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Research

@ Model checking: SoC bus protocols, web services composition,
synchronous observers, real-time systems.

@ Synchronous languages: Reactive and precision timed architectures,
compilation, distribution, timing analysis.

@ Industrial Informatics: PLC control, industrial buses, industrial PCs,
standards and semantics, compilation, applications.
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@ A year-4 course on
embedded system
design.

@ We teach both the
RTOS approach and
the synchronous

approach.
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@ Introduction

@ Problems and motivations
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Space Exploration

Roop (University of Auckland)

Time Critical Robotics

@ Can we build reliable
robots?

@ Avoid priority inversion.

@ Ensure deterministic
behavior.

7/ 61



Automotive Industry

Toyota

o Feb 2010: Global recall of more than
400,000 of the auto-maker’'s 2010 hybrid
models, for problems in their anti-lock
braking systems.

@ Overall, more than 8 million Toyota cars

have been recalled globally due to
accelerator problems.

http://edition.cnn.com/2010/BUSINESS/02/09/
japan.prius.recall /index.html J
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Real-Time System Design

Current design approaches of Time Critical Systems
@ Rely on the well known theory of real-time scheduling.
@ A set of tasks with timing parameters, which execute on RTOS.
o WCET derived through static analysis.

@ Major issue with WCET analysis: “modern processors render WCET
virtually unknowable; even simple problems demand heroic efforts”
[Edwards and Lee, DAC 2007].
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Motivation
Can we rethink the link between computation and timing so that we can:

@ Design Precision Timed Architectures (PRET) [Edwards and Lee,
DAC 2007], where processors elicit time as a property of computation.

@ The goals of PRET would be to simplify static timing analysis.
@ To achieve predictability without sacrificing throughput.
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Multiple Active Context System (MACS)

B. Cogswell and Z. Segall. MACS: A predictable architecture for real time
systems. In Real-Time Systems Symposium. IEEE CS Press, 1991.

@ The use of a shared pipelined processor as a possible solution to the
problem of predictability and high performance in real time systems.

@ Task-level parallelism is used to maintain high processor throughput
while individual threads execute at a relatively slow, but very
predictable rate.

Fetch Decode Execute

[ S B

2 o™ N
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© Related Work
@ The Berkeley-Columbia Approach
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The PRET Machine Design

@ PRET machine designed based on the SPARC's ISA.

@ Uses multiple active contexts and latency hiding similar to the MACS
architecture.

@ Memory hierarchy is replaced by statically allocated scratch-pad
memories.

THREAD REGISTER FILE i
CONTROLLER -
[ I
| thread0

INST_SPMS thread1

thread2

MAIN
MEMORY

PRET
PROCESSOR

shared address
space

Memory Mapped
Input/Output WHEEL
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The PRET Programming Model

e Concurrent C programs with shared memory communication.
@ Precise timing of threads using the deadi (deadline) instruction.

@ Thread-safe programming by time interleaving the shared memory

access.
Producer Consumer Observer
int main() { int main() { int main() {
DEAD (28) ; DEAD (41) ; DEAD (41) ;
volatile unsigned int * buf = volatile unsigned int * buf = volatile unsigned int * buf =
(unsigned int*) (0x3F800200) ; (unsigned int*) (0x3F800200) ; (unsigned int*) (0x3F800200) ;
unsigned int i = 0; unsigned int i = 0; volatile unsigned int * fd =
for (i = 0; ; i++ ) { int arr[8]; (unsigned int*) (0x80000600) ;
DEAD (26) ; for (i =0; i<8; i++) unsigned int i = 0;
*buf = i; arr[i] = 0; for (i = 0; ; i++ ) |
} for (i = 0; ; i++) { DEAD (26) ;
return 0; DEAD (26) ; *fd = *buf;
} register int tmp = *buf; }
arr[i%8] = tmp; return 0;
} }
return 0;
}
Producer
54 80 106 >
Consumer 41 67 93 119 Time
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© Related Work

@ Reactive Processors
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Reactive Processors

@ Alternative platforms for reactive embedded systems.
@ Use ISA support for environment interaction instead of interrupts.

