Typing of periodic clocks in Lucy-n

Louis Mandel

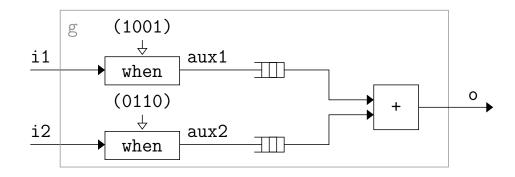
Florence Plateau

Équipe Parkas

École Normale Supérieure Université Paris-Sud 11 INRIA

Synchron 2010

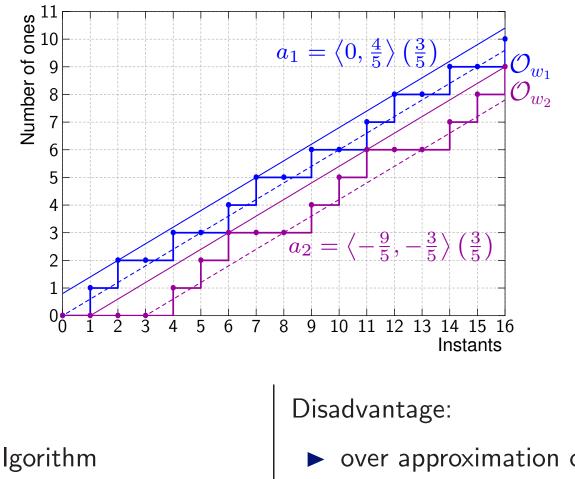
Lucy-n = Lustre + buffers



Clock calculus to automatically compute

- activation rhythms of nodes (schedules)
- buffers sizes needed for these schedules

Abstract Clocks

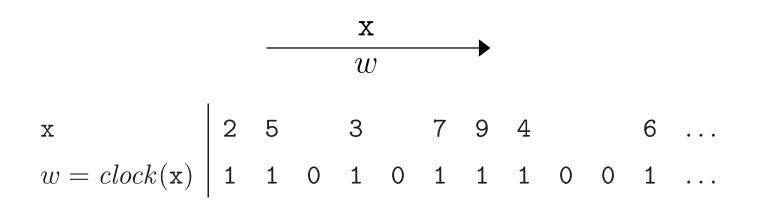


- Advantages:
 - efficient algorithm
 - deals with not exactly periodic clocks
- over approximation of buffer sizes
- reject correct programs

 \Rightarrow an algorithm without abstraction is useful in certain cases

Overview

- 1. Algebraic properties of ultimately periodic binary words
- 2. Typing of n-synchronous programs
- 3. Discussion



Ultimately periodic binary words

▶ definition: p = u(v) $\stackrel{\textit{def}}{\Leftrightarrow} p = uw$ avec w = vw

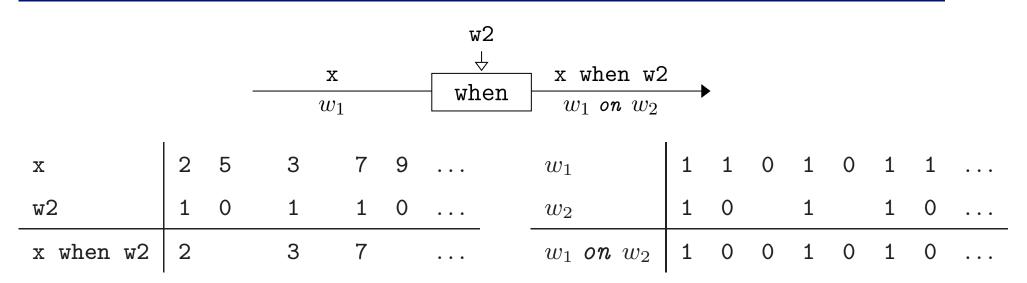
▶ notation: prefix = p.u and periodic part = p.v

example: 1101(11100110) = 1101111001101110011011100110...

