
Typing of periodic clocks in Lucy-n

Louis Mandel Florence Plateau

Équipe Parkas

École Normale Supérieure

Université Paris-Sud 11

INRIA

Synchron 2010

Lucy-n = Lustre + buffers

aux2

aux1i1

i2

g

when

(0110)

when

(1001)

+
o

let node g (i1, i2) = o where

rec aux1 = i1 when (1001)

and aux2 = i2 when (0110)

and o = buffer aux1 + buffer aux2

val g :: forall ’a. (’a * ’a) -> ’a on 0(10)

Buffer line 4, characters 10-21: size = 1

Buffer line 4, characters 24-35: size = 1

Clock calculus to automatically compute

� activation rhythms of nodes (schedules)

� buffers sizes needed for these schedules
2

Abstract Clocks

Instants

N
u
m

b
e
r

o
f

o
n
e
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

a1 =
˙

0,
4

5

¸ `

3

5

´

a2 =
˙

−

9

5
,−

3

5

¸ `

3

5

´

Advantages:

� efficient algorithm

� deals with not exactly periodic

clocks

Disadvantage:

� over approximation of buffer sizes

� reject correct programs

⇒ an algorithm without abstraction is useful in certain cases
3

Overview

1. Algebraic properties of ultimately periodic binary words

2. Typing of n-synchronous programs

3. Discussion

4

Clocks

x
w

x 2 5 3 7 9 4 6 . . .

w = clock(x) 1 1 0 1 0 1 1 1 0 0 1 . . .

Ultimately periodic binary words

� definition: p = u(v)
def
⇔ p = uw avec w = vw

� notation: prefix = p.u and periodic part = p.v

� example: 1101(11100110) = 1101 11100110 11100110 11100110 . . .

Index of the j th 1 of w

� notation: Iw(j)

� example: Iw(4) = 6
5

Sampling

w2

when w1 on w2

x when w2x

w1

x 2 5 3 7 9 . . .

w2 1 0 1 1 0 . . .

x when w2 2 3 7 . . .

w1 1 1 0 1 0 1 1 . . .

w2 1 0 1 1 0 . . .

w1 on w2 1 0 0 1 0 1 0 . . .

Definition:

0w1 on w2

def
= 0(w1 on w2)

1w1 on 1w2

def
= 1(w1 on w2)

1w1 on 0w2

def
= 0(w1 on w2)

6

on operator

Example:

p1 1 1 0 1 (1 1 1 0 0 1 1 0)

p2 1 0 1 (1 0 0 1 0)

p1 on p2 1 0 0 1 (1 0 0 0 0 1 0 0)

Properties:

� size and number of 1:

Let p1 and p2 such that |p1.u|1 = |p2.u| and |p1.v|1 = |p2.v|. Then:

|(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1

|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = |p2.v|1

� index of the j th 1 of w1 on w2 :

∀j ≥ 1, Iw1 on w2
(j) = Iw1

(Iw2
(j))

7

Buffering

w1 w2

x buffer x

Communication through a bounded buffer:

� synchronizability test:

p1 ⊲⊳ p2 ⇔
|p1.v|1
|p1.v|

=
|p2.v|1
|p2.v|

� precedence test: let h = max(|p1.u|1, |p2.u|1) + ppcm (|p1.v|1, |p2.v|1),

p1 � p2 ⇔ ∀j, 1 ≤ j ≤ h, Ip1
(j) ≤ Ip2

(j)

� adaptability test: p1 <: p2 ⇔ p1 ⊲⊳ p2 ∧ p1 � p2

Examples:

� synchronizability test: (11010) ⊲⊳ 0(00111)

� precedence test: (11010) � 0(00111)
8

Example of Lucy-n program

10(1)

(1100)

aux2

aux1when

f

i1

i2

o

when

when

(01)
+

+

when

(01)

when

(10)

+

let node f (i1, i2) = o where

rec aux1 = buffer (i1 when 10(1)) + aux2

and aux2 = buffer (i2 when (1100)) + i2 when (01)

and o = buffer (aux1 when (10)) + buffer (aux1 when (01))

