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Point of Departure: Pnueli & Shalev’s 1991 paper
“What’s in a Step: On the semantics of Statecharts”

Prnuell and sShalev show how, while observing global
consistency and causality, the synehronous language
Statecharts can be given coincilding operational and
declarative (i.e., fixed point) step semantics

Over the past decade, this semantics has been supplementeo
with order-theoretic, -FuLLg abstract ano compositional
denotational, axtomatic and game-theoretic semantics and
used to emphasize the close connection with Esterel and Logie
programming

This reveals the Pnueli-Shalev step semantics as a rather
canonical interpretation of the synchrony hypothesis




Short intro to Statecharts

A hierarchical, concurrent Mealy machine

Basic states hierarchically refined by injecting other
Statecharts

00mpos£’ce states of 2 possibLe sorts: and-states and or-
states

Awnol-states permit parallel and or-states sequential
decompositiow

Awn ano-state Ls active Lf all its substates are active, an
or-state if exactly one of its substates is active

Set of active states during execution called a configuration




The synchrony hypothesis

Statecharts belongs to the family of SYNCHRONOUS
lLanguages (s.a. Esterel, Signal, Lustre, Argos)

Semantics based on a cche—based reaction, L which events
output by the system’s env. are sampled first and pot. cause
the firing of transitions that may produce new events

qenerated events output to the env. whew the reaction ends

SYNCHRONY HYPOTHESIS ensures that:
this complex non-atomie step bunadled Lnto ONE ATOMIC STEP

Justification: reactions computed gquicker thaw time it takes
for new events to arvive from the system’s env




What exactly constitutes a step?

Avre generated events sensed only in the next step, or
already in the current step, and thus trigger the
firing of further transitions?

Flrst optiow: Havrel’s offictal wow—compositlowm
“semanties A” meLemew‘ced L Statemwate

Second option: A step involves a causal chain of
firing transitions:

A transition fires U Lks positive triggers (offered by
env or generated by a trans. fired previously in the
sawe step) are present and Lts negative triggers are
absent (i.e., not present)




ig. 1. Example Statechart.
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What exactly constitutes a step (cont’d)?

Thus, whew it fires, a transition may, as part of its action,
BROADCAST new events, which, by the principle of
CAUSALITY, may trigger further transitions

only whew this chain reaction of firing transitions comes to a
halt is a step COMPLETE, and, acc. to the sywehrony hgpo‘chesis,
an atowmic entity

This semantics is NONCOMPOSITIONAL, stnce bundling a
trans. into an atomic step implies forgetting the transition’s
causal justification

Also, it is not GLOBALLY CONSISTENT, as it permits the same
event to be both present and absent within the same step: an event
that occurs negatively in the trigger of one firing transition
MAY BE GENERATED BY A TRANS. THAT FIRES LATER IN
THE SAME STEP




Pnueli & Shalev’s contribution

In Prnuell and Shalev’s words, “a proven stogw of health Yy and robust
understanding of the meaning of a programming or specification
language is the possession of both an operational and declarative
semantics, whiteh are conststent with one another”

They showed that adding global consistency is the key to achieving

this ambitious goal for Statecharts

The resulting operational semantics relies on awn iterative FIXED-
POINT CONSTRUCTION over a non-monotonte enabledmness
function for transitions

This construction ensures causality but involves backtracking once
a global Lnconsistency is introduced

Their declarative semantics for Statecharts Lolentifies the desired
fixed point of the enabledness fu thru the notion of SEPARABILITY




Intro to Statecharts (cont’d)

Statechart steps defined relative to a configation C and a set €
of events givew to the system by its environment

Key to a step are transitions t each of which is Labeled by two
sets of events: a trigger trg (t) and an action act(t)

Trigger tro(t) =P,N* split into positive events P C [] and
negative events N C [ ]*.

t is enabled and thus fires Lf the set € C || Ls such that all
events of P, but NONE of N, are tn E, i.e., PC E and NNE=J

The effect of firing t is the generation of all events in the
action act(t) of t, where a transition’s action act(t) consists of
positive events only




Transition ¢ is consistent with set T of transitions, in signs t€consistent(C, T'),
if ¢ is not in the same “parallel component” as any ¢’ € T'\ {¢}. Formally,

consistent(C, T') =4¢ {t € trans(C) |Vt' € T. tAct'},

where tAct’ if (i) t =t or (ii) ¢ and ¢’ are in different substates of an enclosing
and-state. Further, transition ¢ is triggered by a set E of events, in signs ¢t € |
triggered(C, E), if the positive but not the negative trigger events of ¢ are in E:

triggered(C, E) =4 {t € trans(C) |trg(t) NII C E, (trg(t)NII)NE = 0}.