@ Have been used for direct execution of Esterel
[www.ece.auckland.ac.nz/ proo003/ReactiveProcessors.php].

Features Reactive Processors Conventional Processors

Execution Evolves in discrete instants separated by |Evolves continuously

progression “tick delimiting instructions”

Preemption Accomplished through event reaction Accomplished through interrupt mechanism
block with implicit priority resolution and |requiring explicit priority resolution, context
context switching in hardware saving and restoration in software

Concurrency Synchronous parallel execution and Asynchronous execution requiring explicit
broadcast communication between message passing/rendezvous for
threads communication between threads

View of the Changes at discrete instants. Inputs are | Changes continuously

environment latched at the beginning and outputs are | Inputs can be read at any time, and outputs can
sustained till the end of a “tick™. be sustained for any duration.

v
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Example: The ReMIC Processor
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Example: The ReMIC Processor

WR
DIN(16)
CLK —
CLK External RAM
Clock & Reset N . DOUT (16) Interface
inputs { RST_L Control Unit >
L ADDR(16)
A PM_SEL
PDIN (32
Data Path () External ROM
P Interface
Y PADR (16)
CLK —bf >
RST_L —| o
SIP(16) | Reactive Functional SIR(16)
Reactive Signal Unit Memory Mapped 10
Input & Outputs SOP (16) . SOR (16) Interface
ReMiCORE
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Motivation for our approach
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Motivation for our approach

@ Berkeley-Columbia approach is based on tailored processors that is
resource intensive.
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Motivation for our approach

@ Berkeley-Columbia approach is based on tailored processors that is
resource intensive.

@ This approach also mixes physical and logical time and is not portable.
@ Hard to derive the values of deadlines for thread-interleaved access.

@ Reactive processors, while being predictable, can only execute pure
Esterel.
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Philosophy
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Philosophy

@ Notion of concurrency: concurrency is logical but execution is
sequential very similar to synchronous languages [Benveniste'03].
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Philosophy

@ Notion of concurrency: concurrency is logical but execution is
sequential very similar to synchronous languages [Benveniste'03].

@ Notion of time: time is logical and the mapping of logical to physical
time is done using static analysis of code.

@ Design approach: Auckland Reactive PRET (ARPRET) architectures
are designed by simple customization of soft-core processors.
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© The Auckland Approach
@ PRET-C based predictable programming
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Motivation for PRET-C

Precision Timed C (PRET-C)

Simple set of synchronous extensions to C for:
o light-weight multithreading in C.
@ all extensions implemented as C macros.
@ provides thread-safe shared memory access.

@ supports predictable programming by mapping logical time to physical
time through static analysis.
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Synchronous extensions to C

Statement Meaning

ReactiveInput I declares I as a reactive input coming from the
environment

ReactiveOutput O declares 0 as a reactive output emitted to the
environment

PAR(T1,...,Tn) synchronously executes in parallel the n
threads Ti, with higher priority of Ti over
Ti+l

EOT marks the end of a tick (local or global de-
pending on its position)

[weak] abort P when | immediately kills P when C is true in the pre-

pre C vious instant

Table: PRET-C extensions to C.
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Example: Line Following Robot

Application

Description
@ Robot has to follow the
line.
o Data from 3 sensors as
an input from the
environment.

e Two PWM outputs
controlling two motors.

Q
I .
)
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Example: Line Following Robot

Description

@ Three reactive inputs
(sensors) from the
environment.

Overview

@ Two reactive outputs
(PWM) controlling the
motors.

3
e Two threads (Decoder,

Motor Driver) execute
concurrently.