9

Typing

α2 on (01)
α2 on (1100)

α1 α1 on 10(1)
α2 on (01) on (10) α3

α3

α2 on (01) on (01)

α3

α2 on (01)
α2 on (01)

α2 α2 on (01)

α2 on (01)

10(1)

(1100)

aux2

aux1when

f

i1

i2

o

when

when

(01)
+

+

when

(01)

when

(10)

+

f :: α1 × α2 → α3 with the following constraints:

α1 on 10(1) <:<:<: α2 on (01)

α2 on (1100) <:<:<: α2 on (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

Question: find types α1, α2 and α3

such that the constraints are always satisfied.
10

Typing

α2 on (01)
α2 on (1100)

α1 α1 on 10(1)
α2 on (01) on (10) α3

α3

α2 on (01) on (01)

α3

α2 on (01)
α2 on (01)

α2 α2 on (01)

α2 on (01)

10(1)

(1100)

aux2

aux1when

f

i1

i2

o

when

when

(01)
+

+

when

(01)

when

(10)

+

f :: α1 × α2 → α3 with the following constraints:

α1 on 10(1) <:<:<: α2 on (01)

α2 on (1100) <:<:<: α2 on (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

We can simplify constraints that depends on the same type variable

� Property: α on ce1 <:<:<: α on ce2 ⇔ ce1 <: ce2

α1 on 10(1) <:<:<: α2 on (01)

(1100) <: (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

We can check that the adaptability constraint is satisfied.

α1 on 10(1) <:<:<: α2 on (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

We can express this system in function of a unique type variable

by instantiation of α1, α2, α3

θ = {α1 ← α on c1; α2 ← α on c2; α3 ← α on c3; }

α on c1 on 10(1) <:<:<: α on c2 on (01)

α on c2 on (01) on (10) <:<:<: α on c3 on (1)

α on c2 on (01) on (01) <:<:<: α on c3 on (1)

We can simplify the constraints

c1 on 10(1) <: c2 on (01)

c2 on (01) on (10) <: c3 on (1)

c2 on (01) on (01) <: c3 on (1)

Question: find ultimately periodic binary words c1, c2 and c3

such that the constraints are always satisfied.

13

Typing

α2 on (01)
α2 on (1100)

α1 α1 on 10(1)
α2 on (01) on (10) α3

α3

α2 on (01) on (01)

α3

α2 on (01)
α2 on (01)

α2 α2 on (01)

α2 on (01)

10(1)

(1100)

aux2

aux1when

f

i1

i2

o

when

when

(01)
+

+

when

(01)

when

(10)

+

f :: α on c1 × α on c2 → α on c3 with the following constraints:

c1 on 10(1) <: c2 on (01)

c2 on (01) on (10) <: c3 on (1)

c2 on (01) on (01) <: c3 on (1)

We can compute on .

c1 on 10(1) <: c2 on (01)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

We can adjust the system such that all the samplers of a same variable have the

same size.

c1 on 10(1) <: c2 on (0101)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

We choose the number of 1 of each cn such that it is equal to the size of its

samplers.

|c1.u|1 = 2 |c1.v|1 = 1 |c2.u|1 = 0 |c2.v|1 = 4 |c3.u|1 = 0 |c3.v|1 = 1

We can split adaptability constraints into synchronizability and precedence

constraints.

c1 on 10(1) ⊲⊳ c2 on (0101)

c2 on (0100) ⊲⊳ c3 on (1)

c2 on (0001) ⊲⊳ c3 on (1)

∧

c1 on 10(1) � c2 on (0101)

c2 on (0100) � c3 on (1)

c2 on (0001) � c3 on (1)

(Sync) (Prec)

We can apply the synchronizability test.

|(c1 on 10(1)).v|1
|(c1 on 10(1)).v|

=
|(c2 on (0101)).v|1
|(c2 on (0101)).v|

|(c2 on (0100)).v|1
|(c2 on (0100)).v|

=
|(c3 on (1)).v|1
|(c3 on (1)).v|

|(c2 on (0001)).v|1
|(c2 on (0001)).v|

=
|(c3 on (1)).v|1
|(c3 on (1)).v|

∧ (Prec)