Index of the j^{th} 1 of w

- ▶ notation: $\mathcal{I}_w(j)$
- example: $\mathcal{I}_w(4) = 6$

Sampling



Definition:

on operator

Example:

p_1	1	1	0	1	(1	1	1	0	0	1	1	0)
p_2	1	0		1	(1	0	0			1	0)
$p_1 \; {\it on} \; p_2$	1	0	0	1	(1	0	0	0	0	1	0	0)

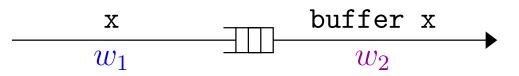
Properties:

▶ size and number of 1:
 Let p₁ and p₂ such that |p₁.u|₁ = |p₂.u| and |p₁.v|₁ = |p₂.v|. Then:

$$\begin{aligned} |(p_1 \text{ on } p_2).u| &= |p_1.u| & |(p_1 \text{ on } p_2).u|_1 &= |p_2.u|_1 \\ |(p_1 \text{ on } p_2).v| &= |p_1.v| & |(p_1 \text{ on } p_2).v|_1 &= |p_2.v|_1 \end{aligned}$$

▶ index of the j^{th} 1 of w_1 on w_2 :

$$\forall j \geq 1, \ \mathcal{I}_{w_1} \ \textit{on} \ w_2(j) = \mathcal{I}_{w_1}(\mathcal{I}_{w_2}(j))$$



Communication through a bounded buffer:

synchronizability test:

$$p_1 \bowtie p_2 \qquad \Leftrightarrow \qquad \frac{|p_1 \cdot v|_1}{|p_1 \cdot v|} = \frac{|p_2 \cdot v|_1}{|p_2 \cdot v|}$$

▶ precedence test: let $h = \max(|p_1.u|_1, |p_2.u|_1) + \operatorname{ppcm}(|p_1.v|_1, |p_2.v|_1)$,

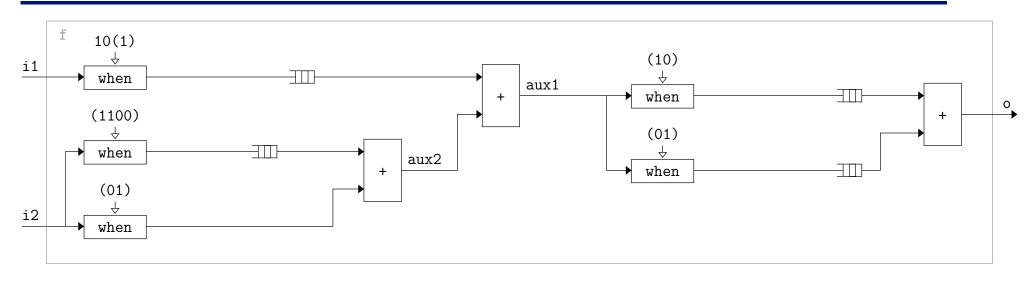
$$p_1 \leq p_2 \qquad \Leftrightarrow \qquad \forall j, \ 1 \leq j \leq h, \ \mathcal{I}_{p_1}(j) \leq \mathcal{I}_{p_2}(j)$$

▶ adaptability test: $p_1 <: p_2 \iff p_1 \bowtie p_2 \land p_1 \preceq p_2$ Examples:

► synchronizability test: (11010) ⋈ 0(00111)

▶ precedence test: (11010) \leq 0(00111)

Example of Lucy-n program

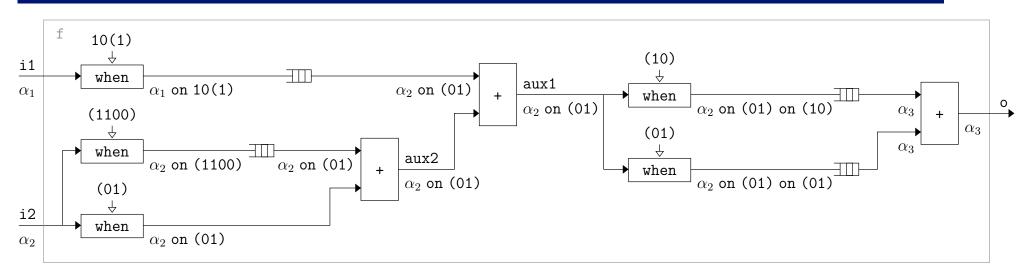


let node f(i1, i2) = o where

rec aux1 = buffer (i1 when 10(1)) + aux2

and aux2 = buffer (i2 when (1100)) + i2 when (01)

