to create a working circuits or, equivalently, arguments for f, x to
lead to programs. Note the trade-offs in the last two designs. The
second circuit contains two fairly expensive diagonal circuits but
it only requires one instance of F and X , while the third consists
only of connectors, but requires two instances of each of F and X;

6. Related and further work
There exist other higher-level approaches to hardware synthesis:
SYSTEMC1 or COWARE2, hardware compilers based on process
calculi, such as (van Berkel et al., 1991), or higher-order structural
languages such as LAVA (Bjesse et al., 1998); these are interesting
and useful, but conceptually different ways of approaching VLSI
design.

1 www.systemc.org
2 www.coware.com

Hardware compilation in the behavioural style we are pursuing
in GoS has a substantial literature which we cannot discuss exten-
sively; some entry points to the literature are Budiu and Goldstein
(2002); Buyukkurt et al. (2006). This line of work is in some sense
parallel with ours and focuses almost exclusively on optimisation
techniques such as automated parallelisation whereas we are con-
cerned with problems of a structural nature. This difference of fo-
cus is discussed extensively in Ghica (2009).

Type inference for SCI has been studied before, but for a richer
version of the type system which we do not need (Yang and Huang,
1998). A program transformation similar in spirit with our seriali-
sation is linearisation, due to Kfoury (2000). The first main differ-
ence is that linearisation replicates every variable occurrence, with-
out permitting contraction at all. The second one is that replication
of variables of higher-order type does not have to be uniform, but
can result in occurrences with different linearized types. The first
difference is conceptually significant but technically rather minor,
whereas the second one is conceptually minor but, perhaps surpris-
ingly, technically significant resulting in the existence of normal
forms which can be linearized but cannot be serialized. From the
point of view of compiler support for separate compilation, foreign
function calls and run-time services we consider it crucial to offer a
consistent interface between a serialized term and its context, hence
our decision. Also note that the soundness argument of Thm. 4.1 is
simplified by the fact that serialization is uniform across copies of
identifiers, leading to a very simple inductive step in the proof.

However, inside the serialised term itself perhaps a more flexi-
ble approach which mixes serialisation and linearization could be
used at the expense of some complication in the algorithms. Even
so, it is worth noting that non-typeable terms are somewhat patho-
logical and unlikely to be found in algorithmically relevant pro-
grams. Combining serialization with a selective form of lineariza-
tion can lead to interesting optimisations techniques. Various per-
formance parameters can be calculated at compile-time, e.g. foot-
print (number of gates) or latency (longest delay). Linearisation
of an identifier makes a trade-off between duplicating arguments
to functions and using expensive contraction circuitry, as can be
seen in Fig. 9. In this sense, serialization is the extreme scenario in
which contraction is always favoured before replication. Introduc-
ing a controlled form of linearization will be investigated in further
optimised implementations of the compiler.

Finally, the approach here can be extended to synchronous cir-
cuits using the round abstraction methodology for low-latency
encoding of asynchronous specifications into synchronous cir-
cuits (Ghica and Menaa, 2010). This is forthcoming work.
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model (Def. 2.7 in [5]). The n-way arbiter then ensures that the
sequential contraction circuit is actually used sequentially, because
all read and write requests to the variable are serialized. The two
XOR gates take mutually exclusive input events, therefore they are
always used safely. !

This, together with the correctness of type inference from ICA to
SCC (Thm 4.1) and program transformation from SCC to SCC(1)
(Thm. 5.1) lead to the main result,

THEOREM 6.2. Programs in ICA which have an SCC type can
be effectively mapped into delay-insensitive event-logic circuits.

6.1 Example
We show the compilation of two terms with identical ICA types but
distinct SCC and serialised versions, λfx.f(fx) and λfx.fx; fx.
Assuming that f : com1 → com, the two terms have SCC types
(com1 → com)2 → com1 → com and, respectively (com1 → com)1 → com1 → com.
The respective SCC(1) transformations give, respectively, λf1f2x.f1(f2x)
and λfx.fx; fx. The two compiled circuits are in Fig. ??.

7. Further work
* related work: “linearization”?
* make synchronous via round abstraction

References
[1] D. R. Ghica. Geometry of Synthesis: a structured approach to VLSI

design. In POPL, pages 363–375, 2007.

[2] D. R. Ghica and A. Murawski. Angelic semantics of fine-grained
concurrency. Annals of Pure and Applied Logic, 151(2-3):89–114,
2008.

[3] D. R. Ghica and A. S. Murawski. Compositional model extraction for
higher-order concurrent programs. In TACAS, pages 303–317, 2006.

[4] D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Syntactic control of
concurrency. Theor. Comput. Sci., 350(2-3):234–251, 2006.

[5] D. R. Ghica and A. Smith. Geometry of Synthesis II: From games to
delay-insensitive circuits. In MFPS XXVI, 2010. forthcoming.

[6] S. Hauck. Asynchronous design methodologies: an overview.
Proceedings of the IEEE, 83(1):69–93, Jan 1995.