Thanks to the choice of the number of 1 of the cn,

we can simplify the formulas.

|10(1).v|1
|c1.v|

=
|(0101).v|1
|c2.v|

|(0100).v|1
|c2.v|

=
|(1).v|1
|c3.v|

|(0001).v|1
|c2.v|

=
|(1).v|1
|c3.v|

∧ (Prec)

We can rewrite the system.

|(0101).v|1 × |c1.v| = |(10(1)).v|1 × |c2.v|

|(1).v|1 × |c2.v| = |(0100).v|1 × |c3.v|

|(1).v|1 × |c2.v| = |(0001).v|1 × |c3.v|

∧ (Prec)

We can compute the number of 1 of the samplers.

2× |c1.v| = |c2.v|

|c2.v| = |c3.v|

|c2.v| = |c3.v|

∧

c1 on 10(1) � c2 on (0101)

c2 on (0100) � c3 on (1)

c2 on (0001) � c3 on (1)

Thanks to the choice of the number of 1 of the cn,

we can apply the precedence test.

(Sync) ∧

∀j, 1 ≤ j ≤ 3, I
c1 on 10(1)(j) ≤ I

c2 on (0101)(j)

∀j, 1 ≤ j ≤ 1, I
c2 on (0100)(j) ≤ I

c3 on (1)(j)

∀j, 1 ≤ j ≤ 1, I
c2 on (0001)(j) ≤ I

c3 on (1)(j)

We can apply the on formula.

(Sync) ∧

∀j, 1 ≤ j ≤ 3, Ic1
(I

10(1)(j)) ≤ Ic2
(I(0101)(j))

∀j, 1 ≤ j ≤ 1, Ic2
(I(0100)(j)) ≤ Ic3

(I(1)(j))

∀j, 1 ≤ j ≤ 1, Ic2
(I(0001)(j)) ≤ Ic3

(I(1)(j))

We can compute the index of the 1s in the periodic words.

2× |c1.v| = |c2.v|

|c2.v| = |c3.v|

|c2.v| = |c3.v|

∧

Ic1
(1) ≤ Ic2

(2)

Ic1
(3) ≤ Ic2

(4)

Ic1
(4) ≤ Ic2

(6)

Ic2
(2) ≤ Ic3

(1)

Ic2
(4) ≤ Ic3

(1)

Question: find the sizes and the index of 1

such that the constraints are always satisfied

and they define well formed ultimately periodic words.
19

Well formed ultimately periodic binary words

ultimately periodic word 1 1 0 (1 0 1 1 0)

infinite word 1 1 0 1 0 1 1 0 1 0 1 . . .

index 1 2 4 6 7 9 11 . . .

Well formation constraints:

� increasing indexes: ∀j ≥ 1, Iw(j) < Iw(j + 1)

� sufficient indexes: ∀j ≥ 1, Iw(j) ≥ j

� periodicity: ∀j > |p.u|1, Ip(j + |p.v|1) = Ip(j) + |p.v|

� sufficient size: |p.v| ≥ 1 + Ip(|p.u|1 + |p.v|1)− Ip(|p.u|1 + 1)

20

Typing

f :: α on c1 × α on c2 → α on c3 with the following constraints:

2× |c1.v| = |c2.v|

|c2.v| = |c3.v|

|c2.v| = |c3.v|

∧

I_c1(1)

I_c1(3)2

I_c2(2)

0

- (v_size_c1 - 1)

I_c1(4)
1

v_size_c1

I_c2(4)

0

I_c2(6)

0

I_c2(1) 1
2

v_size_c2

I_c3(1)

0

- (v_size_c2 - 1) 2

0

- (v_size_c3 - 1)

source

1

1

1

We can solve the constraints using GLPK.

