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(e.g. Communication costs are often abstracted as 0, whereas 
        on real platforms they are not negligible.)
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SynDEx: Functional specification
● Synchronous dataflow (à la Scade, Scicos, 

Simulink subsets)
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● Topology
● Bus types
● WCETs, WCCTs

SynDEx: HW & Timing model

Broadcast
bus

P2P1

P3

Boolean = 2
V_type   = 2
ID_type  = 5

G  = 3
F3 = 3

read LP = 1
read FS = 1

F1 = 3
F2 = 8

M = 3
N = 3

F3 = 2



11SynDEx: Static schedule
P1 P2 P3 Bus

read LP@true
read FS@true
read LP@true

F1@
LP=false

F2@
LP=false

G@
LP=false

N@FS
=true

M@FS
=false

F3@
LP=false

Send(P1,LP)@true

Send(P1,FS)@true

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
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Send(P1,V)@
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0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16



12

Network Code Framework: 
● Precision time imperative programming language
● HW platform
● Dynamic TDMA communications
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Network Code Framework: 
● Precision time imperative programming language

– Simple instruction set (assembly-like)
● wait (duration)
● future (duration,label) 

when duration lapses,
jump to label 

● halt
● if, goto, call, send, receive

– No parallelism
– Formal timed semantics

● Single time reference

START: wait(1)
   L1: if true then 
         future (L2,2)
         send (bus_id, 

 sizeof(LP), LP)
         halt ()
       endif
       wait (16)
       goto (START)
   L2: if true then
         future (L3,2)
     ...
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Network Code Framework: 
● HW platform

– Distributed
– Node structure

● Node-wide
time reference

 
– Automatic synthesis of MAC layer (HW/SW) and 

runtime
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Network Code Framework: 
● Objective: Dynamic TDMA bus communications

– No bus 
contention

– Data-dependent
communications

● Not provided:
– Computation 

programs
– Communication programs
– Clock synchronization (clock drift management)
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M@FS
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Send(P1,ID)
@(FS=false
∧ LP=false)
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17Computation program synthesis
P1

read LP@true
read FS@true
read LP@true

F1@
LP=false

F2@
LP=false
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START: future (L2,1)
       call read_LP
       halt
   L2: future (L3,1)
       call read_LP
       halt
   L3: if not LP then
         future (L4,3)
         call F1
         halt
       end
       wait (15)
       goto START
   L4: future (L5,2)
       call F2
       halt
   L5: wait (4)
       goto START    

Absolute dates → durations
Control passing synthesis



18Communication program synthesis
Bus

Send(P1,LP)@true

Send(P1,FS)@true

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
@(FS=false
∧ LP=true)

Send(P1,V)@
LP=false

START: wait (1)
   L1: future (L2,2)
       send (LP)
       halt
   L2: future (L3,2)
       send (FS)
       halt
   L3: if (not LP)
       and(not FS) then
         future (L5,8)
         send (ID)
         halt
       end
       wait (1)
   L4: if LP and not FS
       then
         future(START,11)
         wait (5)
         receive (ID)
         halt
       end...
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Clock drift management
● Simple assumptions:

– The cost of local control is negligible (if and goto 
take no time)

– The real-time durations of two wait(d) statements 
differ by less than α∗d for some α

– The real-time duration of a communication can be 
precisely computed from the size l of the 
transmitted data, as comm(l)

– The low-level communication hardware detects and 
signals the end of send and receive operations

– The end event of a receive occurs (in real time) 
after the end event of the send, but no later than β 
time units later.
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Clock drift management
● Simple drift management technique

– Prior to scheduling: Increase each WCET and 
WCCT in the timing model by 2∗α∗γ, where γ is 
the longest duration of a bus communication.

– During code generation: Insert synchronization 
communications so that the bus cannot be idle for 
more than γ time units. These messages do not 
change the schedule length.

– At runtime: At each message reception event, 
update the local clock to the correct value, which 
can be computed exactly from the schedule table 
and the size of the transmitted data. 

● Low complexity, but can be largely improved
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Clock drift management

P1 P2 P3 Bus
read LP@true

F3@
LP=false

read LP@true
read FS@true

F1@
LP=false G@

LP=false

F2@
LP=false

Send(P1,LP)@true

Send(P1,FS)@true

N@FS
=true

M@
FS=false

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
@(FS=false
∧ LP=true)

Send(P1,V)@
LP=false

Sync@FS

● Example

Sync@true
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Conclusion
● We built a full suite for the model-driven correct-

by-construction synthesis of real-time embedded 
applications, combining:

– A existing real-time scheduling approach
– A existing code generation approach
– A formal architecture abstraction serving as glue

● Low-overhead (tailored to the existing parts)
● Future:

– Multi-period implementations of multi-rate specs
– Refine the timing model of the Network Code with 

the costs of control
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Conclusion (2)
● Architecture abstraction is a fundamental 

problem in RT scheduling
● It involves modeling, timing analysis, and code 

generation aspects
● It can and must be done formally
● It can result in significant overheads, if not well 

done (e.g. independent of the scheduling 
technique, etc.)

● However, by considering both scheduling model 
and implementation architecture, costs can be 
reduced
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Related work 
● Distributed&RT implementation of conditional 

dataflow specifications
– Caspi et al. - Scheduling over TTA
– Eles et al. - Conditional task graphs
– Previous SynDEx work
– Other (OCRep, etc.)

● Distributed communication protocols
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