
Precision Timed Computing in the Synchronous Setting

Partha S Roop

Synchron 2010

29 November - 4 December 2010

Roop (University of Auckland) PRET 1 / 61

Acknowledgements

The following people actively contributed to the PRETzel research.
www.ece.auckland.ac.nz/~pretzel

Sidharta Andalam
Alain Girault
Reinhard von Hanxleden
Claus Traulsen

Roop (University of Auckland) PRET 2 / 61

www.ece.auckland.ac.nz/~pretzel

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 3 / 61

Research

Model checking: SoC bus protocols, web services composition,
synchronous observers, real-time systems.
Synchronous languages: Reactive and precision timed architectures,
compilation, distribution, timing analysis.
Industrial Informatics: PLC control, industrial buses, industrial PCs,
standards and semantics, compilation, applications.

Roop (University of Auckland) PRET 4 / 61

Teaching

A year-4 course on
embedded system
design.
We teach both the
RTOS approach and
the synchronous
approach.

Roop (University of Auckland) PRET 5 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 6 / 61

Space Exploration

www.nasa.gov

Time Critical Robotics
Can we build reliable
robots?
Avoid priority inversion.
Ensure deterministic
behavior.

Roop (University of Auckland) PRET 7 / 61

Automotive Industry

Toyota
Feb 2010: Global recall of more than
400,000 of the auto-maker’s 2010 hybrid
models, for problems in their anti-lock
braking systems.
Overall, more than 8 million Toyota cars
have been recalled globally due to
accelerator problems.

http://edition.cnn.com/2010/BUSINESS/02/09/
japan.prius.recall/index.html

Roop (University of Auckland) PRET 8 / 61

Real-Time System Design

Current design approaches of Time Critical Systems
Rely on the well known theory of real-time scheduling.
A set of tasks with timing parameters, which execute on RTOS.
WCET derived through static analysis.
Major issue with WCET analysis: “modern processors render WCET
virtually unknowable; even simple problems demand heroic efforts”
[Edwards and Lee, DAC 2007].

Roop (University of Auckland) PRET 9 / 61

Motivation

Motivation
Can we rethink the link between computation and timing so that we can:

Design Precision Timed Architectures (PRET) [Edwards and Lee,
DAC 2007], where processors elicit time as a property of computation.
The goals of PRET would be to simplify static timing analysis.
To achieve predictability without sacrificing throughput.

Roop (University of Auckland) PRET 10 / 61

Multiple Active Context System (MACS)

B. Cogswell and Z. Segall. MACS: A predictable architecture for real time
systems. In Real-Time Systems Symposium. IEEE CS Press, 1991.

The use of a shared pipelined processor as a possible solution to the
problem of predictability and high performance in real time systems.
Task-level parallelism is used to maintain high processor throughput
while individual threads execute at a relatively slow, but very
predictable rate.

Time

DecodeFetch Execute
T1
T2 T1
T3 T2 T1

Roop (University of Auckland) PRET 11 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 12 / 61

The PRET Machine Design [Lickly et al., CASES’08]

PRET machine designed based on the SPARC’s ISA.
Uses multiple active contexts and latency hiding similar to the MACS
architecture.
Memory hierarchy is replaced by statically allocated scratch-pad
memories.

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

REGISTER FILE

PRET
PROCESSOR

THREAD
CONTROLLER

DMA

Memory Mapped
Input/Output

thread0

thread1

thread2
...

MEMORY
MANGEMENT

UNIT shared address
space

INST_SPMS

program codeprogram codeprogram codeprogram codeprogram codeprogram code

SPM0

DATA_SPMS

datadatadatadatadatadata

SPM0 MAIN
MEMORY

MEMORY

WHEEL

0

1 2

3

45

Figure 1: Block Diagram of PRET Architecture

operations very difficult [10]. While this is not critical for best-
effort computing, it is a disaster for hard real-time systems.

The PRET philosophy is that temporal characteristics should be
as predictable as function. Much like how arithmetic on a proces-
sor is always consistent, predictable, and documented, we want its
speed to be equally consistent, predictable, and documented. While
turning the clock back to the era of eight-bit microprocessors is one
obvious way to achieve this, instead the goal of PRET is to re-think
many of the architectural features enabled by rising integration lev-
els and render them predictable.

Thus, PRET espouses software-managed scratchpad memories [3],
thread-interleaved pipelines with no bypassing [20, 11], explicit
timing control at the ISA level [15], time-triggered communica-
tion [17] with global time synchronization [16], and high-level lan-
guages with explicit timing [14]. In this paper, we propose an archi-
tecture that embodies many of these tenants, and demonstrate how
it can be programmed. In particular, we focus on integrating tim-
ing instructions to a thread-interleaved pipeline and a predictable
memory system. We then show how to program such a predictable
architecture.

3. RELATED WORK
The Raw processor of Agarwal et al. [29] shares certain elements

of the PRET philosophy. It, too, employs a software-managed
scratchpad instead of an instruction cache [22], and definitely takes
communication delay into account (the name “raw” is a reminder
that its ISA is exposed to wire delay). However, it sports multiple
single-threaded pipelines with bypassing, a fairly traditional data
cache, and focuses almost purely on performance, as usual at the
expense of predictability.

The Raw architecture is designed as a grid of single-threaded
processors connected by a novel interconnection network. While
we envision a similar configuration for high-end PRET processors,
the implementation we present here does not consider inter-core
communication. We may adopt a Raw-like communication net-
work in the future.

The Java Optimized Processor [27] enables accurate worst-case
execution time bounds, but does not provide support for controlling
execution time. The SPEAR [8] processor prohibits conditional
branches, which we find overly restrictive. The REMIC [26] and

KIEL [21] are predictable in the PRET sense, but they only allow
Esterel [5] as an entry language. Again, we find this overly restric-
tive; a central goal of our work was to provide a C development
environment.

Ip and Edwards [15] first implemented the deadline instruction
in a very simple non-pipelined processor that did not have C com-
piler support. This deadline instruction allowed a programmable
method to specify the lower bound execution time on segments of
program code. Our work extends theirs to a new architecture by
borrowing the deadline instruction semantics and integrating it into
a thread-interleaved pipeline. We introduce a replaying mechanism
to stall particular threads without stalling the entire pipeline. This
replaying mechanism is again employed with the deadline instruc-
tions.

The Giotto language [14] is a novel approach to specifying sys-
tem timing at the software level. However, it relies on the usual
RTOS infrastructure that assumes worst-case execution time is known
to establish schedulability [7]. Our PRET processor would be an
ideal target for the Giotto programming environment; constructing
one is future work.

Thread-interleaved pipelines date to at least 1987 [20], proba-
bly much earlier. Thread-interleaving reduces the area, power and
complexity of a processor [11, 18], but more importantly, it pro-
motes predictable execution of instructions in the pipeline. Access
to main memory in thread-interleaved pipelines is usually pipelined
[11, 18], but modern, large memories usually are not, so instead
our approach presents each thread with a window in which it can
access main memory. This provides predictable access to memory
and mutual exclusion between the threads. We call this a memory
wheel.