[7] A. J. Martin. Developments in concurrency and communication,
chapter Programming in VLSI: From communicating processes to
delay-insensitive circuits, pages 1–64. Addison-Wesley, 1990.

[8] G. McCusker. Categorical models of syntactic control of interference
revisited, revisited. LMS Journal of Computation and Mathematics,
10:176–216, 2007.

[9] G. McCusker. A graph model for imperative computation. Logical
Methods in Computer Science, 6(1), 2010. DOI: 10.2168/LMCS-
6(1:2)2010.

[10] R. E. Miller. Sequential Circuits. Wiley, NY, 1965.

[11] A. Murawski. Full abstraction without synchronization primitives. In
MFPS XXVI, 2010. (forthcoming).

[12] P. W. O’Hearn, J. Power, M. Takeyama, and R. D. Tennent. Syntactic
control of interference revisited. Theor. Comput. Sci., 228(1-2):211–
252, 1999.

[13] G. L. Peterson. Myths about the mutual exclusion problem.
Information Processing Letters, 12:115–116, 1981.

[14] U. S. Reddy. Global state considered unnecessary: An introduction to
object-based semantics. Lisp and Symbolic Computation, 9(1):7–76,
1996.

[15] J. C. Reynolds. Syntactic control of interference. In POPL, pages
39–46, 1978.

[16] J. C. Reynolds. The essence of Algol. In Proceedings of the 1981
International Symposium on Algorithmic Languages, pages 345–372.
North-Holland, 1981.

[17] J. C. Reynolds. Syntactic control of inference, part 2. In ICALP,
pages 704–722, 1989.

[18] C. L. Seitz. Ideas about arbiters. Lambda, 1(1):10–14, 1980.

[19] J. Sparsø and S. Furber, editors. Principles of Asynchronous Circuit
Design: A Systems Perspective. European Low-Power Initiative for
Electronic System Design. Kluwer Academic Publishers, 2001.

[20] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738,
1989. Turing Award Paper.

11 2010/7/11

model (Def. 2.7 in [5]). The n-way arbiter then ensures that the
sequential contraction circuit is actually used sequentially, because
all read and write requests to the variable are serialized. The two
XOR gates take mutually exclusive input events, therefore they are
always used safely. !

This, together with the correctness of type inference from ICA to
SCC (Thm 4.1) and program transformation from SCC to SCC(1)
(Thm. 5.1) lead to the main result,

THEOREM 6.2. Programs in ICA which have an SCC type can
be effectively mapped into delay-insensitive event-logic circuits.

6.1 Example
We show the compilation of two terms with identical ICA types but
distinct SCC and serialised versions, λfx.f(fx) and λfx.fx; fx.
Assuming that f : com1 → com, the two terms have SCC types
(com1 → com)2 → com1 → com and, respectively (com1 → com)1 → com1 → com.
The respective SCC(1) transformations give, respectively, λf1f2x.f1(f2x)
and λfx.fx; fx. The two compiled circuits are in Fig. ??.

7. Further work
* related work: “linearization”?
* make synchronous via round abstraction
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model (Def. 2.7 in [5]). The n-way arbiter then ensures that the
sequential contraction circuit is actually used sequentially, because
all read and write requests to the variable are serialized. The two
XOR gates take mutually exclusive input events, therefore they are
always used safely. !

This, together with the correctness of type inference from ICA to
SCC (Thm 4.1) and program transformation from SCC to SCC(1)
(Thm. 5.1) lead to the main result,

THEOREM 6.2. Programs in ICA which have an SCC type can
be effectively mapped into delay-insensitive event-logic circuits.

6.1 Example
We show the compilation of three terms with identical ICA types
but distinct SCC and serialised versions. The terms, the inferred
SCC types and the SCC(1) versions are given below, assuming
f : com1 → com.

λfx.f(fx) : (com1 → com)2 → com1 → com !⇒ λf1f2x.f1(f2x)

λfx.fx; fx : (com1 → com)1 → com1 → com !⇒ λfx.fx; fx

λfx.fx||fx : (com1 → com)2 → com2 → com !⇒ λf1f2x1x2.f1x1; f2x2

The compiled versions are in Fig. 9. The actual synthesised cir-
cuits are inside the grey box. The circuits marked Fi, F, X are in-
stantiations of the argument that must be supplied by the designer
to create a working circuits or, equivalently, arguments for f, x to
lead to programs. Note the tradeoffs in the two designs. The first
one consists only of connectors, but requires two instances of F ;
the second one contains two fairly expensive diagonal circuits but
it only requires one instance of F .
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• focus on the interconnect
• many h/o programs can be mapped to hardware
• includes imperative and concurrency primitives (par, sem)

• can also handle control (exceptions)
• timing-model independent
• compiler to HDL (prototype, target FPGAs)
• serialization akin to Kfouryʼs linearization
• recursion (ongoing, with A Smith, S Singh)
• pipelining (ongoing, with A Smith)
• CBV, hetʼgeneous computing (ongoing, with H Thielecke)
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