Predictable Execution with IEC 61499

Li Hsien Yoong
The University of Auckland




Sequence of presentation

» What has been achieved:

Deterministic behaviour of centralized IEC 61499 systems

» Current goal:

Deterministic behaviour and predictable timing of distributed
IEC 61499 systems

» Industrial application:

Video and tool demonstration



What is the IEC 61499°?

An open standard of the International
Electrotechnical Commission (IEC)

Component-oriented approach for designing distributed
industrial-process control systems
to meet future requirements of intelligent automation

» Model-based development for industrial control software
Graphical — function blocks
Target-independent
Supports reuse of [EC 61131

System-level design of distributed systems



An I

speedo

colock—cclock  speedf speed

SpeedGauge
tirme—tirme speedyal

rotaryC ount —{rotary Count

st

off-

resurne |
quickaccel
quickDecel
brakePressed—

cclock —

HC 61499 example

cantroller
set regulCff
off regulSet
resurne regulstdby

quickéccel reguiResurne
quickDecel speedSet
brakePressed

celock

] [

CruiseManager

speed cruisespeed

— regulQff

- regulSet

- regulStdby

- regulR.esurne
- speedSet celock—
accelPressed

acrelRelzased—

~ cruisesSpeed

throttle0 ffset

» Model of a cruise control system

Each block encapsulates a sub-component

throttle
cruisedff  throttleChg

cruisedn
speedSet
cclock

accelPressed

acrelReleased
Throttle

cruises peed throttlehsal
speed
throttleOffset

Clearly defined event/data flow between components

- throttleChg

- throttlehs al




An I

1

HC 61499 example

EVWEMT

» Function blocks consist of
Event-data  INPUt/OUtput interface:

association Events

Data

EVEMT Hcruise0ff  throttleChg
EWEMT i cruisedn
EYEMT H speedSet
EVEMT & celock
EVEMT 0 accelPressed
EWEMNT —H accelReleased

] [

Throttle \ }

IMT - cruiseSpeed throttlei/al H
IMT B85 speead
SIMT B throttleO ffset
accelPressc—;-daccel cleased EC action

accelPressed

throttleChg

sit b Three types of function
blocks:
Basic
Composite

Service interface

NACCEL

th rottleChg)




Design artifacts in IEC 61499

» Hierarchy of design artifacts:
Function block — encapsulates a functional unit of software

Resource — independent unit of software made up of a
network of function blocks

Device — programmable controller that executes function
blocks

System — a collection of devices implementing the desired
control function



Some ambiguities...

» Execution semantics of function blocks is not fully defined
in standard.

» Two main deficiencies:

Lack of any notion of time — VWhat is the lifetime of events?! Are
events simultaneous!?

Lack of any notion of composition — How do blocks
communicate! Is there a (partial) order for block execution?

» Different solutions from different vendors:
Function Block Run-Time (FBRT)
4DIAC Run-Time Environment (FORTE)
ISaGRAF



Problem 1: Transition evaluation in an ECC

» Lifetime of events
El occurs, Cl and C2 are true.

Should transition to State4 be

@D
E1&C2 taken?

» Eventless transitions
El occurs, C2 is true, Cl and C3

are false.
Will State5 or Stateé ever be
reached?

E1&C2

D @




Problem 2: Composition of blocks in a
network

FB1 FB2
—| EI2 EO2 /Eif%
DI3 DO3 State EO3
DI% DOI +
ECC (fragment
(e ) 4 / FB3 COND
Ell
L 4 E4  EO4
State |— | EO1
EO2
EI2 DI4 DO4

» Race conditions — FB1 may be triggered by FB2 before it
can complete its execution.

» Starvation — FB3 may be left unattended while FBI and
FB2 monopolize the execution.



Key issues addressed

» Formal model for function block systems

Globally asynchronous locally synchronous paradigm for
distributed [EC 61499 systems

» Software synthesis

Automated generation of efficient code without run-time
environment or middleware

» Abstract communication patterns for distribution

Specify communication semantics using known patterns



i sterel

Mapping function blocks to |

Function block element Esterel feature

Function blocks Modules

Events Pure interface signals

Data Value-only interface signals
Internal variables Value-only local signals

EC states Demarcated by pause statements
Algorithms Instantaneous modules

Transition conditions awalt statements

Function block network Parallel composition of modules



Handling transition evalutions

// Statel
pause;
await
case immediate ?Cl do
// State2
pause;
await immediate El1 and ?C2;