The goal of the Virtual Simple Architecture of Mueller et al. [2]
is to enable hard real-time operation of unpredictable processors.
They run real-time tasks on a fast, unpredictable processor and a
slower, more-predictable one simultaneously, and switch over if the
slow ever overtakes the fast. The advantage is that the faster pro-
cessor will have time to run additional, non-time-critical tasks. By
contrast, our PRET approach guarantees detailed timing, not just
task completion times, allowing timing to be used for synchroniza-
tion.

Scratchpad memories have long been proposed for embedded

Roop (University of Auckland) PRET 13 / 61

The PRET Programming Model

Concurrent C programs with shared memory communication.
Precise timing of threads using the deadi (deadline) instruction.
Thread-safe programming by time interleaving the shared memory
access.

int main() {
 DEAD(28);
 volatile unsigned int * buf =
 (unsigned int*)(0x3F800200);
 unsigned int i = 0;
 for (i = 0; ; i++) {
 DEAD(26);
 *buf = i;
 }
 return 0;
}

Producer
int main() {
 DEAD(41);
 volatile unsigned int * buf =
 (unsigned int*)(0x3F800200);
 unsigned int i = 0;
 int arr[8];
 for (i =0; i<8; i++)
 arr[i] = 0;
 for (i = 0; ; i++) {
 DEAD(26);
 register int tmp = *buf;
 arr[i%8] = tmp;
 }
 return 0;
}

Consumer
int main() {
 DEAD(41);
 volatile unsigned int * buf =
 (unsigned int*)(0x3F800200);
 volatile unsigned int * fd =
 (unsigned int*)(0x80000600);
 unsigned int i = 0;
 for (i = 0; ; i++) {
 DEAD(26);
 *fd = *buf;
 }
 return 0;
}

Observer

Figure 4: Simple Producer/Consumer Example

4.3.2 Semantics
The deadline instruction can only enforce a lower bound on the

execution time of code segment; using replay, the deadline instruc-
tion blocks the thread whenever the deadline register ti being writ-
ten is not yet zero.

Unlike Ip and Edwards [15], our processor is pipelined, so we
decrease each deadline register once every six clock cycles, i.e., at
the instruction execution rate, and the PLL registers at the rate set
by the PLL. When a deadline instruction attempts to set a deadline
register, it blocks until the deadline register reaches zero, at which
point it reloads the register and passes control to the next instruc-
tion. Thus, an earlier deadline instruction can set the minimum
amount of time that can elapse before the next deadline instruction
terminates.

Currently, if a deadline expires (i.e., the register reaches zero be-
fore a deadline instruction reaches it), we do nothing: the deadline
instruction simply loads the new value immediately and continues.
Later, we plan to allow the architecture to throw an exception when
a deadline is missed.

4.3.3 Implementation
To implement the deadline instruction, we chose an unused op-

code and followed the usual SPARC instruction coding format,
which allowed us to include both register and immediate forms of
the instruction. Figure 5 shows two concrete encodings.

Support for the deadline instruction requires some extra pipeline
control logic and deadline registers.

00010 01111111111111 101100 00000 1
op rs1 i simm13rd op3

00010 00001xxxxxxxx11 101100 00000 0
op rs1 i asi rs2rd op3

Figure 5: Encoding of dead $t2,0xFF and dead $t2,$g1

In our pipeline, we check the deadline register in the register
access stage and use the replay mechanism to block a deadline in-
struction until its deadline register is zero.

4.4 Compilation Flow
We adapted the SPARC toolchain used by the open-source LEON3

implementation [12]. Figure 3 shows our compilation flow.

We require the user to provide a main() function for each hard-
ware thread in separate files (e.g., thread0.c). We compile each
at locations dictated by our memory map by passing the -Ttext
and -Tdata options to the linker. For example, thread0.c
starts at address 0x40000000 and thread1.c at 0x40010000.
We merge the resulting object files with the setup code and convert
them to Motorola S-record (SREC) format. Our simulator then ini-
tializes memory with the contents of the SREC files. We plan to
use the same SREC files as input to our FPGA implementation of
the PRET processor.

5. BASIC PRET PROGRAMMING
To illustrate how PRET timing precision can be used for syn-

chronization, we present a simple producer/consumer example with
an observer that displays the transferred data. This is a classical
mutual exclusion problem in that we must deal with the issue of
shared resources. Unlike the classical approach, however, the time
that a thread must wait for a lock in our approach is determinis-
tic in that it does not depend on the behavior of the other threads
accessing the lock.

Our approach uses deadline counters and precise knowledge of
the timing of instructions to synchronize access to a shared vari-
able used for communication. We take on the role of a worst-case
execution time (WCET) analysis tool to analyze the instructions
generated from the C programs and compute the exact values for
the deadline counters to ensure correct synchronization.

5.1 Mutual Exclusion
A general approach to managing shared data across separate threads

is to have mutually exclusive critical sections that only a single
thread can access at a time. Our memory wheel already guarantees
that any accesses to a shared word will be atomic, so we only need
to ensure that these accesses occur in the correct order.

Figure 4 shows the C code for the producer, consumer, and an
observer all accessing the shared variable buf (underlined). The
producer iterates and writes an integer value to the shared data.
The consumer reads this value from this shared data and stores it in
an array. For simplicity, our consumer does not perform any other
operations on the consumed data. It just stores the data in the array.
The observer also reads the shared data and writes it to a memory-
mapped peripheral.

The deadline instructions in Figure 4 are marked in bold. We
use staggered deadlines at the beginning of each thread to offset

Time

Producer
28 54 80 106

Consumer 41 67 93 119

Roop (University of Auckland) PRET 14 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 15 / 61

Reactive Processors

Alternative platforms for reactive embedded systems.
Use ISA support for environment interaction instead of interrupts.
Have been used for direct execution of Esterel
[www.ece.auckland.ac.nz/~proo003/ReactiveProcessors.php].

Table 1 summarizes the primary difference between conventional and reactive processors.

Features Reactive Processors Conventional Processors

Execution

progression

Evolves in discrete instants separated by

“tick delimiting instructions”

Evolves continuously

Preemption Accomplished through event reaction

block with implicit priority resolution and

context switching in hardware

Accomplished through interrupt mechanism

requiring explicit priority resolution, context

saving and restoration in software

Concurrency Synchronous parallel execution and

broadcast communication between

threads

Asynchronous execution requiring explicit

message passing/rendezvous for

communication between threads

View of the

environment

Changes at discrete instants. Inputs are

latched at the beginning and outputs are

sustained till the end of a “tick”.

Changes continuously

Inputs can be read at any time, and outputs can

be sustained for any duration.

Table 1: Reactive versus conventional processors (reproduced from [20]).

2.2 Link to high-level languages:

The reactive architectures developed at Auckland University were inspired by the well established

synchronous language Esterel [21]. Synchronous languages are languages of choice for designing

safety-critical embedded systems since they combine precise semantics with the synchronous execution

model to avoid the well known delta-delay issues with VHDL like hardware description languages. All

“correct” synchronous programs (in Esterel, for example) are always deterministic (will guarantee the same

sequence of outputs for the same input sequence) and reactive (will not reject valid input stimulus to the

system). Thus, such programs provide efficient techniques for formal verification [22]. However, software

implementations of Esterel programs rely on conventional architectures with their usual deficiencies

(discussed earlier) at the ISA level for providing predictability. Hence, an obvious (though non-trivial)

approach should be to explore the usage of reactive architectures in compiling Esterel.