Motor
Driver

@ Speed information is
shared between threads.
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Example: Line Following Robot

Environment
ReactiveInput int reset;

Reactivelnput int sensorl,sensor2,sensor3;

ReactiveOutput int leftMotor; //PWM
Reactivelutput int rightMotor; //PWM

Roop (University of Auckland) PRET 25 / 61



Example: Line Following Robot

Environment
int reset;

int sensorl,sensor2,sensor3;

int leftMotor; //PWM
int rightMotor; //PWM

main
int main(void){
while(1){

(Decoder ,MotorDriver) ;
if (errorl) set LED 1;
if (error2) set LED 2;
else set both LED;
EOT;
(reset==1);

T}
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Example: Line Following Robot

thread Decoder(void) {

//initialize variables;
EQT;
while(1) {
process sensor data;
store previous motor instructions
/*set motor control
if (sensor==some value) { 0 0 0 0 0 0
/*set goleft,goRight 1 0 0 0 2 0
according to the LUT*/ © z © g 1 ©
} 1 1 0 0 1 0
0 0 1 2 0 0
EOT; 1 0 1 0 0 1
if (robot is turning){ 0 1 1 1 0 0
stuckCounter++; g g g g g g
} , .
elselreset stuckCounter;} Table: Look-up table for tracking
if (stuckCounter over threshold){ o
set error 2; stop robot;
}
if (error > 0){break;}
else{EQT;}
Fr
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Example: Line Following Robot

Decoder (void) {
//initialize variables;

while(1) {
process sensor data;
store previous motor instructionms;
/*set motor control
according to sensor datax/
if (sensor==some value) {
/*set goleft,goRight

according to the LUT*/

}

if (robot is turning){
stuckCounter++;

}

}Yelse{reset stuckCounter;}

if (stuckCounter over threshold){
set error 2; stop robot;

}
if (error > 0){break;}
else{EQT;}
}}
Roop (University of Auckland) PRET

MotorDriver (void){
int PWMCounter = O0;

while(1){
if (error > 0){
stop robot; break;
Yelsed{
if (PWMCounter < goLeft){
leftMotor = 1; //left high
Yelse{
leftMotor

0; //left low

¥

if (PWMCounter < goRight){
rightMotor = 1; //right high

Yelse{
rightMotor = 0; //right low

¥

PWMCounter++;

if (PWMCounter == maxSpeed){
PWMCounter = 0;

27 / 61



Comparison with Esterel

PRET-C

PAR(T1, T2);

Esterel o
[ void T1()

emit A(0); A=0;

pause; EQT; |/O

emit A(?B+1) A=B+1; Esterel A0 8
|l B0 7

emit B(?7A); PRET-C | A |0 1

pause; void T2() B|0O 7

emit B(7) B=A; ’
] EQT;

B=7;
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© The Auckland Approach

@ The Auckland PRET Architecture
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Hardware support

FSL connecion
Microblaze Predictable Functional Unit (PFU)
(Hardware Support)
FSL connecion
ARPRET platform

v

Hardware extension (PFU) to the Microblaze (GPP) in order to achieve
better throughput while simplifying WCRT analysis. The FastSimplex Link
(FSL) provides a predictable communication.

Roop (University of Auckland) PRET 30 / 61



Hardware support

Thread Table stores:

@ priority, local tick.

Predictable Functional Unit (PFU)

@ alive, suspension.

PVI (log,(X)bits)

@ spawn count.

@ parent ID
s '

JawrL LD
aompayds

Abort Table stores:

Thread Table
f

] @ type of preemption
F (Weak/Strong)

@ nesting of preemptions.

|Control and data
from MB

Controller Logic

@ monitoring signal.