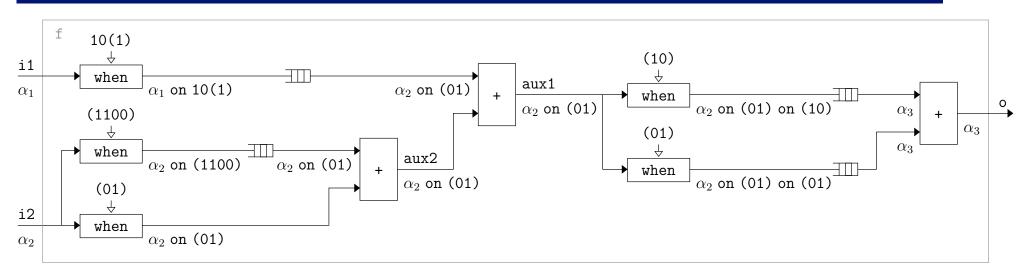
and o = buffer (aux1 when (10)) + buffer (aux1 when (01))



f :: $\alpha_1 \times \alpha_2 \rightarrow \alpha_3$ with the following constraints:

$lpha_1$ on 10(1)	<: α_2 on (01)
$lpha_2$ on (1100)	<: α_2 on (01)
$lpha_2$ on (01) on (10)	<: α_3 on (1)
$lpha_2$ on (01) on (01)	<: α_3 on (1)

Question: find types α_1 , α_2 and α_3 such that the constraints are always satisfied.



f :: $\alpha_1 \times \alpha_2 \rightarrow \alpha_3$ with the following constraints:

$lpha_1$ on 10(1) $lpha_2$ on (1100)	<:	α_2 on (01)
$lpha_2$ on (1100)	<:	$lpha_2$ on (01)
$lpha_2$ on (01) on (10)	<:	$lpha_3$ on (1)
$lpha_2$ on (01) on (10) $lpha_2$ on (01) on (01)	<:	$lpha_3$ on (1)

We can simplify constraints that depends on the same type variable

▶ Property: α on ce_1 <: α on ce_2 \Leftrightarrow ce_1 <: ce_2

$$\begin{array}{cccc} & \alpha_1 \text{ on } 10(1) & <: & \alpha_2 \text{ on } (01) \\ & & (1100) & <: & (01) \\ & \alpha_2 \text{ on } (01) \text{ on } (10) & <: & \alpha_3 \text{ on } (1) \\ & \alpha_2 \text{ on } (01) \text{ on } (01) & <: & \alpha_3 \text{ on } (1) \end{array}$$

We can check that the adaptability constraint is satisfied.

	$lpha_1$ on 10(1)	<:	$lpha_2$ on (01)	
$\left\{ \right\}$	$lpha_2$ on (01) on (10)	<:	$lpha_3$ on (1)	
l	$lpha_2$ on (01) on (01)	<:	$lpha_3$ on (1)	

We can express this system in function of a unique type variable by instantiation of α_1 , α_2 , α_3

$$\theta = \{ \alpha_1 \leftarrow \alpha \text{ on } c_1; \ \alpha_2 \leftarrow \alpha \text{ on } c_2; \ \alpha_3 \leftarrow \alpha \text{ on } c_3; \}$$

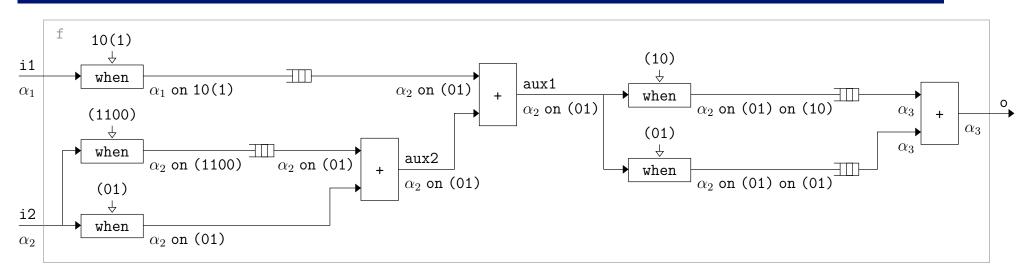
$$\begin{cases} \alpha \text{ on } c_1 \text{ on } 10(1) <: \alpha \text{ on } c_2 \text{ on } (01) \\ \alpha \text{ on } c_2 \text{ on } (01) \text{ on } (10) <: \alpha \text{ on } c_3 \text{ on } (1) \\ \alpha \text{ on } c_2 \text{ on } (01) \text{ on } (01) <: \alpha \text{ on } c_3 \text{ on } (1) \end{cases}$$