Esterel executes synchronously relative to ticks of a logical clock that provide synchronous execution of the

Esterel threads. Preemptions are also synchronized with respect to these ticks (either at the start of the tick

called strong preemptions or at the end of the tick called weak preemptions). Moreover, preemptions may or

may not be immediate (at the first instant when they are active). This leads to quite complex preemption

handling mechanisms in hardware. Moreover, there is a need to deal with surface and depth behaviours [23]

and detection of signal presence to preserve Esterel semantics. The EMPEROR [11] architecture is a first

attempt at providing ISA support for direct execution of Esterel. Here each processor executes until it hits a

pause instruction which marks its local tick. The global tick (which corresponds to the Esterel tick) is

detected using barrier synchronization in the TCU when all threads have reached their local ticks. Such a

logical-tick based approach leads to quite compact code that has almost one to one correspondence with the

original Esterel source. A compiler called EEC2 (EMPEROR Esterel compiler) [24] generates code for

distributed execution using dynamic signal resolution along with surface and depth behaviours [23] in the

control flow graph.

More recently, we have proposed a multithreaded architecture for direct execution of Esterel. The proposed

processor, STARPro [25], has a synchronized Abort Handling Block (AHB) and a Thread Handling Block

(THB) within an Esterel support Unit (ESU). The ESU maintains task contexts in hardware (THB) to

emulate synchronous execution of Esterel using a single processor pipeline.

 6

Roop (University of Auckland) PRET 16 / 61

www.ece.auckland.ac.nz/~proo003/ReactiveProcessors.php

Reactive Processors

Alternative platforms for reactive embedded systems.
Use ISA support for environment interaction instead of interrupts.
Have been used for direct execution of Esterel
[www.ece.auckland.ac.nz/~proo003/ReactiveProcessors.php].

Table 1 summarizes the primary difference between conventional and reactive processors.

Features Reactive Processors Conventional Processors

Execution

progression

Evolves in discrete instants separated by

“tick delimiting instructions”

Evolves continuously

Preemption Accomplished through event reaction

block with implicit priority resolution and

context switching in hardware

Accomplished through interrupt mechanism

requiring explicit priority resolution, context

saving and restoration in software

Concurrency Synchronous parallel execution and

broadcast communication between

threads

Asynchronous execution requiring explicit

message passing/rendezvous for

communication between threads

View of the

environment

Changes at discrete instants. Inputs are

latched at the beginning and outputs are

sustained till the end of a “tick”.

Changes continuously

Inputs can be read at any time, and outputs can

be sustained for any duration.

Table 1: Reactive versus conventional processors (reproduced from [20]).

2.2 Link to high-level languages:

The reactive architectures developed at Auckland University were inspired by the well established

synchronous language Esterel [21]. Synchronous languages are languages of choice for designing

safety-critical embedded systems since they combine precise semantics with the synchronous execution

model to avoid the well known delta-delay issues with VHDL like hardware description languages. All

“correct” synchronous programs (in Esterel, for example) are always deterministic (will guarantee the same

sequence of outputs for the same input sequence) and reactive (will not reject valid input stimulus to the

system). Thus, such programs provide efficient techniques for formal verification [22]. However, software

implementations of Esterel programs rely on conventional architectures with their usual deficiencies

(discussed earlier) at the ISA level for providing predictability. Hence, an obvious (though non-trivial)

approach should be to explore the usage of reactive architectures in compiling Esterel.

Esterel executes synchronously relative to ticks of a logical clock that provide synchronous execution of the

Esterel threads. Preemptions are also synchronized with respect to these ticks (either at the start of the tick

called strong preemptions or at the end of the tick called weak preemptions). Moreover, preemptions may or

may not be immediate (at the first instant when they are active). This leads to quite complex preemption

handling mechanisms in hardware. Moreover, there is a need to deal with surface and depth behaviours [23]

and detection of signal presence to preserve Esterel semantics. The EMPEROR [11] architecture is a first

attempt at providing ISA support for direct execution of Esterel. Here each processor executes until it hits a

pause instruction which marks its local tick. The global tick (which corresponds to the Esterel tick) is

detected using barrier synchronization in the TCU when all threads have reached their local ticks. Such a

logical-tick based approach leads to quite compact code that has almost one to one correspondence with the

original Esterel source. A compiler called EEC2 (EMPEROR Esterel compiler) [24] generates code for

distributed execution using dynamic signal resolution along with surface and depth behaviours [23] in the

control flow graph.

More recently, we have proposed a multithreaded architecture for direct execution of Esterel. The proposed

processor, STARPro [25], has a synchronized Abort Handling Block (AHB) and a Thread Handling Block

(THB) within an Esterel support Unit (ESU). The ESU maintains task contexts in hardware (THB) to

emulate synchronous execution of Esterel using a single processor pipeline.

 6

Time triggered Event triggered

Roop (University of Auckland) PRET 16 / 61

www.ece.auckland.ac.nz/~proo003/ReactiveProcessors.php

Example: The ReMIC Processor

non-pipelined processors. However, these simple architectures demonstrated a very structured ISA driven

approach to environment interaction that is both efficient and predictable [17]. Subsequently, we

proposed a fully pipelined version called REMIC (or reactive microprocessor) [18] that was a custom

built reactive microprocessor. REMIC had a three-stage pipeline, a reactive functional unit (RFU) for

environment interaction through a set of direct signal lines and a few reactive instructions in the ISA.

Figure 1 provides the top-level view of this architecture. Precise timing could be achieved in REMIC by

associating timers with signal inputs and programming them through AWAIT, EMIT or ABORT

instructions [18]. This is similar in spirit to what is proposed later in [7]

Control Unit

WR

PDIN(32)

PADR(16)

SIR(16)

SOR(16)

SIP(16)

SOP(16)

External RAM

Interface

External ROM

Interface

Memory Mapped IO

Interface

ReMiCORE

Reactive Signal

Input & Outputs

DIN(16)

DOUT(16)

ADDR(16)

PM_SEL

CLK

RST_L
Clock & Reset

inputs

Reactive Functional

Unit

CLK
RST_L

CLK

Data Path

Figure1: REMIC reactive processor showing asynchronous RFU and the CU (reproduced from [19])

Subsequently, we proposed several reactive multiprocessors for handling both synchronous and

asynchronous concurrent processes that are essential for supporting higher-level abstractions

(language-level) of embedded computing. The first extension was an asymmetric multiprocessor called

HiDRA (Hybrid Reactive architecture) [19] that combined a set of REMIC cores to provide direct support

for a set of asynchronous concurrent tasks. A master processor can spawn these tasks on slave processors

and point to point communication and synchronization between master and slave is achieved through

reactive signals and associated reactive instructions (EMIT, AWAIT and ABORT). The corresponding

reactive ISA, called CRAL (concurrent reactive assembler language), is a first attempt at providing

architectural support for predictable mechanisms for asynchronous processes through direct ISA support

(fixed latency of task creation, communication among tasks and so on). Subsequently, we developed a

symmetric shared memory multiprocessor called EMPEROR (see Figure 2) by combining several

reactive processors that were synchronized using a thread control block. EMPEROR, unlike HiDRA,

provided an approach for distributing a set of synchronous threads [11] in a multiprocessor.

