
Encoding Latency Insensitive Design in Lucy-n:

first experiments

Louis Mandel Florence Plateau

Parkas Team

École Normale Supérieure

Université Paris-Sud 11

INRIA

Synchron 2010 Workshop, Fréjus – 01/12/2010



Latency Insensitive Design [CMSV01]

Method used to design synchronous circuits that tolerate data transfer latency

• design synchronous IPs and interconnect them (Figure 1)

– at each instant, each IP is activated

– at each activation, an IP consumes a token on each input and produces

a token on each output

• add relay stations on the wires and shell wrappers around IPs (Figure 2)

– relay-station = non initialized register

– shell wrapper = buffers on inputs + a controller to activate the IP

– Question: when do IPs have to be activated ?



Scheduling Latency Insensitive Design [CMSV01]

Existing answers:

• elastic circuits dynamic schedule [KCKO06]:

– every wire is transformed into a channel carrying data and control bits

– the wrappers dynamically decide activation of IPs by analysing control

bits and applying an ASAP strategy

– a backpressure protocol must be used to avoid buffer overflows

• k-periodic static schedule [BdSM07]:

– computation of an explicit schedule

– avoids additionnal control pathes and runtime overhead of dynamic

schedule

– maximizes rate (by computing sufficient buffer sizes)

– minimizes buffer sizes (by choosing other strategies than ASAP)

3



Scheduling Latency Insensitive Design with Lucy-n

Idea inspired by [BdSM07] (Figure 3) :

• encode the circuit with latencies in a Lucy-n progam

• get schedules and buffer sizes from clock typing

4



Scheduling Latency Insensitive Design with Lucy-n

Encoding a synchronous circuit (synchronous_circuit.ls):

• an IP is a node of type ∀α. (α× . . .× α) → (α× . . .× α)

• an unitialized register is encoded by a strict_buffer

– Example:

let node f x = strict_buffer (x when (100))

val f :: forall ’a. ’a -> ’a on (010)

– if w1 is the clock of the input of strict_buffer and w2 the clock of its

output, they are subject to a strict precedence constraint:

∀j, Iw1
(j) < Iw2

(j).

• an initialised register is encoded by a merge and a strict_buffer

x’ = (merge 1(0) init (strict_buffer x))

5



Scheduling Latency Insensitive Design with Lucy-n

Encoding a circuit with latencies (circuit_with_latencies.ls):

• buffers on input wires are encoded with the buffer primitive

• relay-stations are encoded with the strict_buffer primitive

6



Comparision with Aoste team’s work

• They translate: LID → Marked Graphs → synchronous model

• We translate: LID → n-synchronous model

• Remark that we can translate: Marked Graphs → n-synchronous model



Jean-Vivien Millo Example [Mil08]

8



o’x4’

x1’

x2’

x3’

y3’

y2’

y1’

x4’’
y2

i

x1

x2

x3

x4

o

y1

y3

1

’a on 000(10)

’a on 1(10)

2

1

1

1

1

1

1

1

let node f i = o where

rec x1 = ip2(i, y3’)

and x1’ = merge 1(0) true (strict_buffer x1)

and x2 = ip2(x4’’, x1’)

and x2’ = merge 1(0) true (strict_buffer x2)

and x3 = ip1(x2’)

and x3’ = merge 1(0) true (strict_buffer x3)

and x4 = ip1(x3’)

and x4’ = merge 1(0) true (strict_buffer x4)

and x4’’ = merge 1(0) true (strict_buffer x4)

and o = ip1(x4’)

and o’ = merge 1(0) true (strict_buffer o)

and y1 = ip1(o’)

and y1’ = strict_buffer y1

and y2 = ip1(y1’)

and y2’ = strict_buffer y2

and y3 = ip1(y2’)

and y3’ = strict_buffer y3



Contribution of our method about scheduling LID
(temporary conclusion)

• “Quality” of schedules

Rate : Boucaron’s algorithm [Bou07] finds schedules with faster rates. We

do not find these schedules because we search for the schedule with the

shortest periodic pattern (in term of number of 1s).

If we help the typer by asking him to search for a longer pattern, we find

comparable results w.r.t. the rate.

Buffer sizes: Millo’s algorithm [Mil08] minimizes buffer sizes (for a fixed

rate) by searching for balanced schedules, with a semi-automatic method

(prefixes of schedules must be found by hand). We are not able to find

such schedules.

If we ask the compiler to minimize buffer sizes on the considered

example, we find schedules needing as few buffer places as Millo, but

these places are more often occupied.

• Modularity: Our method allows to compose in a latency insensitive way

statically scheduled LIDs .



References

[BdSM07] Julien Boucaron, Robert de Simone, and Jean-Vivien Millo. Formal methods for

scheduling of latency-insensitive designs. EURASIP Journal on Embedded

Systems, Issue 1(ISSN:1687-3955):8 – 8, January 2007.

[Bou07] Julien Boucaron. Modélisation formelle de systèmes Insensibles à la Latence et

ordonnancement. PhD thesis, Université de Nice Sophia-Antipolis, 2007.

[CMSV01] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of

latency-insensitive design. IEEE Trans. on CAD of Integrated Circuits and

Systems, 20(9):1059–1076, 2001.

[KCKO06] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous elastic

networks. In Proceedings of the Formal Methods in Computer Aided Design, 2006.

[Mil08] Jean-Vivien Millo. Ordonnancements périodiques dans les réseaux de processus :

Application à la conception insensible aux latences. PhD thesis, Université de

Nice-Sophia Antipolis, Décembre 2008.


