
Semantics-Preserving Implementation
of Synchronous Specifications

over Dynamic TDMA Distributed HW
(an exercise in architecture abstraction)

D. Potop-Butucaru*

INRIA, France

A. Azim*
S. Fischmeister*

University of Waterloo
Canada

*) Work supported by the French and Canadian taxpayers

2

Timing
model

Functional
specification

RT implementation

HW
architecture

Real-Time scheduling

3

Real-Time scheduling

Timing
model

Functional
specification

RT implementation
model

HW
model

4

Real-Time scheduling

Timing
model

Functional
specification

RT implementation
model

HW
model

What is the relation between
the high-level model and the low-level

reality?

(e.g. Communication costs are often abstracted as 0, whereas
 on real platforms they are not negligible.)

5

Architecture abstraction issues

Timing
model

High-level models
and analyses

Functional
specification

RT implementation
model

Code
generation

HW
model

Low-level HW
model

Low-level
timing model

Protocols,
libraries

WCET
analysis

RT implementation
model/code

Low-level models,
code

Abstraction layer

Simple model,
Facilitates scheduling

Close to the machine.
Precise timing information

(less variance and/or
over-approximations)

6

Architecture abstraction issues

Timing
model

High-level models
and analyses

Functional
specification

RT implementation
model

Code
generation

HW
model

Low-level HW
model

Low-level
timing model

Protocols,
libraries

WCET
analysis

RT implementation
model/code

Low-level models,
code

Abstraction layerProblems:
- Efficiency
 (Overheads)
- Correctness
 * Functional
 * Timing
- Robustness

Simple model,
Facilitates scheduling

Close to the machine.
Precise timing information

(less variance and/or
over-approximations)

7

This paper

Timing
(WCET&WCCT)

Functional
specification

Scheduling table
(RT implem. model)

Code
generation

HW
(interconnect graph)

Low-level HW
model

Low-level
timing model

Protocols,
libraries

WCET
analysis

RT implementation
(NC programs)

Network Code
toolset :

Time-triggered
Implementation

synthesis
(automatic)

Abstraction layer

Automatic control
Synchronous dataflow
Cycle-based execution
Conditional execution
(Scade, Polychrony,
 Simulink subsets)

SynDEx approach:
Static

Fully automatic
Distributed

Clock drift modelAbstraction:
- Formal
- Tailored to the
 framework
- Low-overhead

8

This paper

Timing
(WCET&WCCT)

Functional
specification

Scheduling table
(RT implem. model)

Code
generation

HW
(interconnect graph)

Low-level HW
model

Low-level
timing model

Protocols,
libraries

WCET
analysis

RT implementation
(Network code)

Network Code
toolset :

Time-triggered
Implementation

synthesis
(automatic)

Abstraction layer

Automatic control
Synchronous dataflow
Cycle-based execution
Conditional execution
(Scade, Polychrony,
 Simulink subsets)

SynDEx approach:
Static

Fully automatic
Distributed

Clock drift modelAbstraction:
- Formal
- Tailored to the
 framework
- « Low-
 overhead »

9

SynDEx: Functional specification
● Synchronous dataflow (à la Scade, Scicos,

Simulink subsets)

read
FS

Read
LP

F1

F2 F3

ID

G ID

LP=false

LP=true

ID M

N

FS=false

FS=true

FS

LP ID

10

● Topology
● Bus types
● WCETs, WCCTs

SynDEx: HW & Timing model

Broadcast
bus

P2P1

P3

Boolean = 2
V_type = 2
ID_type = 5

G = 3
F3 = 3

read LP = 1
read FS = 1

F1 = 3
F2 = 8

M = 3
N = 3

F3 = 2

11SynDEx: Static schedule
P1 P2 P3 Bus

read LP@true
read FS@true
read LP@true

F1@
LP=false

F2@
LP=false

G@
LP=false

N@FS
=true

M@FS
=false

F3@
LP=false

Send(P1,LP)@true

Send(P1,FS)@true

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
@(FS=false
∧ LP=true)

Send(P1,V)@
LP=false

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

12

Network Code Framework:
● Precision time imperative programming language
● HW platform
● Dynamic TDMA communications

13

Network Code Framework:
● Precision time imperative programming language

– Simple instruction set (assembly-like)
● wait (duration)
● future (duration,label)

when duration lapses,
jump to label

● halt
● if, goto, call, send, receive

– No parallelism
– Formal timed semantics

● Single time reference

START: wait(1)
 L1: if true then
 future (L2,2)
 send (bus_id,

 sizeof(LP), LP)
 halt ()
 endif
 wait (16)
 goto (START)
 L2: if true then
 future (L3,2)
 ...

14

Network Code Framework:
● HW platform

– Distributed
– Node structure

● Node-wide
time reference

– Automatic synthesis of MAC layer (HW/SW) and

runtime

Computation programComputation program
Processor

Communication program
Network processor

Communication program
Network processor

Local I/O

Sh
ar

ed
M

em
or

y Bu
s

1
Bu

s
2

...