Figure 2: The EMPEROR Architecture.

 5

Roop (University of Auckland) PRET 17 / 61

Example: The ReMIC Processor

non-pipelined processors. However, these simple architectures demonstrated a very structured ISA driven

approach to environment interaction that is both efficient and predictable [17]. Subsequently, we

proposed a fully pipelined version called REMIC (or reactive microprocessor) [18] that was a custom

built reactive microprocessor. REMIC had a three-stage pipeline, a reactive functional unit (RFU) for

environment interaction through a set of direct signal lines and a few reactive instructions in the ISA.

Figure 1 provides the top-level view of this architecture. Precise timing could be achieved in REMIC by

associating timers with signal inputs and programming them through AWAIT, EMIT or ABORT

instructions [18]. This is similar in spirit to what is proposed later in [7]

Control Unit

WR

PDIN(32)

PADR(16)

SIR(16)

SOR(16)

SIP(16)

SOP(16)

External RAM

Interface

External ROM

Interface

Memory Mapped IO

Interface

ReMiCORE

Reactive Signal

Input & Outputs

DIN(16)

DOUT(16)

ADDR(16)

PM_SEL

CLK

RST_L
Clock & Reset

inputs

Reactive Functional

Unit

CLK
RST_L

CLK

Data Path

Figure1: REMIC reactive processor showing asynchronous RFU and the CU (reproduced from [19])

Subsequently, we proposed several reactive multiprocessors for handling both synchronous and

asynchronous concurrent processes that are essential for supporting higher-level abstractions

(language-level) of embedded computing. The first extension was an asymmetric multiprocessor called

HiDRA (Hybrid Reactive architecture) [19] that combined a set of REMIC cores to provide direct support

for a set of asynchronous concurrent tasks. A master processor can spawn these tasks on slave processors

and point to point communication and synchronization between master and slave is achieved through

reactive signals and associated reactive instructions (EMIT, AWAIT and ABORT). The corresponding

reactive ISA, called CRAL (concurrent reactive assembler language), is a first attempt at providing

architectural support for predictable mechanisms for asynchronous processes through direct ISA support

(fixed latency of task creation, communication among tasks and so on). Subsequently, we developed a

symmetric shared memory multiprocessor called EMPEROR (see Figure 2) by combining several

reactive processors that were synchronized using a thread control block. EMPEROR, unlike HiDRA,

provided an approach for distributing a set of synchronous threads [11] in a multiprocessor.

Figure 2: The EMPEROR Architecture.

 5

Roop (University of Auckland) PRET 17 / 61

Motivation for our approach

Berkeley-Columbia approach is based on tailored processors that is
resource intensive.
This approach also mixes physical and logical time and is not portable.
Hard to derive the values of deadlines for thread-interleaved access.
Reactive processors, while being predictable, can only execute pure
Esterel.

Roop (University of Auckland) PRET 18 / 61

Motivation for our approach

Berkeley-Columbia approach is based on tailored processors that is
resource intensive.

This approach also mixes physical and logical time and is not portable.
Hard to derive the values of deadlines for thread-interleaved access.
Reactive processors, while being predictable, can only execute pure
Esterel.

Roop (University of Auckland) PRET 18 / 61

Motivation for our approach

Berkeley-Columbia approach is based on tailored processors that is
resource intensive.
This approach also mixes physical and logical time and is not portable.

Hard to derive the values of deadlines for thread-interleaved access.
Reactive processors, while being predictable, can only execute pure
Esterel.

Roop (University of Auckland) PRET 18 / 61

Motivation for our approach

Berkeley-Columbia approach is based on tailored processors that is
resource intensive.
This approach also mixes physical and logical time and is not portable.
Hard to derive the values of deadlines for thread-interleaved access.

Reactive processors, while being predictable, can only execute pure
Esterel.

Roop (University of Auckland) PRET 18 / 61

Motivation for our approach

Berkeley-Columbia approach is based on tailored processors that is
resource intensive.
This approach also mixes physical and logical time and is not portable.
Hard to derive the values of deadlines for thread-interleaved access.
Reactive processors, while being predictable, can only execute pure
Esterel.

Roop (University of Auckland) PRET 18 / 61

Philosophy

Notion of concurrency: concurrency is logical but execution is
sequential very similar to synchronous languages [Benveniste’03].
Notion of time: time is logical and the mapping of logical to physical
time is done using static analysis of code.
Design approach: Auckland Reactive PRET (ARPRET) architectures
are designed by simple customization of soft-core processors.

Roop (University of Auckland) PRET 19 / 61

Philosophy

Notion of concurrency: concurrency is logical but execution is
sequential very similar to synchronous languages [Benveniste’03].

Notion of time: time is logical and the mapping of logical to physical
time is done using static analysis of code.
Design approach: Auckland Reactive PRET (ARPRET) architectures
are designed by simple customization of soft-core processors.

Roop (University of Auckland) PRET 19 / 61

Philosophy

Notion of concurrency: concurrency is logical but execution is
sequential very similar to synchronous languages [Benveniste’03].
Notion of time: time is logical and the mapping of logical to physical
time is done using static analysis of code.

Design approach: Auckland Reactive PRET (ARPRET) architectures
are designed by simple customization of soft-core processors.

Roop (University of Auckland) PRET 19 / 61

Philosophy

Notion of concurrency: concurrency is logical but execution is
sequential very similar to synchronous languages [Benveniste’03].
Notion of time: time is logical and the mapping of logical to physical
time is done using static analysis of code.
Design approach: Auckland Reactive PRET (ARPRET) architectures
are designed by simple customization of soft-core processors.

Roop (University of Auckland) PRET 19 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 20 / 61

Motivation for PRET-C

Precision Timed C (PRET-C)

Simple set of synchronous extensions to C for:
light-weight multithreading in C.
all extensions implemented as C macros.
provides thread-safe shared memory access.
supports predictable programming by mapping logical time to physical
time through static analysis.

Roop (University of Auckland) PRET 21 / 61

Synchronous extensions to C

Statement Meaning
ReactiveInput I declares I as a reactive input coming from the

environment
ReactiveOutput O declares O as a reactive output emitted to the

environment
PAR(T1,...,Tn) synchronously executes in parallel the n

threads Ti, with higher priority of Ti over
Ti+1

EOT marks the end of a tick (local or global de-
pending on its position)

[weak] abort P when
pre C

immediately kills P when C is true in the pre-
vious instant

Table: PRET-C extensions to C.

Roop (University of Auckland) PRET 22 / 61

Example: Line Following Robot

Application

1
3

2

Description
Robot has to follow the
line.
Data from 3 sensors as
an input from the
environment.
Two PWM outputs
controlling two motors.