E1&C2

pause;
case immediate E1 and ?C2 do
// State3
await

case immediate ?Cl do

pause;
case immediate ?C3 do

pause;
end await
end await



Handling composi’gon of function blocks

FB1 31 FB2
—|EI2  EO2 " EB3
await immediate EI1; =
emit EOl; emit EO2; D3 DO3 State £O3
i DI% DO1
ause; ECC (fragment) —
— / FB3 COND
Y — B4 EO41 'await immediate EI3;
e Mo emit EO3;
A D4  Do4 | [PRUSE,
await immediate S2; emit S1; emit EO2; pause;
| |
await immediate S1; emit S2; pause;
await immediate pre(S2); emit S1; emit EO2; pause;
| |
await immediate pre(Sl); emit S2; pause;




Translating function blocks to Esterel

speadao

celock qoclock

tirne —Jtime speedval

rataryCount -Jrotary S ount

Speediauge

run CruiseManager

run Throttle [...]<::

-———D>run SpeedGauge [...]

end signal

end module

[...]

controller
set—{set regulOff- regula ff throttle
speed|” speed offqoff regulS et regulSet cruiseQff  throttleChg- throttlehg
resurne—Jresume requlStdby - regulStdbyy cruisedn
quickaccalquickfccal regquiResurme regulR.esurne speedSet
quickD ecelqquickDecel speedS et speedSet celock -{eclack
brakeF ressed—|brakeFressed accelFressed—{accelPressed
celock —ecclock accelReleasedaccelReleased
Cruisebanager Throttle
spead crugeﬁpeed [ cruises peed cruises pead throttlet'al[- throttlei/al
spead
, throttleO ffset throttleO ffset
module CruiseControll:
input cclock, set,| off, resume, quidliAccel, quickDecel;
// other inputs dmitted
output speed, spgfdSet, throttleChg, |regulOff;
// other outputs [@mmitted
signal sO : wvalu igned<[16]>, sl1, |82, s3, s4, ... in



GALS model for distributed systems

» IEC 61499 is a standard for distributed control systems.
Concurrency arises from 2 sources:

Parallelism in the controlled environment (logical parallelism) —
disciplined synchronization

Distribution of the control systems (literal parallelism) —
communicate only when necessary

» GALS model for distributed [EC 61499 systems

Resources are synchronous islands.
Resources communicate with each other using communication
function blocks.
» Communication function blocks encapsulate various
communication patterns.



Communication function blocks

s
EWEMT EWEMNT EHINIT  IMITD

EVEMT EHIMIT  IMITO

== = EVWEMT
EWE MT = REC CNF = EVVEMT EWE MT 5= RSF MDD 5= EWEMNT
EWE MT 5= RESF IMDO = EVVEMT EWE MT £ RELC CHF = EWEMNT
:| C :| |: Client-server
CLIEMT 2 1 SERVER_1 = .
—- oy function blocks
BOOL -0l o0 - BEOOL EOOL B O 00 HH-E- EOOL
WSTRIMG B0 sTAaTUuS —E-EH—wWsSTRING WYSTRIMG BEID  sTAaTUS FEHE—wWsSTRING
Y i SO 1 RD_1 £ AMY O ANY £ SD_1 RD_1 £ AN
AN H—sD 2 RO z—& AN
MNetwork
EWENT EINIT INIT O FENT  EWEMT gINT  INTOHS EWENT
EWEMT &5 REQ oZHMF = EVENT EVEMT & R5F IND & EVENT
:| C :l | Publish-subscribe
PUBLISH_L SUBSCRIBE_L function blocks
pooL—a-Eal oofe—eool BoOL—a-8al e e — Y
ST RING B0 STATUS FEB—wETRING WSTRIN G B STATUS —EH—WSTRING
ANY & | FD_1 = ANY

Network



Cxample of a distrib

uted system

Device2

TANKMODEL

FacF
oL T )
WAEM FEQ
T
SToP J
L
N FACEPLATEL CLIENT 2 0
£ ResTaRT Pl AUTD o [ T
1 (LTS SP- [ 30 MA 25 R AID STATHS
alm <M1
"AIENAAT .
Sn_2
]
o -y 1
_ : ' '
INIT  IHIT o M 1
PS> IN2 ] [ |
7L P
' 1
SCRVTP_ 011 H 1
1 1 1
@ " [ ] ]
130 ZL6.26.60 1 1
' 1

.------------------J-ﬁ

] 1

| ] [

START LEVEL : 1
COLbl-  sENZOR H :
wapM | ETART  EX 1
STO—ETOP L
LI

:—| L
[E_RETART] LM ASERG G 1 : ]
- I FFL . "z25nne 1 :
LI

LI

[ (-
jemmmm e b

& 1

[
[' M3CE l 1
| T i) an : M INTG
“—RSP II\-DH IMT  CHF ] 1REQ  CN-
: RES) :
L
E¥WER_0_2 [ CLIENT_L_D
2l oo FE_FID :
A RR D STATIS 1T T 30 2