@ preemption address.
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© The Auckland Approach

@ From logical to physical time
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Design Flow: PRET-C to WCRT

Stages Overview
@ PRET-C to Assembly: ¢
standard based compilers PRET-C
can be used. mb-gce ‘
@ Assembly to TCCFG : our Assembly p  Exccution
code analyser. (Microblaze) (Microblaze)
© TCCFG to Model Checker : TCCFG gen o4 fngitizgin
Specifications
our (XML). S
Q CTL t.emporal logic property FSM gen
CheCkmg: Model for
Model Checker
(UPPAAL)
* Verifying CTL properties
WCRT value
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Mapping PRET-C to TCCFG

PRET-C TCCFG
thread Decoder() {

EOT; (7)
if (error>0){

b

ot ~ Assembly

xecution

Foost (4)
lwi r3,r0,error
ble r3,$L50
#i. ..
o« e e . I 7777777777
$L50: *+3) |
.. ) V
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Timed Concurrent Control Flow Graph

TCCFG

Intermediate format captures:

@ concurrent control flow.

° using
checkaborts.

° of every node.
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Overview of the solution

Stages

© PRET-C: simple synchronous extension to C (using macros).

Code

void main() {
while(1) {
abort
PAR(sampler,display) ;
when pre (reset);
EQT;
}
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Overview of the solution

Stages

@ PRET-C: simple synchronous extension to C (using macros).
@ TCCFG : intermediate format.

Code
void main() { TCCEG
while(1) { 5
abort
PAR(samp [=i]e o[%]
when pre ( <>
EQT;
¥
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Overview of the solution

Stages
@ PRET-C: simple synchronous extension to C (using macros).
@ TCCFG : intermediate format.
© TFSM : FSM denoted with execution costs.

Code |

void main() {
while(1) { TCCFG TRsMm
abort o)
PAR(samp [=i]e
when pre (
EQT;

}
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Overview of the solution

Stages
@ PRET-C: simple synchronous extension to C (using macros).
@ TCCFG : intermediate format.
© TFSM : FSM denoted with execution costs.

@ Model Checking : calculates the WCRT based on a set of TFSMs and
a safety property.

Code |
vo;glrf:t?)o{{ TCCFG  TESM  Model Checker
. (UPPAAL)

PAR(samp [=i]e
when pre (
EQT;

}
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Overview of the solution

Stages
© PRET-C: simple synchronous extension to C (using macros).
@ TCCFG : intermediate format.
© TFSM : FSM denoted with execution costs.

@ Model Checking : calculates the WCRT based on a set of TFSMs and
a safety property.

Code |
VO:JEITZET)O{{ TCCFG  TESM Model Checker
R~ (UPPAAL)

PAR(samp [=i]e
when pre ( ol
EQT;

}

EOTO0
19 ron CB\
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Problem and motivation

main
loop each tick{
ReadInptuts();
ReactiveFunction();
EmitOutputs();

+
Tick 0 Tick1 _ Tick2 . Tick3 o< Tick3 -
| L[] LT T L[] L,
Thpanir | N oumpanin” foompumon| + common | ¥ Compuen . Time
EOT EOT EOT EOT EOT

How to determine the "tight/optimal" worst case tick length of the

Reactive Function?
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Related Work

Current approaches
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Related Work

Current approaches

e MaxPlus [Boldt et al., SLA++P'07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.
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Related Work

Current approaches

e MaxPlus [Boldt et al., SLA++P'07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.

o WCRT algebra [Mendler et al., DATE'09]: max-plus algebra with
support for infeasible path pruning.

e Timed KS [Logothetis et al., RTSS'03]: Synchronous program
compiled into a timed Kripke structure.

o ILP formulation [Ju et al., CODES+ISSS'08]: Esterel program
mapped to C using CEC and then the C code is analysed.
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Related Work

Current approaches

e MaxPlus [Boldt et al., SLA++P'07]: CKAG based intermediate
format of reactive processor KEP that is analysed. Close to 40%
overestimation.

o WCRT algebra [Mendler et al., DATE'09]: max-plus algebra with
support for infeasible path pruning.

e Timed KS [Logothetis et al., RTSS'03]: Synchronous program
compiled into a timed Kripke structure.

o ILP formulation [Ju et al., CODES+ISSS'08]: Esterel program
mapped to C using CEC and then the C code is analysed.