Roop (University of Auckland) PRET 23 / 61

Example: Line Following Robot

Overview

Environment

Motor

Driver

Decoder1 32 Sensor Input

P
W

M
 O

u
tp

u
t

5v

Time

Robot System

Speed

Description
Three reactive inputs
(sensors) from the
environment.
Two reactive outputs
(PWM) controlling the
motors.
Two threads (Decoder,
Motor Driver) execute
concurrently.
Speed information is
shared between threads.

Roop (University of Auckland) PRET 24 / 61

Example: Line Following Robot

Environment
ReactiveInput int reset;
ReactiveInput int sensor1,sensor2,sensor3;
...
ReactiveOutput int leftMotor; //PWM
ReactiveOutput int rightMotor; //PWM

main
int main(void){

while(1){
abort

PAR(Decoder,MotorDriver);
if (error1) set LED 1;
if (error2) set LED 2;
else set both LED;
EOT;

when(reset==1);
} }

Roop (University of Auckland) PRET 25 / 61

Example: Line Following Robot

Environment
ReactiveInput int reset;
ReactiveInput int sensor1,sensor2,sensor3;
...
ReactiveOutput int leftMotor; //PWM
ReactiveOutput int rightMotor; //PWM

main
int main(void){

while(1){
abort

PAR(Decoder,MotorDriver);
if (error1) set LED 1;
if (error2) set LED 2;
else set both LED;
EOT;

when(reset==1);
} }
Roop (University of Auckland) PRET 25 / 61

Example: Line Following Robot

thread Decoder(void) {
//initialize variables;
EOT;
while(1) {

process sensor data;
store previous motor instructions;
/*set motor control
according to sensor data*/
if (sensor==some value) {

/*set goLeft,goRight
according to the LUT*/

}
EOT;
if(robot is turning){

stuckCounter++;
}
else{reset stuckCounter;}
if(stuckCounter over threshold){

set error 2; stop robot;
}
if(error > 0){break;}
else{EOT;}

} }

Sensor Motor Error
Left Middle Right Left Right One
0 0 0 0 0 0
1 0 0 0 2 0
0 1 0 1 1 0
1 1 0 0 1 0
0 0 1 2 0 0
1 0 1 0 0 1
0 1 1 1 0 0
1 1 1 0 0 0

Table: Look-up table for tracking

Roop (University of Auckland) PRET 26 / 61

Example: Line Following Robot

thread Decoder(void) {
//initialize variables;
EOT;
while(1) {

process sensor data;
store previous motor instructions;
/*set motor control
according to sensor data*/
if (sensor==some value) {

/*set goLeft,goRight
according to the LUT*/

}
EOT;
if(robot is turning){

stuckCounter++;
}
}else{reset stuckCounter;}
if(stuckCounter over threshold){

set error 2; stop robot;
}
if(error > 0){break;}
else{EOT;}

} }

thread MotorDriver(void){
int PWMCounter = 0;
EOT;
while(1){

if(error > 0){
stop robot; break;

}else{
if(PWMCounter < goLeft){

leftMotor = 1; //left high
}else{

leftMotor = 0; //left low
}
if(PWMCounter < goRight){

rightMotor = 1; //right high
}else{

rightMotor = 0; //right low
}
PWMCounter++;
if(PWMCounter == maxSpeed){

PWMCounter = 0;
}
EOT;

} } }

Roop (University of Auckland) PRET 27 / 61

Comparison with Esterel

Esterel
[

emit A(0);
pause;
emit A(?B+1)

||
emit B(?A);
pause;
emit B(7)

]

PRET-C
PAR(T1, T2);
...
void T1()

A=0;
EOT;
A=B+1;

void T2()
B=A;
EOT;
B=7;

I/O

Esterel A 0 8
B 0 7

PRET-C A 0 1
B 0 7

Roop (University of Auckland) PRET 28 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 29 / 61

Hardware support

ARPRET

ARPRET platform

Microblaze Predictable Functional Unit (PFU)
(Hardware Support)

FSL connecion

FSL connecion

Hardware extension (PFU) to the Microblaze (GPP) in order to achieve
better throughput while simplifying WCRT analysis. The FastSimplex Link
(FSL) provides a predictable communication.

Roop (University of Auckland) PRET 30 / 61

Hardware support

Predictable Functional Unit (PFU)

Controller Logic
Control and data
from MB

Control and data
to MB

W
C

R
T Tim

er

Scheduler

Thread Table

PC (32bits)

TDA (1bits)

TLT(1bit)

TSP (1bits)

× N

PID (log
2
(N)bits)

ALC (log
2
(M)bits)

SC (32bits)

Abort Table

Valid (1bit)

WS(1bit)
× M

PA (32bits)

AL (log
2
(M)bits)

PV (X bits)

TID (log
2
(N)bits)

PVI (log
2
(X)bits)

Thread Table stores:
priority, local tick.
alive, suspension.
spawn count.
parent ID.

Abort Table stores:
type of preemption
(Weak/Strong)
nesting of preemptions.
monitoring signal.
preemption address.

Roop (University of Auckland) PRET 31 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 32 / 61

Design Flow: PRET-C to WCRT

Stages

1 PRET-C to Assembly:
standard gcc based compilers
can be used.

2 Assembly to TCCFG : our
code analyser.

3 TCCFG to Model Checker :
our FSM generator (XML).

4 CTL temporal logic property
checking: bounded integer
checking.

Overview

PRET-C

Assembly
(Microblaze)

TCCFG

Architecture
Specifications

Model for
Model Checker

(UPPAAL)

WCRT value

Execution
(Microblaze)

mb-gcc

TCCFG gen

FSM gen

Verifying CTL properties

Roop (University of Auckland) PRET 33 / 61

Mapping PRET-C to TCCFG

PRET-C
thread Decoder() {
......

EOT;
if(error>0){

...
}

......
}

TCCFG

error>0
(3)

(4)

(+3)

(7)

Execution
cost 3

Assembly

lwi r3,r0,error
ble r3,$L50
##...
....
$L50:
##...

Roop (University of Auckland) PRET 34 / 61

Timed Concurrent Control Flow Graph

TCCFG

Start/End

Action node

Conditional

EOT

Fork

Join

yes

yes

yes

no

no

no

error == 1

error == 2

Legend

maxSpeed = 2;

goLeft = 0;

goRight = 0;

goLeft = 0;

goRight = 2;

goLeft = 1;

goRight = 1;

errorLED1 = 1;

errorLED2 = 1;

errorLED1 = 1;

errorLED2 = 1;

PWMCounter = 0;

preGoLeft = 0;

preGoRight = 0;

stuckCoutner = 0;

5

2

25

13

10

5

5

8

5

8

5

8

5

10

20

5

6

5

6

8

x Execution Cost

S

S

S/W

S/W

Abort Start

Abort End

10

5

reset==1

20

17

10

+3

+3

+3

+3

+3

+3

Intermediate format captures:

concurrent control flow.
preemption using
checkaborts.
execution cost of every node.

Roop (University of Auckland) PRET 35 / 61

Overview of the solution

Stages
1 PRET-C: simple synchronous extension to C (using macros).

2 TCCFG : intermediate format.
3 TFSM : FSM denoted with execution costs.
4 Model Checking : calculates the WCRT based on a set of TFSMs and

a safety property.