Finally, transition ¢ is enabled in C with respect to set F of events and set 1" of
transitions, if ¢ € enabled(C, E, T') where

enabled(C, E, T) =4¢ consistent(C, T") N triggered(C, E U U act(t)) .
teT

Pnueli-Shalev Semantics




procedure step—construction(C, E);
var T := {;
while T' C enabled(C, E,T') do
choose t € enabled(C, E,T) \ T;
fggee R ER i
od;
if T = enabled(C, E,T) then return T
else report failure
end step—construction.

Operational semantics




Fig. 2. Further example Statecharts.

Following Pnueli and Shalev’s terminology, a set T of transitions is called
constructible for a given configuration C and a set E of environment events, if it
can be obtained as a result of successfully executing procedure step-construction.
For each constructible set T, set A =q¢ F U act(T') C II is called the (step)

response of C for E.




Pnueli & Shalev’s declarative semantics

Given a config C and set of env events E, a set of trans. T is separable
for C and E if 3 T'#T s.+. T’ c T and enabled(C,E, T')n(T\T') = o

T is adwissable for € and € if T is Lnseparable (not sep.) for C and €
and T = enabled (C,E,T), i.e., the declarative sem. is a fixed-point sem.
Stince enabled (C,E, . ) ma Y tnvolve transitions with a negative trigger,

it is tn general non-monotonic, and a unique Least fixeo point ma Y
not exist.

The notion of separability chooses distinguished fixed points that
reflect causality

A separable set of transitions points to a break in the causality
chain when firing these transitions

Thm 1 (Pnueli & Shalev). For all configs C and event sets E, a set T of
trans. is admissable for C and E iff T is constructable for C and E




3.1 Configuration Syntax

This paper focuses on the semantics of single Statecharts steps, since the seman-
tics across steps is clear and well understood. It will therefore be convenient to
reduce the Statecharts notation to the bare essentials and identify a Statecharts
configuration with its set of leaving transitions, to which we — by abuse of ter-
minology — also refer as configuration. We formalise configurations using the
following, simple syntax, where I C IT UIT and A C II:

C.: = 0 [/A | ClE.

Intuitively, 0 stands for the configuration with the empty behaviour. Configura-
tion I/A encodes a transition t with trg(t) = I and act(t) = A. When triggered,
transition t fires and generates the events in A. Transitions I/A with empty
trigger, i.e., I = 0, are simply written as A below. If we wish to emphasise that
trigger I consists of the positive events P C IT and the negative events Ncll
ie., I = PUN, then we denote transition I/A by P,N/A. Finally, configu-
ration C;||/C2 describes the parallel composition of configurations C; and Cs.
Observe that 0 coincides semantically with a transition with empty action; nev-
ertheless, it seems natural to include 0. Using this syntax, we may encode the
initial configuration C; of our example Statechart of Fig. 1 as

a/b ” b,a)a7a/a)e2 “ C,-€_2-,6_4/a,63 ” 5,6)5/6’64 .




O For stmplicity, in this expo we focus on
Statecharts w.r.t. the empty environment only

O This is no restriction, since constoering
a set € of events from env for a config C

ls equivalent to considering C/ [ €
relative to the empty set of events




New Perspective: Order-Theoretic Perspective

Statecharts are viewed as process terms in process algebra, whose
sem. s given bg a composl’ciowm transl. tnto Labelled trans. systs

A transition represents a config. step decorated by an ACTION
LABEL, specifying the synchr. causal tnteraction with the env.