RECERNE




xperimental results — speed

16384
@ 4006
m
L
45}
o 1024
E
=
= 256
n
o
: 64
W
E
= 18
£
E 4
=
1

Cirill station Speed regulator Cruise control 1 Water monitor Baggage handling
LED flasher Temperature controller Railway crossing Cruise control 2 Distributing station

Brec-cinst @ FEC-c OFBC-Strl @ FERT B FORTE



Experimental results — normalized speed

18
16
14
12

10

Mormalised time

FBC-C FBC-5trl FERT FORTE

B LED flas her B Oirill station O Temperature controller B Speed regulator
B Raitway crossing DO Cruise contrel 1 I Cruise control 2 O Water monitor
B Distributing station B Baggage handling ™ &verage



ixperimental results — size

k]
= 128.00
[ ]
[ 5}
=)
= 6400
i
®
32.00
a8
|
= 1600
o
=
=  BOD
i
N
[ 45}
@ 4.00
I
[
*g 2.00
2
(]
i

Oirill station Speed regulator Cruise control 1 Water monitor Baggage handling
LED flasher  Temperature controller Raitlway crossing Cruise control 2 Distributing station

B rFec-cinst @ Fec-c OFec-Strl @ FERT B FORTE



Mormalised size

18

14

12

10

FBC-C FBC-Strl

Experimental results — normalized size

FERT FORTE

B LED flasher @ Orill station O Temperature controller @ Speed regulator [ Railway crossing 0O Cruise control 1

B Cruise control 2 0 Water monitor @ Distributing station

O Baggage handling == Average



Towards a multi-rate framework

» Multi-rate framework is based on the synchronous
approach. Consists of several clocks derived as a rational

multiple of some base clock.

» Why multi-rate!?
Multi-rate systems ensure determinism and facilitates
verification of global behaviour.
Amenable to static timing analysis — real-time systems.

When used with time-triggered networks, deterministic
distributed real-time systems can be achieved.



Basic idea to ensure timing determinism

» Assume execution platform to be always fast enough:

Language provides semantics to express timing constraints of
environment (reactivity).

Compiler ensures that timing constraints are met on platform
(schedulability).
» Similar abstraction to synchronous approach, but for
multi-rate systems, every module requires timing-
deterministic I/O operations.



Proposed approach for multi-rate software

» Goals:

Facilitate analysis of global behaviour, e.g., by simulation of
formal verification.

Implementable using a simple static priority preemptive
scheduler.

Efficient use of computing resources, while ensuring
equivalence with single-task approach.



Proposed approach for multi-rate software

» Scheduling:
Rate monotonic preemptive scheduling will be used.

All task periods are multiples of the base period.The base
period must be a common factor of all task periods.

Timing constraints:

WCET (F,) + other, <T,
n-1
> [N, x(WCET (P) + other; )|+ WCET (P,) + other, <T,

=0

where N, = {T—”—|
T



Proposed approach for multi-rate software

» Issues:

Determinism means producing the same output sequence for a
given input sequence at specific instants of time.

For synchronous programs, execution time may vary as long as:
WCET (P) +other <T

For multi-rate programs in a multi-tasking scheme, I/O
operations must remain timing-deterministic even with
variations in execution time.



Slow-to-fast resource communication

» lllustration:assume Tr= 2T-

» Case |:R computes slowly

Suspend
....... R......




Slow-to-fast resource communication

» Case 2: R computes faster than usual

I | I
I » [ I

R

» To maintain determinism, R must communicate to r at the
beginning of the next fast cycle, where R starts its next
slow cycle.



Fast-to-slow resource communication

» Communication from the fast to slow resource can occur
instantly after the completion of the fast resource.

» But, communication must not happen during the
computation of the slow resource.

I I I
I r I v I
R I Susg\end



Fast-to-slow resource communication

» If the slow resource gets delayed by an intermediate
resource, the original data from the fast resource must
not get overwritten.

| |
r —>




General rule for communication

» From slow to fast: use delayed communication
» From fast to slow: sample and hold communication
» For modules of same speed: use delayed communication

» Implications for implementation:

Outputs must be scheduled as separate non-preemptible tasks.



Extensions to distributed systems
» Similar determinism is achievable using time-triggered
networks.

» TDMA cycle is divided into separate communication
slots.

» Order of slots will be the same as priority derived using
rate-monotonic scheduling.



Industrial impact

» Glidepath (airport baggage handling system)
» Powerplants (greenhouse controller)

» Integration with nxtControl Studio (commercial IDE)

» Auckland UniServices (IDE — editor, compiler, timing
analyzer, and module checker for function blocks)