Code
void main() {

while(1) {
abort

PAR(sampler,display);
when pre (reset);
EOT;

}
}Roop (University of Auckland) PRET 36 / 61

Overview of the solution

Stages
1 PRET-C: simple synchronous extension to C (using macros).
2 TCCFG : intermediate format.

3 TFSM : FSM denoted with execution costs.
4 Model Checking : calculates the WCRT based on a set of TFSMs and

a safety property.

Code
void main() {

while(1) {
abort

PAR(sampler,display);
when pre (reset);
EOT;

}
}

TCCFG

i=0
sample=0.0

out=0.0
i=0

sample=
readSensor() cnt==0

Jump

out=
buffer[i]

(0)
(15)

(6) (6)

(16)

(6)
(2)

(16+5)

(5)

(6)

Roop (University of Auckland) PRET 36 / 61

Overview of the solution

Stages
1 PRET-C: simple synchronous extension to C (using macros).
2 TCCFG : intermediate format.
3 TFSM : FSM denoted with execution costs.

4 Model Checking : calculates the WCRT based on a set of TFSMs and
a safety property.

Code
void main() {

while(1) {
abort

PAR(sampler,display);
when pre (reset);
EOT;

}
}

TCCFG

i=0
sample=0.0

out=0.0
i=0

sample=
readSensor() cnt==0

Jump

out=
buffer[i]

(0)
(15)

(6) (6)

(16)

(6)
(2)

(16+5)

(5)

(6)

TFSM

14

32
EOT2

EOT3

EOT4

13

20

7

EOT0

EOT1 19

15

Roop (University of Auckland) PRET 36 / 61

Overview of the solution

Stages
1 PRET-C: simple synchronous extension to C (using macros).
2 TCCFG : intermediate format.
3 TFSM : FSM denoted with execution costs.
4 Model Checking : calculates the WCRT based on a set of TFSMs and

a safety property.

Code
void main() {

while(1) {
abort

PAR(sampler,display);
when pre (reset);
EOT;

}
}

TCCFG

i=0
sample=0.0

out=0.0
i=0

sample=
readSensor() cnt==0

Jump

out=
buffer[i]

(0)
(15)

(6) (6)

(16)

(6)
(2)

(16+5)

(5)

(6)

TFSM

14

32
EOT2

EOT3

EOT4

13

20

7

EOT0

EOT1 19

15

Model Checker
(UPPAAL)

b23

EOT1

b12

EOT2

EOT3

b22

b31 b13

! gtick! gtick

! gtick ! gtick

gtick

x=x31

gtick

! gtick

x=x32

x=x37

lt1= false
gtick

lt1=true

lt1= false

x=x36

gtick
lt1= false

lt1= false

lt1=true

lt1=truex=x36

lt1=true

gtick
lt1= false

lt1=true

Roop (University of Auckland) PRET 36 / 61

Overview of the solution

Stages
1 PRET-C: simple synchronous extension to C (using macros).
2 TCCFG : intermediate format.
3 TFSM : FSM denoted with execution costs.
4 Model Checking : calculates the WCRT based on a set of TFSMs and

a safety property.

Code
void main() {

while(1) {
abort

PAR(sampler,display);
when pre (reset);
EOT;

}
}

TCCFG

i=0
sample=0.0

out=0.0
i=0

sample=
readSensor() cnt==0

Jump

out=
buffer[i]

(0)
(15)

(6) (6)

(16)

(6)
(2)

(16+5)

(5)

(6)

TFSM

14

32
EOT2

EOT3

EOT4

13

20

7

EOT0

EOT1 19

15

Model Checker
(UPPAAL)

b23

EOT1

b12

EOT2

EOT3

b22

b31 b13

! gtick! gtick

! gtick ! gtick

gtick

x=x31

gtick

! gtick

x=x32

x=x37

lt1= false
gtick

lt1=true

lt1= false

x=x36

gtick
lt1= false

lt1= false

lt1=true

lt1=truex=x36

lt1=true

gtick
lt1= false

lt1=true

Final Output
WCRT analysis of the
Reactive function.

Roop (University of Auckland) PRET 36 / 61

Problem and motivation

main
loop each tick{

ReadInptuts();
ReactiveFunction();
EmitOutputs();

}

Time Computation
time

Tick 0

EOTEOTEOTEOT

Emit
outputs

Read
Inputs

Tick 1
Emit

outputs
Read
Inputs

Tick 2
Emit

outputs
Read
Inputs

Tick 3
Emit

outputs
Read
Inputs

EOTEOT EOTEOT

Tick 3
Emit

outputs

EOTEOT

Computation
time

Computation
time

Computation
time

Computation
time

How to determine the "tight/optimal" worst case tick length of the
Reactive Function?

Roop (University of Auckland) PRET 37 / 61

Related Work
Current approaches

MaxPlus [Boldt et al., SLA++P’07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.
WCRT algebra [Mendler et al., DATE’09]: max-plus algebra with
support for infeasible path pruning.
Timed KS [Logothetis et al., RTSS’03]: Synchronous program
compiled into a timed Kripke structure.
ILP formulation [Ju et al., CODES+ISSS’08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation
Most approaches ignore state-dependencies while determining infeasible
paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

Roop (University of Auckland) PRET 38 / 61

Related Work
Current approaches

MaxPlus [Boldt et al., SLA++P’07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.

WCRT algebra [Mendler et al., DATE’09]: max-plus algebra with
support for infeasible path pruning.
Timed KS [Logothetis et al., RTSS’03]: Synchronous program
compiled into a timed Kripke structure.
ILP formulation [Ju et al., CODES+ISSS’08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation
Most approaches ignore state-dependencies while determining infeasible
paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

Roop (University of Auckland) PRET 38 / 61

Related Work
Current approaches

MaxPlus [Boldt et al., SLA++P’07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.
WCRT algebra [Mendler et al., DATE’09]: max-plus algebra with
support for infeasible path pruning.

Timed KS [Logothetis et al., RTSS’03]: Synchronous program
compiled into a timed Kripke structure.
ILP formulation [Ju et al., CODES+ISSS’08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation
Most approaches ignore state-dependencies while determining infeasible
paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

Roop (University of Auckland) PRET 38 / 61

Related Work
Current approaches

MaxPlus [Boldt et al., SLA++P’07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.
WCRT algebra [Mendler et al., DATE’09]: max-plus algebra with
support for infeasible path pruning.
Timed KS [Logothetis et al., RTSS’03]: Synchronous program
compiled into a timed Kripke structure.

ILP formulation [Ju et al., CODES+ISSS’08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation
Most approaches ignore state-dependencies while determining infeasible
paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

Roop (University of Auckland) PRET 38 / 61

Related Work
Current approaches

MaxPlus [Boldt et al., SLA++P’07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.
WCRT algebra [Mendler et al., DATE’09]: max-plus algebra with
support for infeasible path pruning.
Timed KS [Logothetis et al., RTSS’03]: Synchronous program
compiled into a timed Kripke structure.
ILP formulation [Ju et al., CODES+ISSS’08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation
Most approaches ignore state-dependencies while determining infeasible
paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

Roop (University of Auckland) PRET 38 / 61

Related Work
Current approaches

MaxPlus [Boldt et al., SLA++P’07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.
WCRT algebra [Mendler et al., DATE’09]: max-plus algebra with
support for infeasible path pruning.
Timed KS [Logothetis et al., RTSS’03]: Synchronous program
compiled into a timed Kripke structure.
ILP formulation [Ju et al., CODES+ISSS’08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation
Most approaches ignore state-dependencies while determining infeasible
paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

Roop (University of Auckland) PRET 38 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

What is the WCRT
of this program?