(OausaLL’cg) Labels are ordered (gLobaLLa) consistent sets to encoole
causal tnfo

A causaLLtg Label (or basic action) is a pair (L, <) where
O L C[[Ul]*is a consistent set of pos. or neg. evits, te., LN L =0

O A<®Bisan lrveflexive and transitive causality ordering on subsets
AR C L with B=J or 8={b} for b €[], where

Lrreflexivity means that A<{b} Lmplies bEA and,

transitivity that if A<{b} and b € ¢ < B thew ( (c\{bHUuA) <D




causality labels represent globally consistent
and causally closed unteractions that are
composed from Statechart transitions

Bvery transition t€ trans (C) leaving config C

induces a caunsality Label , where

O L —gertrg (t) Unct (t)

O <i=q (trg (t) <cle}:e’CSact(t)}

O trg(t)Nact(t) =L and for no e€] | both e,e*Etrg (t) Uact (t)

O Thew L, is consistent, trreflexive and transitive




Ex. a/b // b,c°/d

Thus, t.=g.ra/b and t,=a.¢ b,c%°/ d correspond to Labels
L.={a,b}, {a}<,{b}, and L,={b,c,d} with {b,c*} <, {d}

Their jolnt execution would be Label L.={a,b,c*,d} with
causalities {a} <. {b}, {b,c*°} <. {d} and {a,c*}<. {d}

Here, the last pair arises from the combined reaction of t;
triggering to; its presence is enforced by transitivity of <

Note that this ex. COMPOSES causau',‘cg Labels tin parallel

n general, the parallel composition of ca usatitg labels

6.= (L, <) and 6,= (L, <,) Ls the set 6, X 05, of all maximal,
rreflexive and transitive suborderings of the transitive
closure (<; U <;)7*




Next we define the operation of parallel composition between causality labels
o1 = ({1, =<1) and o2 = (¢2,<2) to form the full causal and concurrent closure
of all interactions coded in two orderings. Due to nondeterminism, the compo-
sition o1 X o2 does not yield a single causality label but rather a set of them.
They are obtained as the maximal irreflexive and transitive sub-orderings of the
transitive closure (<; U <3)*. Here, the transitive closure of <; U <3 is the
smallest relation < with <; U <2 C < such that, if A < {b} and b € B < C,

then (B \ {b}) UA < C. Now, (¢,<) € 01 X 02 if (i) £ = 41 U ¥y, (ii) (£, <) is a
causality label, and (iii) < is maximal in (<1 U <2)*.

Theorem 2 (Correctness & Completeness). If C is a configuration and
A C II, then A is a Pnueli-Shalev step response of C if and only if there exists
a causality label o with C +— o such that ) enables o and A = act(o).




Compositional, Fully Abstract and
Denotational Semantics

O The Pnuell § Shalev semantics lacks compositionality
because an tnteraction with the environment Ls only
allowed at the beginning of a step but NOT during a step

Compositionality can only be achieved by exhausting the
communication potential of a step

This Ls done bg regarding interaction steps, basicaLLg,
sequences of monotonically inereasing fixed-points of the
enabledness function, extending the communication
potential until this potential is exhausted




Interaction steps

Read a configuration C of a Statechart as a specification of a set of
Lnteraction steps between a Statechart and all its possible

enviromments

This set Ls nonempty stince one ma Yy always construct an
environment that disables those transitions tn C that would cause
global inconsistency and, thus, failure in the sense of Pruell and

Shalev

Aw interaction step is a monotonically increasing sequence M =
(Mo,My,...,M,.) of reactions M; C [], where My ,SM; for all L, and each
reactlon contains events representing both the environmental input
and the Statecharts response.

BY the requirement for mowo’cowici’cg, such a sequence extends the
communication potential between the Statechart and its
environment, until this potential is exhausted

e i U AR AR s e




Interaction steps (cont’d)

AW Linteractlon step Ls best understood as a sepamtiow
of a Pnueli-Shalev step response M,, L Lts n properly
contairned causally closed sub—ﬁxed—poiwts

Each M; extends M4 log new enwvirommental sttmult
pLus the sStatecharts response to these

Here, responses are computed according to Prnuell and
Shalev, except that events not contained in M,, are
assumed to be absent L M;

Thus, global consistency is interpreted as a Logical
specification over the full interaction step M, and NOT
only relative to a stngle reaction M;




O

0

Interaction steps (cont’d)

Thus, each tnteraction step separates a Prnueli-Shalev
step response into causally-closed sets of events

Each passage from M to M; represents a non-causal
“step” triggered by th environment

This creates a separation between Mi; anol M; Lin the
spirit of P-S: as all events generated by the
transitions enabled under M, are contained Ln M, .,

thelr Lntersection with M; \M;, Ls empty



Interpreting configurations , logically

Transitions P,N* /A of a config are interpreted on
interaction steps M = (M,,...,M,.) as follows: For each M;,
etther