We can simplify the constraints

$$c_1 \text{ on } 10(1) <: c_2 \text{ on } (01)$$

 $c_2 \text{ on } (01) \text{ on } (10) <: c_3 \text{ on } (1)$
 $c_2 \text{ on } (01) \text{ on } (01) <: c_3 \text{ on } (1)$

Question: find ultimately periodic binary words c_1 , c_2 and c_3 such that the constraints are always satisfied.



f :: α on $c_1 \times \alpha$ on $c_2 \to \alpha$ on c_3 with the following constraints:

$$\begin{cases} c_1 \text{ on } 10(1) <: c_2 \text{ on } (01) \\ c_2 \text{ on } (01) \text{ on } (10) <: c_3 \text{ on } (1) \\ c_2 \text{ on } (01) \text{ on } (01) <: c_3 \text{ on } (1) \end{cases}$$

We can compute on.

 $\left\{\begin{array}{cccc} c_1 \text{ on } 10(1) & <: & c_2 \text{ on } (01) \\ c_2 \text{ on } (0100) & <: & c_3 \text{ on } (1) \\ c_2 \text{ on } (0001) & <: & c_3 \text{ on } (1) \end{array}\right\}$

We can adjust the system such that all the samplers of a same variable have the same size.

$$c_1 \ on \ 10(1) <: c_2 \ on \ (0101)$$

 $c_2 \ on \ (0100) <: c_3 \ on \ (1)$
 $c_2 \ on \ (0001) <: c_3 \ on \ (1)$

We **choose** the number of 1 of each c_n such that it is equal to the size of its samplers.

 $|c_1.u|_1 = 2$ $|c_1.v|_1 = 1$ $|c_2.u|_1 = 0$ $|c_2.v|_1 = 4$ $|c_3.u|_1 = 0$ $|c_3.v|_1 = 1$

We can split adaptability constraints into synchronizability and precedence constraints.

We can apply the synchronizability test.

$$\left\{\begin{array}{l} \frac{|(c_{1} \text{ on } 10(1)).v|_{1}}{|(c_{1} \text{ on } 10(1)).v|} = \frac{|(c_{2} \text{ on } (0101)).v|_{1}}{|(c_{2} \text{ on } (0101)).v|} \\ \frac{|(c_{2} \text{ on } (0100)).v|_{1}}{|(c_{2} \text{ on } (0100)).v|_{1}} = \frac{|(c_{3} \text{ on } (1)).v|_{1}}{|(c_{3} \text{ on } (1)).v|_{1}} \\ \frac{|(c_{2} \text{ on } (0001)).v|_{1}}{|(c_{2} \text{ on } (0001)).v|_{1}} = \frac{|(c_{3} \text{ on } (1)).v|_{1}}{|(c_{3} \text{ on } (1)).v|_{1}} \end{array}\right\} \land (Prec)$$

Thanks to the choice of the number of 1 of the c_n , we can simplify the formulas.

$$\left\{\begin{array}{c} \frac{|10(1).v|_{1}}{|c_{1}.v|} = \frac{|(0101).v|_{1}}{|c_{2}.v|}\\ \frac{|(0100).v|_{1}}{|c_{2}.v|} = \frac{|(1).v|_{1}}{|c_{3}.v|}\\ \frac{|(0001).v|_{1}}{|c_{2}.v|} = \frac{|(1).v|_{1}}{|c_{3}.v|}\end{array}\right\} \land (Prec)$$

We can rewrite the system.