Limitation

Most approaches while determining infeasible

paths. A model checking based formulation may be used to compute the
reachable state-space and this reachability analysis automatically prunes
unreachable paths.

v
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Example 1: Two simple threads
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Example 1: Two simple threads

©)

U] 0} What is the WCRT

of this program?

(©)]

(12) ©)

=
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Example 1: Two simple threads

3 |
™

) (10) WCRT

=max(T1)+max(T2)
(©)) =13+ 15
=28
(12) (5)
(6)
L e
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Motivation for the proposed approach

How?

Tight analysis depends on:

a) Data/Control dependency.

b) Tick/State alignment across threads.

Roop (University of Auckland) PRET 40 / 61



Motivation for the proposed approach

3
) A can be
0] True or False

™ (10)

G)

(12) (5)

=

a) By considering Data/Control dependencies. J
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Motivation for the proposed approach

) When True :
0] WCRT = 1348 = 21

(7) (10)

@)

(12) ©)

- |

a) By considering Data/Control dependencies. ]

=
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Motivation for the proposed approach

IA < A When True :
a0 WCRT = 1348 = 21
(M (10)
I 6) When False:
A A | WCRT = 10+15
1) 6| =22
(6)
J
a) By considering Data/Control dependencies. ]
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Motivation for the proposed approach

IA o A When True :
0 WCRT = 1348 = 21
™ (10)
| ) When False:
A A | WCRT = 10+15
(1) o | =2
©)
WCRT = max(21,25)
=25
J
a) By considering Data/Control dependencies. J
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Our Solution

Tighter

Tighter analysis by taking state and data dependencies into account. We

can also keep track of our variables in every tick for further infeasible path
pruning.
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Our Solution

Tighter

Tighter analysis by taking and dependencies into account. We
can also keep track of our variables in every tick for further infeasible path
pruning.

Model Checking

Synchronous C programs may be represented as a set of concurrent FSMs
with transition guards that represent the execution cost. This can be
exploited by a model checker to determine the reachable state-space and
the maximum tick length.

Roop (University of Auckland) PRET 42 / 61



Motivation for the proposed approach

™ (10)

G)

(12) (5)

=

b) By considering only Tick/State alignment. |
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Motivation for the proposed approach

G)

Tick 0: 1347 = 20

(7) (10)

G)

(12) (5)

- |

b) By considering only Tick/State alignment. ]

=
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Motivation for the proposed approach

G)

Tick 0: 1347 = 20

(7) (10)

Tick 1: 6415 =21

@)

(12) ©)

- |

b) By considering only Tick/State alignment. ]
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Motivation for the proposed approach

G)

Tick 0: 1347 = 20

(7) (10)

Tick 1: 6415 =21

@)

WCRT = max(20,21)
(1) 6 | =21

- |

b) By considering only Tick/State alignment. ]
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Motivation for the proposed approach

0]

(12) ©)

=

(l

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
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Motivation for the proposed approach

A is true during this scope. |

)
IA A

U]

0]

(12) ©)

=

(l

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
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Motivation for the proposed approach

A is true during this scope. |
(&)

IA A o Tick 0: 13+7 = 20

(10)

0]

- |

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.
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(&)
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Tick 1: 648 = 14
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©)

- |
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Motivation for the proposed approach

A is true during this scope. |
(&)

IA A o Tick 0: 13+7 = 20

(10)

Tick 1: 648 = 14

@)

WCRT = max(20,14)
® | =20

- |

c) By considering data dependencies , tick alignment
and by tracking the value of the variables.