(1) all events tn A are also tn M; (the transition Ls enabled
anol thus fires), or

(2) one or more events L A are not tin M; and PZM; (not
all positive trigger events are present, disabling the
transttion), or

(2) one or more events Ln A are not Ln M;, and some event
e<N is in M; for some Lsj=w (global consistency is enforced

over the whole interaction step M, disabling the transition)




Correspondence with intuitionistic propositional logic

This nterpretation correponols exactly to that of intulitionistic Logie, reading
negative events e as e, transition slashes / as logical implication, and the
composition of events tn triggers and actions, and parallel composition /[ of
configurations, as conjunction

lnteraction steps M are thew Linear Kriplke structures

This Leads to the following def of logieal satisfaction = :
Awn interaction step M= (M,,...,M,.) satisfies configuration C, MEC,
Lf M L=C for all osi=wn, where

O  MiFo always (i.e..configuration o is identified with true)
O MIEPN?/A I PCM and NNM,, =T implies ACM;
O Mikc.//c. ifMiEc, and M LEC,

Now, MEC iff C is valid i the linear Kripke structure M




Main Result

Note that for interaction steps of lenght 1, the notions of
tnteraction model and classical model cotnetde, and we
simpLg write M, for (M)

Step responses of a config C in the sense of Prnuell and
Shalev are now exactly those tnteraction models of lenght 1,
called response models, that are not suffixes of interaction
models N= (No,...,N..M) of C with lenght m=o0.

For, if such a singleton interaction model was suffix of a
longer interaction model, the reaction would be separable and
hence not causal. Thus we have

Theorem 3 (Correctness and Completeness). If C is a
configuration and M <TI, then M is a Pnueli-Shalev step
response of C iff M is a response model of C




— Firstly, consider the configuration @/b which exhibits the Pnueli-Shalev step
response {b} for the empty environment. Indeed, {b} is a response model, i.e.,
a model and not a suffix of a longer interaction model. The only possibility
would be the interaction step (0, {b}), but this is not an interaction model
since (0, {b}),0 p& @/b: by definition, we have to consider § C  and {a} N
{b} = 0 implies {b} C 0, and this implication is false because b ¢ 0.

Secondly, configuration Co =4¢ @/b|| b/a has no response model.

{a,b} is a classical model of Cs, it may be left-extended to the interaction
model (0, {a,b}). Note in particular that (0, {a,b}),0 = @/b : by definition,
we have to consider § C 0 and {a} N {a,b} = 0 implies {b} C 0, and this
implication trivially holds. In other words, event a is absent at position 0 of
the interaction step (0, {a,b}) since it is added later in the step, namely at
bosition 1, and thus is not absent.




— Thirdly, consider configuration C3 =4¢ a/b|| b/a with its Pnueli-Shalev step
response (). It is easy to see that () is trivially a response model. In contrast,
the set {a,b} — while being a classical model of C'3s — is not a response
model since the suffix extension (#,{a,b}) is an interaction model of Cs.

— Fourthly, configuration @/b||b/a offers two response models, namely {a}
and {b}, which are exactly the configuration’s Pnueli-Shalev step responses.
As in the example regarding configuration C> above, neither response model
can be left-extended to an interaction model of length greater than one.




Full abstraction. The interaction models of a configuration C' encode all possible
interactions of C' with all its environments and nothing more. Firstly, any dif-
ferences between the interaction models of C are differences in the interactions
of C with its environments and thus can be observed. Secondly, any observable
difference in the interaction of C' with its environments should imply a difference
in the interaction models, and this holds by the very construction of interaction
models. Therefore, the above interaction step semantics provides the desired
compositional and fully abstract semantics for Pnueli-Shalev steps:

Theorem 4 (Compositionality & Full Abstraction). Let C1,Cs be con-
figurations. Then, Cy and C have the same interaction models if and only if,
for all configurations Cs, the parallel configurations C1||C3 and C2||Cs have the
same Pnueli-Shalev step responses.




3.4 Algebraic Perspective

We now turn to characterising the Pnueli-Shalev step semantics, or more pre-
cisely the largest congruence contained in equality on step responses, in terms of
axioms. These are derived from general axioms of propositional intuitionistic for-
mulas over linear Kripke models. Thus, the algebraic characterisation presented
here is closely related to the above denotational characterisation.