21

Typing

α2 on (01)
α2 on (1100)

α1 α1 on 10(1)
α2 on (01) on (10) α3

α3

α2 on (01) on (01)

α3

α2 on (01)
α2 on (01)

α2 α2 on (01)

α2 on (01)

10(1)

(1100)

aux2

aux1when

f

i1

i2

o

when

when

(01)
+

+

when

(01)

when

(10)

+

f :: α on c1 × α on c2 → α on c3 with the following constraints:

|c1.v| = 2 |c2.v| = 4 |c3.v| = 4

Ic1
(1) = 1 Ic1

(3) = 3 Ic1
(4) = 5

Ic2
(1) = 1 Ic2

(2) = 2 Ic2
(4) = 4 Ic2

(6) = 6

Ic3
(1) = 4

We can build the following solution:

c1 = 11(10) c2 = (1111) = (1) c3 = 000(1000) = (031) 22

Typing

α2 on (01)
α2 on (1100)

α1 α1 on 10(1)
α2 on (01) on (10) α3

α3

α2 on (01) on (01)

α3

α2 on (01)
α2 on (01)

α2 α2 on (01)

α2 on (01)

10(1)

(1100)

aux2

aux1when

f

i1

i2

o

when

when

(01)
+

+

when

(01)

when

(10)

+

let node f (i1, i2) = o where

rec aux1 = buffer (i1 when 10(1)) + aux2

and aux2 = buffer (i2 when (1100)) + i2 when (01)

and o = buffer (aux1 when (10)) + buffer (aux1 when (01))

val f :: forall ’a. (’a on 11(10) * ’a) -> ’a on 0^3(10^3)

Buffer line 2, characters 13-35: size = 1

Buffer line 3, characters 13-36: size = 1

Buffer line 4, characters 10-33: size = 1

Buffer line 4, characters 36-59: size = 0 23

Comparison with the resolution using abstraction

Notation:

� abstract resolution = resolution algorithm that abstract clocks

� concrete resolution = resolution algorithm that does not abstract clocks

Advantages of the abstract resolution:

� much more efficient

� able to deal with not exactly periodic clocks

Advantages of the concrete resolution:

� more programs are accepted

� more precise buffer sizes

� better schedules

24

Throughput v.s. buffering

aux2

aux1i1

i2

g

when

(0110)

when

(1001)

+
o

let node g (i1, i2) = o where

rec aux1 = i1 when (1001)

and aux2 = i2 when (0110)

and o = buffer aux1 + buffer aux2

With bufferization:

val g :: forall ’a. (’a * ’a) -> ’a on 0(10)

Buffer line 4, characters 10-21: size = 1

Buffer line 4, characters 24-35: size = 1

Without bufferization:

val g :: forall ’a. (’a on 0(1^4 00) * ’a on (110011)) -> ’a on 0(100)

Buffer line 4, characters 10-21: size = 0

Buffer line 4, characters 24-35: size = 0
25

Objective function

It is possible to choose the objective function when the linear constraints are

solves

� ASAP: minimize the index of 1s

� rate: minimize the sizes

� buffer: minimize the precedence constraints

26

Conclusion

New algorithm to type n-synchronous programs with periodic clocks.

Completeness depend only on the choice of the number of 1s in the solution.

Handles to choose the solution: buffering vs throughput.

Accepted to JFLA 2011:

http://www.lri.fr/∼plateau/jfla11

27

Reminder

� size and number of 1:
Let p1 and p2 such that |p1.u|1 = |p2.u| and |p1.v|1 = |p2.v|. Then:

|(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1
|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = |p2.v|1

� index of the j th 1 of w1 on w2 :

∀j ≥ 1, Iw1 on w2
(j) = Iw1

(Iw2
(j))

� synchronizability test:

p1 ⊲⊳ p2 ⇔
|p1.v|1
|p1.v|

=
|p2.v|1
|p2.v|

� precedence test: let h = max(|p1.u|1, |p2.u|1) + ppcm (|p1.v|1, |p2.v|1),

p1 � p2 ⇔ ∀j, 1 ≤ j ≤ h, Ip1
(j) ≤ Ip2

(j)

� adaptability test: p1 <: p2 ⇔ p1 ⊲⊳ p2 ∧ p1 � p2