$$\left\{ \begin{array}{c} |(0101).v|_{1} \times |c_{1}.v| = |(10(1)).v|_{1} \times |c_{2}.v| \\ |(1).v|_{1} \times |c_{2}.v| = |(0100).v|_{1} \times |c_{3}.v| \\ |(1).v|_{1} \times |c_{2}.v| = |(0001).v|_{1} \times |c_{3}.v| \end{array} \right\} \land (Prec)$$

We can compute the number of 1 of the samplers.

$$\begin{cases} 2 \times |c_1.v| = |c_2.v| \\ |c_2.v| = |c_3.v| \\ |c_2.v| = |c_3.v| \end{cases} \land \begin{cases} c_1 \text{ on } 10(1) \preceq c_2 \text{ on } (0101) \\ c_2 \text{ on } (0100) \preceq c_3 \text{ on } (1) \\ c_2 \text{ on } (0001) \preceq c_3 \text{ on } (1) \end{cases}$$

Thanks to the choice of the number of 1 of the c_n , we can apply the precedence test.

$$(Sync) \land \begin{cases} \forall j, \ 1 \leq j \leq 3, \quad \mathcal{I}_{c_{1} \text{ on } 10(1)}(j) \leq \mathcal{I}_{c_{2} \text{ on } (0101)}(j) \\ \forall j, \ 1 \leq j \leq 1, \quad \mathcal{I}_{c_{2} \text{ on } (0100)}(j) \leq \mathcal{I}_{c_{3} \text{ on } (1)}(j) \\ \forall j, \ 1 \leq j \leq 1, \quad \mathcal{I}_{c_{2} \text{ on } (0001)}(j) \leq \mathcal{I}_{c_{3} \text{ on } (1)}(j) \end{cases}$$

We can apply the on formula.

$$(Sync) \land \begin{cases} \forall j, \ 1 \leq j \leq 3, \quad \mathcal{I}_{c_1}(\mathcal{I}_{10(1)}(j)) \leq \mathcal{I}_{c_2}(\mathcal{I}_{(0101)}(j)) \\ \forall j, \ 1 \leq j \leq 1, \quad \mathcal{I}_{c_2}(\mathcal{I}_{(0100)}(j)) \leq \mathcal{I}_{c_3}(\mathcal{I}_{(1)}(j)) \\ \forall j, \ 1 \leq j \leq 1, \quad \mathcal{I}_{c_2}(\mathcal{I}_{(0001)}(j)) \leq \mathcal{I}_{c_3}(\mathcal{I}_{(1)}(j)) \end{cases}$$

We can compute the index of the 1s in the periodic words.

$$\begin{cases} 2 \times |c_1.v| = |c_2.v| \\ |c_2.v| = |c_3.v| \\ |c_2.v| = |c_3.v| \end{cases} \land \begin{cases} \mathcal{I}_{c_1}(1) \leq \mathcal{I}_{c_2}(2) \\ \mathcal{I}_{c_1}(3) \leq \mathcal{I}_{c_2}(4) \\ \mathcal{I}_{c_1}(4) \leq \mathcal{I}_{c_2}(6) \\ \mathcal{I}_{c_2}(2) \leq \mathcal{I}_{c_3}(1) \\ \mathcal{I}_{c_2}(4) \leq \mathcal{I}_{c_3}(1) \end{cases}$$

Question: find the sizes and the index of 1 such that the constraints are always satisfied and they define well formed ultimately periodic words.

Well formed ultimately periodic binary words

 ultimately periodic word
 1
 1
 0
 (1
 0
 1
 1
 0)