Table 1. Axiom system for the Pnueli-Shalev step semantics

(A1) C1||C2 = C2|| Ca

(A2) (C1]IC2)[|Cs = C1 | (C2]| Cs)

(A3) clc=c

(A4) cllo = ¢

(B1) PI/P = 0

(B2) I/A|I/B = I/(AUB)

(B3) I/A = T/A|IJ/4

(B4) I/A||A,J/B = I/A| A, J/B|I,J/B

(B5) PN/A=0 ifPONN#0
(C1) P,N/A = P,N/A,B FNNA#D
(C2) P,N/A = P,e,N/A|| P,N,&/A ifNNAQ
(c3) I,N/B|P,N/A={I,N,é/B:e€P}|P,N/A, ifNNA#0Q and P+#0

Theorem 5 (Correctness & Completeness). C; = Cy can be derived from

the axioms of Table 1 wvia standard equational reasoning if and only if, for all
interaction steps M, M = Cy iff M = Cs.




Theorem 6 (Correctness & Completeness). Let C be a configuration and
M be the maze associated with C. Then, A C II is a Pnueli-Shalev step response
of C if and only if there exists a lazy front line (Ra,S\ Ra) in Mc such that
A= K1l

The proof of this theorem can be found in [1]. Note how the game model ac-
commodates both the failure and nondeterminism of step responses. Depending
on Mc, it may happen that there is no strategy to avoid a (visible) room m
being visited by both players infinitely often. This corresponds to Pnueli and
Shalev’s step-construction procedure returning a failure. Also, a room m may
occur in two different lazy front lines, which yields nondeterministic behaviour.

\/\

Fig. 4. The maze Mc for component C = ¢/b| b/c|| ¢, a,b/a || b,d/d with maximal lazy
front lines ({b,z,y},{a,c,d}) and ({¢,y},{b,d}).

Game-Theoretic Perspective




the results. It has been observed in [1] that Pnueli and Shalev’s interpretation of
steps coincides exactly with the so-called stable models introduced by Gelfond
and Lifschitz [21]. Consider configuration C' as a propositional logic program.
Given a set of events E C II, let Cg be the program in which (i) all transitions
with negative triggers in E are removed, i.e., we drop from C all P, N/A with
NNE # 0; and (ii) all remaining transitions are relieved from any negative
events, i.e., every P, N/A with NN E = () is simplified to P/A. The pruned pro-
gram Cg has no negations, and thus it has a unique minimal classical model M.
A classical model of Cg is a set M C IT making all transitions/clauses of Cg
true, i.e., for all P/A from Cg for which P C M we have AC M. Aset M C II
is called a stable model of C if M is the minimal classical model of Cjs. It has
been shown in [21, 49] that stable models yield a more general semantics which |
consistently interprets a wider class of NLP programs than SLDNF.

Theorem 8 (Correctness & Completeness). M C II is a stable model of
configuration C if and only if M is a Pnueli-Shalev step response of C.

Relation to Logic Programming




It is interesting to note that, while Pnueli and Shalev’s notion of synchronous
steps has not had much impact on synchronous programming tools, stable models
have gained practical importance for NLP as the semantical underpinning of
answer set programming [48]. From a wider perspective, therefore, it is fair to say
that Pnueli-Shalev steps have indeed been implemented successfully in software
engineering, albeit in a different domain. In addition, the theoretical results
obtained around the Pnueli-Shalev semantics have ramifications in NLP. For
instance, Thm. 4 of Sec. 3.3 implies that the standard intuitionistic semantics
of logic provides a compositional and fully-abstract semantics for ground NLP
programs under the stable interpretation.

Pnueli-Shalev semantics has been
implemented in answer-set programming!




repsonsiveness modularity

-A

=
T

causality

modularity |responsiveness

E

Fig. 5. Overview of the relationships among semantics A-E [32].

*Semantics A violates Synchr Hyp

*Sem. B introduces microsteps--too subtle

*Sem. C--Pnueli-Shalev--doesn’t explain beh. in. terms of macrosteps
*Sem D--that of Argos--has problems with causality
*Sem. E, used in current impl. of Statemate,generates events in next step,
but before reaction has died out, no new input from env. allowed