Time

Roop (University of Auckland) PRET 39 / 61

Example 1: Two simple threads

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

WCRT
=max(T1)+max(T2)
= 13 + 15
= 28

Time

Roop (University of Auckland) PRET 39 / 61

Motivation for the proposed approach

How?
Tight analysis depends on:
a) Data/Control dependency.
b) Tick/State alignment across threads.

Roop (University of Auckland) PRET 40 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A A

!A A

A can be
True or False

a) By considering Data/Control dependencies.

Roop (University of Auckland) PRET 41 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A A

!A A

When True :
WCRT = 13+8 = 21

a) By considering Data/Control dependencies.

Roop (University of Auckland) PRET 41 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A A

!A A

When True :
WCRT = 13+8 = 21

When False:
WCRT = 10+15
=25

a) By considering Data/Control dependencies.

Roop (University of Auckland) PRET 41 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A A

!A A

When True :
WCRT = 13+8 = 21

When False:
WCRT = 10+15
=25

WCRT = max(21,25)
=25

a) By considering Data/Control dependencies.

Roop (University of Auckland) PRET 41 / 61

Our Solution

Tighter
Tighter analysis by taking state and data dependencies into account. We
can also keep track of our variables in every tick for further infeasible path
pruning.

Model Checking
Synchronous C programs may be represented as a set of concurrent FSMs
with transition guards that represent the execution cost. This can be
exploited by a model checker to determine the reachable state-space and
the maximum tick length.

Roop (University of Auckland) PRET 42 / 61

Our Solution

Tighter
Tighter analysis by taking state and data dependencies into account. We
can also keep track of our variables in every tick for further infeasible path
pruning.

Model Checking
Synchronous C programs may be represented as a set of concurrent FSMs
with transition guards that represent the execution cost. This can be
exploited by a model checker to determine the reachable state-space and
the maximum tick length.

Roop (University of Auckland) PRET 42 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

b) By considering only Tick/State alignment.

Roop (University of Auckland) PRET 43 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Tick 0: 13+7 = 20

b) By considering only Tick/State alignment.

Roop (University of Auckland) PRET 43 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Tick 0: 13+7 = 20

Tick 1: 6+15 = 21

b) By considering only Tick/State alignment.

Roop (University of Auckland) PRET 43 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

Tick 0: 13+7 = 20

Tick 1: 6+15 = 21

WCRT = max(20,21)
=21

b) By considering only Tick/State alignment.

Roop (University of Auckland) PRET 43 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A

!A

A

A

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
Roop (University of Auckland) PRET 44 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A

!A

A

A

A is true during this scope.

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
Roop (University of Auckland) PRET 44 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A

!A

A

A

A is true during this scope.

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
Roop (University of Auckland) PRET 44 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A

!A

A

A

A is true during this scope.

Tick 0: 13+7 = 20

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
Roop (University of Auckland) PRET 44 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A

!A

A

A

A is true during this scope.

Tick 0: 13+7 = 20

Tick 1: 6+8 = 14

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
Roop (University of Auckland) PRET 44 / 61

Motivation for the proposed approach

(3)

(10)(7)

(6)

(3)

(12)

(7)

(3)

(5)

!A

!A

A

A

A is true during this scope.

Tick 0: 13+7 = 20

Tick 1: 6+8 = 14

WCRT = max(20,14)
=20

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
Roop (University of Auckland) PRET 44 / 61

Comparison

Methods

MaxPlus: 28
MaxPlus + Data/Control : 25
MaxPlus + Tick alignment: 21
MaxPlus + Data/Control + Tick alignment: 21
Data/Control + Tick alignment + Track Variable: 20

Roop (University of Auckland) PRET 45 / 61

Comparison

Methods
MaxPlus: 28

MaxPlus + Data/Control : 25
MaxPlus + Tick alignment: 21
MaxPlus + Data/Control + Tick alignment: 21
Data/Control + Tick alignment + Track Variable: 20

Roop (University of Auckland) PRET 45 / 61

Comparison

Methods
MaxPlus: 28
MaxPlus + Data/Control : 25

MaxPlus + Tick alignment: 21
MaxPlus + Data/Control + Tick alignment: 21
Data/Control + Tick alignment + Track Variable: 20

Roop (University of Auckland) PRET 45 / 61

Comparison

Methods
MaxPlus: 28
MaxPlus + Data/Control : 25
MaxPlus + Tick alignment: 21

MaxPlus + Data/Control + Tick alignment: 21
Data/Control + Tick alignment + Track Variable: 20

Roop (University of Auckland) PRET 45 / 61

Comparison

Methods
MaxPlus: 28
MaxPlus + Data/Control : 25
MaxPlus + Tick alignment: 21
MaxPlus + Data/Control + Tick alignment: 21

Data/Control + Tick alignment + Track Variable: 20

Roop (University of Auckland) PRET 45 / 61

Comparison

Methods
MaxPlus: 28
MaxPlus + Data/Control : 25
MaxPlus + Tick alignment: 21
MaxPlus + Data/Control + Tick alignment: 21
Data/Control + Tick alignment + Track Variable: 20

Roop (University of Auckland) PRET 45 / 61

Finding the WCRT

Model checking formulation
We generate an input format of the model checker UPPAAL called
timed automata (TA). Our timed automaton do not use any clocks
and instead have only bounded integers.
We compose all TAs in parallel and introduce a barrier TA to emulate
the synchronous composition.
We then evaluate a set of queries of the form AG (gtick ⇒ x ≤ val).
We perform binary search in the interval [WCRTmin,WCRTmax] by
successively trying different val until the tight value is found.

Roop (University of Auckland) PRET 46 / 61

Layout

1 Introduction
Synchronous Approach at Auckland
Problems and motivations

2 Related Work
The Berkeley-Columbia Approach
Reactive Processors

3 The Auckland Approach
PRET-C based predictable programming
The Auckland PRET Architecture
From logical to physical time
Results

Roop (University of Auckland) PRET 47 / 61

Benchmarking

PRET-C execution:
Hardware support (ARPRET).
We have also developed a software model
(CEC-like linked-list based scheduler).

We have compared with other light-weight C extensions such as:
SyncCharts in C.
Protothreads.
Esterel.

Roop (University of Auckland) PRET 48 / 61

Benchmarking

PRET-C execution:
Hardware support (ARPRET).
We have also developed a software model
(CEC-like linked-list based scheduler).

We have compared with other light-weight C extensions such as:
SyncCharts in C.
Protothreads.
Esterel.