Roop (University of Auckland) PRET 44 / 61




Comparison

Methods
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o MaxPlus: 28
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Comparison

Methods
e MaxPlus: 28
e MaxPlus + Data/Control : 25
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Comparison

Methods
@ MaxPlus: 28
e MaxPlus + Data/Control : 25
@ MaxPlus + Tick alignment: 21
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Comparison

Methods

MaxPlus: 28

MaxPlus + Data/Control : 25

MaxPlus + Tick alignment: 21

MaxPlus + Data/Control + Tick alignment: 21
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Comparison

Methods
e MaxPlus: 28
MaxPlus + Data/Control : 25
MaxPlus + Tick alignment: 21
MaxPlus + Data/Control + Tick alignment: 21
Data/Control + Tick alignment + Track Variable: 20
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Finding the WCRT

Model checking formulation

@ We generate an input format of the model checker UPPAAL called
timed automata (TA). Our timed automaton do not use any clocks
and instead have only bounded integers.

@ We compose all TAs in parallel and introduce a barrier TA to emulate
the synchronous composition.

@ We then evaluate a set of queries of the form AG(gtick = x < val).

o We perform binary search in the interval [WCRT pin, WCRT max] by
successively trying different val until the tight value is found.
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© The Auckland Approach

@ Results
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@ PRET-C execution:

o Hardware support (ARPRET).
o We have also developed a software model
( CEC-like linked-list based scheduler).
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@ PRET-C execution:

o Hardware support (ARPRET).
o We have also developed a software model
( CEC-like linked-list based scheduler).

@ We have compared with other light-weight C extensions such as:

e SyncCharts in C.
o Protothreads.
o Esterel.
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Hardware vs Software

Hardware Software Gain%

Example A W U A W A W
ABRO | 29 58 64 36 94 19.45 38.29
Channel Protocol 57 38 90 91 122 | 37.36 27.86
Reactor Control 64 82 86 98 114 | 34.69 28.07
Producer Consumer 42 50 53 43 62 2.32 19.35
Smokers | 224 409 413 | 328 412 | 31.70 0.73
Robot Sonar | 73 92 96 130 175 | 43.85 47.43
Average 28.23 26.96

@ On average, the throughput on the hardware is about 26% greater
than the software implementation.
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Quantitative Comparison

PRET-C SC PT Esterel AC Gain% | WC Gain%
Example]| A W | A W/| A W| A W |[SC PT ES|SC PT ES

ABRO | 36 94 |261 493| 53 138| 78 109 (86 32 62|80 31 13

Channel Protocol | 91 122|684 757|139 162|232 313 |86 34 75|83 24 61
Reactor Control | 98 114|444 520| 93 106|112 144 |77 -5 42|78 -7 20
Producer Consumer | 43 62 | 355 422 | 74 86 [408 417 |87 41 89|85 27 85
Smokers [ 328 412|589 671|268 520|552 1063 |44 -22 59|38 20 61

Robot Sonar | 130 175|720 770|194 236|408 417 |81 32 82|77 25 58
Average 77 18 68|74 20 50

Quantitative Comparison of the PRET-C software approach with
SyncCharts in C (SC), Protothreads and Esterel.

@ Memory usage of PRET-C is better than (2.5%)Prothreads and (26%)
Esterel, while slightly worse (3.7%) than SC.
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Execution Time
Example WCRT WCRT Gain
(Model Checker)|(Actual Execution)| %
ABRO 89 87 97.75
Channel Protocol 152 149 98.03
Reactor Control 118 114 96.61
Producer-Consumer 92 88 95.65
Smokers 449 430 95.77
Robot Sonar 365 339 97.40
Average 96.87

@ On an average, the actual value is approximately 96% of the value
obtained from UPPAAL.
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NUS approach for timing analysis of Esterel

[Suhendra et al., DAC'06]

Contributions

Timing analysis over Esterel language.

Information from intermediate representations of the compiler (CEC)
are used to analyse data flow.

Explicit Tick Transition Automaton is extracted to capture tick
alignment between synchronous threads.

Models Caches, Pipelines and other architectural features for tighter
analysis.

Timing analysis over multi-core platforms.
Formulation is based on Integer linear Programming (ILP).