15

Network Code Framework:
● Objective: Dynamic TDMA bus communications

– No bus
contention

– Data-dependent
communications

● Not provided:
– Computation

programs
– Communication programs
– Clock synchronization (clock drift management)

Computation programComputation program
Processor

Communication program
Network processor

Communication program
Network processor

Local I/O

Sh
ar

ed
M

em
or

y Bu
s

1
Bu

s
2

...

16SynDEx: Scheduling table
P1 P2 P3 Bus

read LP@true
read FS@true
read LP@true

F1@
LP=false

F2@
LP=false

G@
LP=false

N@FS
=true

M@FS
=false

F3@
LP=false

Send(P1,LP)@true

Send(P1,FS)@true

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
@(FS=false
∧ LP=true)

Send(P1,V)@
LP=false

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17Computation program synthesis
P1

read LP@true
read FS@true
read LP@true

F1@
LP=false

F2@
LP=false

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

START: future (L2,1)
 call read_LP
 halt
 L2: future (L3,1)
 call read_LP
 halt
 L3: if not LP then
 future (L4,3)
 call F1
 halt
 end
 wait (15)
 goto START
 L4: future (L5,2)
 call F2
 halt
 L5: wait (4)
 goto START

Absolute dates → durations
Control passing synthesis

18Communication program synthesis
Bus

Send(P1,LP)@true

Send(P1,FS)@true

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
@(FS=false
∧ LP=true)

Send(P1,V)@
LP=false

START: wait (1)
 L1: future (L2,2)
 send (LP)
 halt
 L2: future (L3,2)
 send (FS)
 halt
 L3: if (not LP)
 and(not FS) then
 future (L5,8)
 send (ID)
 halt
 end
 wait (1)
 L4: if LP and not FS
 then
 future(START,11)
 wait (5)
 receive (ID)
 halt
 end...

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

19

Clock drift management

Timing
(WCET&WCCT)

Functional
specification

Scheduling table
(RT implem. model)

Code
generation

HW
(interconnect graph)

Low-level HW
model

Low-level
timing model

Protocols,
libraries

WCET
analysis

RT implementation
(Network code)

Network code
toolset :

Time-triggered
Implementation

synthesis
(automatic)

Abstraction layer

SynDEx approach:
Static

Fully automatic
Distributed

Clock drift model

Challenge:
Preserve the timing
guarantees provided
by SynDEx.

Preserve correction.

Solution:
Include worst-case
overheads in the
input WCET,WCCTs

20

Clock drift management
● Simple assumptions:

– The cost of local control is negligible (if and goto
take no time)

– The real-time durations of two wait(d) statements
differ by less than α∗d for some α

– The real-time duration of a communication can be
precisely computed from the size l of the
transmitted data, as comm(l)

– The low-level communication hardware detects and
signals the end of send and receive operations

– The end event of a receive occurs (in real time)
after the end event of the send, but no later than β
time units later.

21

Clock drift management
● Simple drift management technique

– Prior to scheduling: Increase each WCET and
WCCT in the timing model by 2∗α∗γ, where γ is
the longest duration of a bus communication.

– During code generation: Insert synchronization
communications so that the bus cannot be idle for
more than γ time units. These messages do not
change the schedule length.

– At runtime: At each message reception event,
update the local clock to the correct value, which
can be computed exactly from the schedule table
and the size of the transmitted data.

● Low complexity, but can be largely improved

22

Clock drift management

P1 P2 P3 Bus
read LP@true

F3@
LP=false

read LP@true
read FS@true

F1@
LP=false G@

LP=false

F2@
LP=false

Send(P1,LP)@true

Send(P1,FS)@true

N@FS
=true

M@
FS=false

Send(P1,ID)
@(FS=false
∧ LP=false)

Send(P1,ID)
@(FS=false
∧ LP=true)

Send(P1,V)@
LP=false

Sync@FS

● Example

Sync@true

23

Conclusion
● We built a full suite for the model-driven correct-

by-construction synthesis of real-time embedded
applications, combining:

– A existing real-time scheduling approach
– A existing code generation approach
– A formal architecture abstraction serving as glue

● Low-overhead (tailored to the existing parts)
● Future:

– Multi-period implementations of multi-rate specs
– Refine the timing model of the Network Code with

the costs of control

24

Conclusion (2)
● Architecture abstraction is a fundamental

problem in RT scheduling
● It involves modeling, timing analysis, and code

generation aspects
● It can and must be done formally
● It can result in significant overheads, if not well

done (e.g. independent of the scheduling
technique, etc.)

● However, by considering both scheduling model
and implementation architecture, costs can be
reduced

25

Related work
● Distributed&RT implementation of conditional

dataflow specifications
– Caspi et al. - Scheduling over TTA
– Eles et al. - Conditional task graphs
– Previous SynDEx work
– Other (OCRep, etc.)

● Distributed communication protocols

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