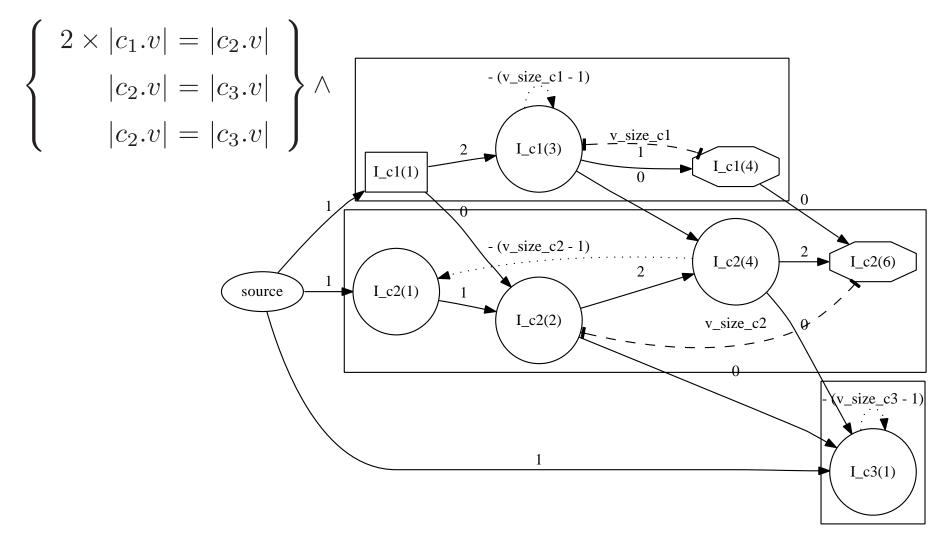
 infinite word
 1
 1
 0
 1
 0
 1
 0
 1
 0)

 index
 1
 2
 4
 6
 7
 9
 11
 ...

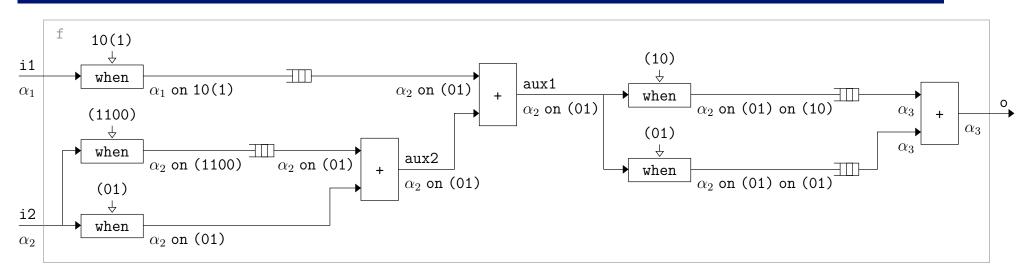
Well formation constraints:

- ► increasing indexes: $\forall j \ge 1, \ \mathcal{I}_w(j) < \mathcal{I}_w(j+1)$
- ▶ sufficient indexes: $\forall j \ge 1, \ \mathcal{I}_w(j) \ge j$
- ► periodicity: $\forall j > |p.u|_1, \ \mathcal{I}_p(j+|p.v|_1) = \mathcal{I}_p(j) + |p.v|$
- ► sufficient size: $|p.v| \ge 1 + \mathcal{I}_p(|p.u|_1 + |p.v|_1) \mathcal{I}_p(|p.u|_1 + 1)$

f :: α on $c_1 \times \alpha$ on $c_2 \to \alpha$ on c_3 with the following constraints:



We can solve the constraints using GLPK.

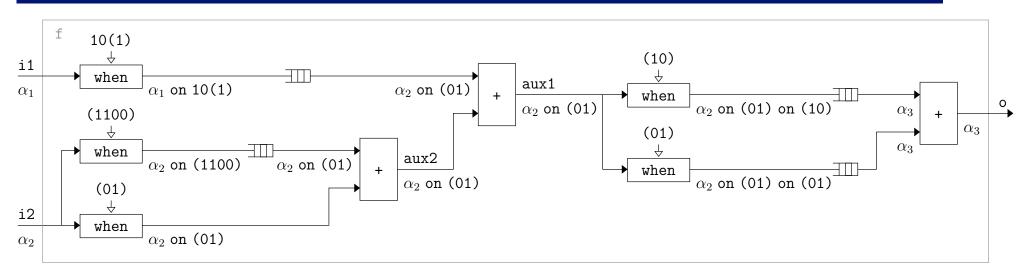


f :: α on $c_1 \times \alpha$ on $c_2 \to \alpha$ on c_3 with the following constraints:

$$|c_1 . v| = 2 \qquad |c_2 . v| = 4 \qquad |c_3 . v| = 4$$
$$\mathcal{I}_{c_1}(1) = 1 \quad \mathcal{I}_{c_1}(3) = 3 \quad \mathcal{I}_{c_1}(4) = 5$$
$$\mathcal{I}_{c_2}(1) = 1 \quad \mathcal{I}_{c_2}(2) = 2 \quad \mathcal{I}_{c_2}(4) = 4 \quad \mathcal{I}_{c_2}(6) = 6$$
$$\mathcal{I}_{c_3}(1) = 4$$

