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Sequence of presentation

» What has been achieved:

Deterministic behaviour of centralized IEC 61499 systems

» Current goal:

Deterministic behaviour and predictable timing of distributed
IEC 61499 systems

» Industrial application:

Video and tool demonstration



What is the IEC 61499°?

An open standard of the International
Electrotechnical Commission (IEC)

Component-oriented approach for designing distributed
industrial-process control systems
to meet future requirements of intelligent automation

» Model-based development for industrial control software
Graphical — function blocks
Target-independent
Supports reuse of [EC 61131

System-level design of distributed systems
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» Model of a cruise control system
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Design artifacts in IEC 61499

» Hierarchy of design artifacts:
Function block — encapsulates a functional unit of software

Resource — independent unit of software made up of a
network of function blocks

Device — programmable controller that executes function
blocks

System — a collection of devices implementing the desired
control function



Some ambiguities...

» Execution semantics of function blocks is not fully defined
in standard.

» Two main deficiencies:

Lack of any notion of time — VWhat is the lifetime of events?! Are
events simultaneous!?

Lack of any notion of composition — How do blocks
communicate! Is there a (partial) order for block execution?

» Different solutions from different vendors:
Function Block Run-Time (FBRT)
4DIAC Run-Time Environment (FORTE)
ISaGRAF



Problem 1: Transition evaluation in an ECC

» Lifetime of events
El occurs, Cl and C2 are true.

Should transition to State4 be

@D
E1&C2 taken?

» Eventless transitions
El occurs, C2 is true, Cl and C3

are false.
Will State5 or Stateé ever be
reached?

E1&C2

D @




Problem 2: Composition of blocks in a
network
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» Race conditions — FB1 may be triggered by FB2 before it
can complete its execution.

» Starvation — FB3 may be left unattended while FBI and
FB2 monopolize the execution.



Key issues addressed

» Formal model for function block systems

Globally asynchronous locally synchronous paradigm for
distributed [EC 61499 systems

» Software synthesis

Automated generation of efficient code without run-time
environment or middleware

» Abstract communication patterns for distribution

Specify communication semantics using known patterns



i sterel

Mapping function blocks to |

Function block element Esterel feature

Function blocks Modules

Events Pure interface signals

Data Value-only interface signals
Internal variables Value-only local signals

EC states Demarcated by pause statements
Algorithms Instantaneous modules

Transition conditions awalt statements

Function block network Parallel composition of modules



Handling transition evalutions

// Statel
pause;
await
case immediate ?Cl do
// State2
pause;
await immediate El1 and ?C2;

E1&C2

pause;
case immediate E1 and ?C2 do
// State3
await

case immediate ?Cl do

pause;
case immediate ?C3 do

pause;
end await
end await



Handling composi’gon of function blocks

FB1 31 FB2
—|EI2  EO2 " EB3
await immediate EI1; =
emit EOl; emit EO2; D3 DO3 State £O3
i DI% DO1
ause; ECC (fragment) —
— / FB3 COND
Y — B4 EO41 'await immediate EI3;
e Mo emit EO3;
A D4  Do4 | [PRUSE,
await immediate S2; emit S1; emit EO2; pause;
| |
await immediate S1; emit S2; pause;
await immediate pre(S2); emit S1; emit EO2; pause;
| |
await immediate pre(Sl); emit S2; pause;




Translating function blocks to Esterel
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GALS model for distributed systems

» IEC 61499 is a standard for distributed control systems.
Concurrency arises from 2 sources:

Parallelism in the controlled environment (logical parallelism) —
disciplined synchronization

Distribution of the control systems (literal parallelism) —
communicate only when necessary

» GALS model for distributed [EC 61499 systems

Resources are synchronous islands.
Resources communicate with each other using communication
function blocks.
» Communication function blocks encapsulate various
communication patterns.



Communication function blocks
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xperimental results — speed
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Experimental results — normalized speed
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ixperimental results — size
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Mormalised size
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Towards a multi-rate framework

» Multi-rate framework is based on the synchronous
approach. Consists of several clocks derived as a rational

multiple of some base clock.

» Why multi-rate!?
Multi-rate systems ensure determinism and facilitates
verification of global behaviour.
Amenable to static timing analysis — real-time systems.

When used with time-triggered networks, deterministic
distributed real-time systems can be achieved.



Basic idea to ensure timing determinism

» Assume execution platform to be always fast enough:

Language provides semantics to express timing constraints of
environment (reactivity).

Compiler ensures that timing constraints are met on platform
(schedulability).
» Similar abstraction to synchronous approach, but for
multi-rate systems, every module requires timing-
deterministic I/O operations.



Proposed approach for multi-rate software

» Goals:

Facilitate analysis of global behaviour, e.g., by simulation of
formal verification.

Implementable using a simple static priority preemptive
scheduler.

Efficient use of computing resources, while ensuring
equivalence with single-task approach.



Proposed approach for multi-rate software

» Scheduling:
Rate monotonic preemptive scheduling will be used.

All task periods are multiples of the base period.The base
period must be a common factor of all task periods.

Timing constraints:

WCET (F,) + other, <T,
n-1
> [N, x(WCET (P) + other; )|+ WCET (P,) + other, <T,

=0

where N, = {T—”—|
T



Proposed approach for multi-rate software

» Issues:

Determinism means producing the same output sequence for a
given input sequence at specific instants of time.

For synchronous programs, execution time may vary as long as:
WCET (P) +other <T

For multi-rate programs in a multi-tasking scheme, I/O
operations must remain timing-deterministic even with
variations in execution time.



Slow-to-fast resource communication

» lllustration:assume Tr= 2T-

» Case |:R computes slowly

Suspend
....... R......




Slow-to-fast resource communication

» Case 2: R computes faster than usual

I | I
I » [ I

R

» To maintain determinism, R must communicate to r at the
beginning of the next fast cycle, where R starts its next
slow cycle.



Fast-to-slow resource communication

» Communication from the fast to slow resource can occur
instantly after the completion of the fast resource.

» But, communication must not happen during the
computation of the slow resource.

I I I
I r I v I
R I Susg\end



Fast-to-slow resource communication

» If the slow resource gets delayed by an intermediate
resource, the original data from the fast resource must
not get overwritten.

| |
r —>




General rule for communication

» From slow to fast: use delayed communication
» From fast to slow: sample and hold communication
» For modules of same speed: use delayed communication

» Implications for implementation:

Outputs must be scheduled as separate non-preemptible tasks.



Extensions to distributed systems
» Similar determinism is achievable using time-triggered
networks.

» TDMA cycle is divided into separate communication
slots.

» Order of slots will be the same as priority derived using
rate-monotonic scheduling.



Industrial impact

» Glidepath (airport baggage handling system)
» Powerplants (greenhouse controller)

» Integration with nxtControl Studio (commercial IDE)

» Auckland UniServices (IDE — editor, compiler, timing
analyzer, and module checker for function blocks)