Currently can only handle simple data flow analysis (SDFA) for
pruning infeasible paths.

v
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Comparison with NUS approach.

NUS framework

P T = .
/" Esterel p
\_ spec. « transiion | — Program
T automata : T
T
“Est |<i/ ~Conflicting™ e v
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compiler __ pairs ILPy U sower
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oo " Programpath || program level )
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— analysis ). X

function , v

Micro-architectural L~ WCET with

modeling op m & J
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UoA framework

WCET analyzer

Control Flow
Analysis
Micro-architectural
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Translator

e Timing analysis of Esterel.

o ILP based solution.

Roop (University of Auckland)

@ Timing analysis of PRET-C.

@ MC based solution.
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Comparison with NUS approach. [Andalam et al, DATE'11]

code snippet

## analysed by NUS
x=3; if(x){..} //simple conflicting pair

## not analysed by NUS

x=3; z=3; if(2){..} // not a pair

x=3; z=3; if(x<=z){..} // BRHS is not a constant
x=3; EOT; if(x){..} //data across ticks

@ NUS approach can only handle conflicting pairs. Were simple set and
test pairs are analysed. [NUS'DACO6]

@ While testing RHS of the expression has to be a constant.
e Cannot analyse data flow across ticks..

@ Always, user guided loop bounds.

v
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Comparison with NUS approach.

NUS's ILP approach can handle simple data flow analysis.
Our MC approach can handle more expressive data flow analysis.

Type | Infeasible paths NUS | UoA
(1) | Set and Test Yes | Yes
(2) | Encoding tick transition Yes | Yes
(3) | Loops with fixed bounds Yes | Yes
(4) | Set and Test No | Yes
with expressive data-flow analysis

(5) | Encoding tick transition No | Yes
with expressive data-flow analysis

(6) | Loops bounds requiring No Yes
expressive data-flow analysis
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NUS vs U

Results

Example LOC | Observed | (MAX+) (NUS) (UoA) | NUS/
WCRT Est est. est. UoA

WCRT WCRT WCRT

(L)R)E) | W)to(6)
Synchronizer 455 238 608 422 268 1.57
ProducerConsumer | 567 259 308 523 294 1.78
Smokers 648 437 1309 903 521 1.73
Channel Protocol 727 644 1426 897 685 1.31
Robot Sonar 1081 764 2028 1688 858 1.97
Syntheticl 1569 898 3593 2127 1022 2.08
Synthetic2 1630 786 3617 1752 942 1.86
Average 1.67

@ MicroBlaze is the target platform.

o Entire program fits on on-chip memory.
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NUS vs UoA

Over Estimation

16

B UoA using MC

1l11.]]

Robot Sonar ProducerConsumer Syntheticl
Synchronizer Smokers ChannelProtocol Synthetic2

WCRT Over Estimation ratio
° °
> >

o
=

o
o

@ On an average, the NUS approach overestimates by 89% while UoA
approach only overestimates by about 13%.

Roop (University of Auckland) PRET 57 / 61



Context Sensitive Pruning

Tighness
2
== Synchronizer
18 == ProducerConsumer
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16 == ChannelProtocol
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@ Increase in context information prunes infeasible paths. Thus reducing
the WCRT overestimation.
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Context Sensitive Pruning

States Explored
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@ Increase in Context information also reduces the number of states
explored. This reduces the time to analyse the model.

Roop (University of Auckland) PRET 59 / 61



Conclusions

Contributions
@ New synchronous language for predictable programming.
Thread-safe shared memory access via simple semantics.
Predictable preemption support.

o

o

@ Hardware accelerator to improve the worst case behaviour.

@ Mapping of logical time to physical time through static analysis.
o

Side effect: PRET-C excels both in the worst case and average case
execution over other light-weight threading libraries.

Future work
@ To explore the trade-offs of scratchpads versus caches.
@ Support for parallel execution of PRET-C via new semantics.

@ Exploring the link between our research and the Berkeley-Columbia
research.

v
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