We can build the following solution:

 $c_1 = 11(10)$ $c_2 = (1111) = (1)$ $c_3 = 000(1000) = (0^31)$ 22



let node f (i1, i2) = o where

rec aux1 = buffer (i1 when 10(1)) + aux2

and aux2 = buffer (i2 when (1100)) + i2 when (01)

and o = buffer (aux1 when (10)) + buffer (aux1 when (01))

val
$$f :: forall 'a. ('a on 11(10) * 'a) \rightarrow 'a on 0^3(10^3)$$

Buffer line 2, characters
$$13-35$$
: size = 1

Buffer line 3, characters
$$13-36$$
: size = 1

Buffer line 4, characters 10-33: size = 1

Buffer line 4, characters 36-59: size = 0

Comparison with the resolution using abstraction

Notation:

- ► abstract resolution = resolution algorithm that abstract clocks
- concrete resolution = resolution algorithm that does not abstract clocks

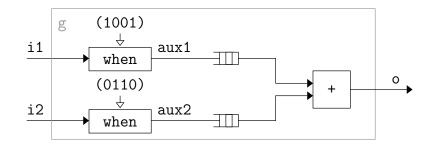
Advantages of the abstract resolution:

- ▶ much more efficient
- able to deal with not exactly periodic clocks

Advantages of the concrete resolution:

- more programs are accepted
- more precise buffer sizes
- better schedules

Throughput v.s. buffering



let node g (i1, i2) = o where
rec aux1 = i1 when (1001)
and aux2 = i2 when (0110)
and o = buffer aux1 + buffer aux2

With bufferization:

val g :: forall 'a. ('a * 'a) -> 'a on O(10)
Buffer line 4, characters 10-21: size = 1
Buffer line 4, characters 24-35: size = 1

Without bufferization:

val g :: forall 'a. ('a on 0(1^4 00) * 'a on (110011)) -> 'a on 0(100)
Buffer line 4, characters 10-21: size = 0
25

Objective function

It is possible to choose the objective function when the linear constraints are solves

- ► ASAP: minimize the index of 1s
- ► rate: minimize the sizes
- buffer: minimize the precedence constraints

Conclusion

New algorithm to type n-synchronous programs with periodic clocks.

Completeness depend only on the choice of the number of 1s in the solution.

Handles to choose the solution: buffering vs throughput.

Accepted to JFLA 2011:

http://www.lri.fr/~plateau/jfla11

Reminder

► size and number of 1:
Let
$$p_1$$
 and p_2 such that $|p_1.u|_1 = |p_2.u|$ and $|p_1.v|_1 = |p_2.v|$. Then:

▶ index of the j^{th} 1 of w_1 on w_2 :

$$orall j \geq 1, \; \mathcal{I}_{w_1} \; \textit{on} \; _{w_2}(j) = \mathcal{I}_{w_1}(\mathcal{I}_{w_2}(j))$$

synchronizability test:

$$p_1 \bowtie p_2 \qquad \Leftrightarrow \qquad \frac{|p_1 \cdot v|_1}{|p_1 \cdot v|} = \frac{|p_2 \cdot v|_1}{|p_2 \cdot v|}$$

▶ precedence test: let $h = \max(|p_1.u|_1, |p_2.u|_1) + \operatorname{ppcm}(|p_1.v|_1, |p_2.v|_1)$,

 $p_1 \leq p_2 \qquad \Leftrightarrow \qquad \forall j, \ 1 \leq j \leq h, \ \mathcal{I}_{p_1}(j) \leq \mathcal{I}_{p_2}(j)$

► adaptability test: $p_1 <: p_2 \quad \Leftrightarrow \quad p_1 \bowtie p_2 \quad \land \quad p_1 \preceq p_2$