Roop (University of Auckland) PRET 48 / 61

Benchmarking

Hardware vs Software
Hardware Software Gain%

Example A W U A W A W
ABRO 29 58 64 36 94 19.45 38.29

Channel Protocol 57 88 90 91 122 37.36 27.86
Reactor Control 64 82 86 98 114 34.69 28.07

Producer Consumer 42 50 53 43 62 2.32 19.35
Smokers 224 409 413 328 412 31.70 0.73

Robot Sonar 73 92 96 130 175 43.85 47.43
Average 28.23 26.96

On average, the throughput on the hardware is about 26% greater
than the software implementation.

Roop (University of Auckland) PRET 49 / 61

Benchmarking

Quantitative Comparison
PRET-C SC PT Esterel AC Gain% WC Gain%

Example A W A W A W A W SC PT ES SC PT ES
ABRO 36 94 261 493 53 138 78 109 86 32 62 80 31 13

Channel Protocol 91 122 684 757 139 162 232 313 86 34 75 83 24 61
Reactor Control 98 114 444 520 93 106 112 144 77 -5 42 78 -7 20

Producer Consumer 43 62 355 422 74 86 408 417 87 41 89 85 27 85
Smokers 328 412 589 671 268 520 552 1063 44 -22 59 38 20 61

Robot Sonar 130 175 720 770 194 236 408 417 81 32 82 77 25 58
Average 77 18 68 74 20 50

Quantitative Comparison of the PRET-C software approach with
SyncCharts in C (SC), Protothreads and Esterel.

Memory usage of PRET-C is better than (2.5%)Prothreads and (26%)
Esterel, while slightly worse (3.7%) than SC.

Roop (University of Auckland) PRET 50 / 61

Execution Time
Example WCRT WCRT Gain

(Model Checker) (Actual Execution) %
ABRO 89 87 97.75
Channel Protocol 152 149 98.03
Reactor Control 118 114 96.61
Producer-Consumer 92 88 95.65
Smokers 449 430 95.77
Robot Sonar 365 339 97.40
Average 96.87

On an average, the actual value is approximately 96% of the value
obtained from UPPAAL.

Roop (University of Auckland) PRET 51 / 61

NUS approach for timing analysis of Esterel
[Suhendra et al., DAC’06]

Contributions
Timing analysis over Esterel language.
Information from intermediate representations of the compiler (CEC)
are used to analyse data flow.
Explicit Tick Transition Automaton is extracted to capture tick
alignment between synchronous threads.
Models Caches, Pipelines and other architectural features for tighter
analysis.
Timing analysis over multi-core platforms.
Formulation is based on Integer linear Programming (ILP).
Currently can only handle simple data flow analysis (SDFA) for
pruning infeasible paths.

Roop (University of Auckland) PRET 52 / 61

Comparison with NUS approach. [Andalam et al., DATE’11]

NUS framework

Timing analysis of Esterel.
ILP based solution.

UoA framework

PRET-C
program

Control Flow
Analysis

Micro-architectural
modeling

WCET analyzer

TCCFG Translator

Model Checker

UPPAAL
model

WCRT
result

Timing analysis of PRET-C.
MC based solution.

Roop (University of Auckland) PRET 53 / 61

Comparison with NUS approach. [Andalam et al., DATE’11]

code snippet

analysed by NUS
x=3; if(x){..} //simple conflicting pair

not analysed by NUS
x=3; z=3; if(z){..} // not a pair
x=3; z=3; if(x<=z){..} // RHS is not a constant
x=3; EOT; if(x){..} //data across ticks

NUS approach can only handle conflicting pairs. Were simple set and
test pairs are analysed. [NUS’DAC06]
While testing RHS of the expression has to be a constant.
Cannot analyse data flow across ticks..
Always, user guided loop bounds.

Roop (University of Auckland) PRET 54 / 61

Comparison with NUS approach. [Andalam et al.,
DATE’11]

NUS’s ILP approach can handle simple data flow analysis.
Our MC approach can handle more expressive data flow analysis.

Type Infeasible paths NUS UoA
(1) Set and Test Yes Yes
(2) Encoding tick transition Yes Yes
(3) Loops with fixed bounds Yes Yes
(4) Set and Test No Yes

with expressive data-flow analysis
(5) Encoding tick transition No Yes

with expressive data-flow analysis
(6) Loops bounds requiring No Yes

expressive data-flow analysis

Roop (University of Auckland) PRET 55 / 61

NUS vs UoA

Results
Example LOC Observed (MAX+) (NUS) (UoA) NUS/

WCRT Est est. est. UoA
WCRT WCRT WCRT

(1)(2)(3) (1)to(6)
Synchronizer 455 238 608 422 268 1.57
ProducerConsumer 567 259 808 523 294 1.78
Smokers 648 437 1309 903 521 1.73
Channel Protocol 727 644 1426 897 685 1.31
Robot Sonar 1081 764 2028 1688 858 1.97
Synthetic1 1569 898 3593 2127 1022 2.08
Synthetic2 1630 786 3617 1752 942 1.86
Average 1.67

MicroBlaze is the target platform.
Entire program fits on on-chip memory.

Roop (University of Auckland) PRET 56 / 61

NUS vs UoA

Over Estimation

Synchronizer
Robot Sonar

Smokers
ProducerConsumer

ChannelProtocol
Synthetic1

Synthetic2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

UoA using MC
NUS using ILP

W
C

R
T

 O
ve

r
E

st
im

at
io

n
ra

tio

On an average, the NUS approach overestimates by 89% while UoA
approach only overestimates by about 13%.

Roop (University of Auckland) PRET 57 / 61

Context Sensitive Pruning

Tighness

No Context ¼ Context 2/4 Context 3/4 Context 4/4 Context
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Synchronizer
ProducerConsumer
Smokers
ChannelProtocol
Robot Sonar
Synthetic1
Synthetic2

O
ve

r
e

st
im

a
tio

n

Increase in context information prunes infeasible paths. Thus reducing
the WCRT overestimation.

Roop (University of Auckland) PRET 58 / 61

Context Sensitive Pruning

States Explored

No Context ¼ Context 2/4 Context 3/4 Context 4/4 Context
0

0.2

0.4

0.6

0.8

1

1.2
Synchronizer
ProducerConsumer
Smokers
ChannelProtocol
Robot Sonar
Synthetic1
Synthetic2

R
a

tio
 o

f S
ta

te
s

E
xp

lo
re

d

Increase in Context information also reduces the number of states
explored. This reduces the time to analyse the model.

Roop (University of Auckland) PRET 59 / 61

Conclusions

Contributions
New synchronous language for predictable programming.
Thread-safe shared memory access via simple semantics.
Predictable preemption support.
Hardware accelerator to improve the worst case behaviour.
Mapping of logical time to physical time through static analysis.
Side effect: PRET-C excels both in the worst case and average case
execution over other light-weight threading libraries.

Future work
To explore the trade-offs of scratchpads versus caches.
Support for parallel execution of PRET-C via new semantics.
Exploring the link between our research and the Berkeley-Columbia
research.

Roop (University of Auckland) PRET 60 / 61

	Introduction
	Synchronous Approach at Auckland
	Problems and motivations

	Related Work
	The Berkeley-Columbia Approach
	Reactive Processors

	The Auckland Approach
	PRET-C based predictable programming
	The Auckland PRET Architecture
	From logical to physical time
	Results

