#### Predictable Execution with IEC 61499

Li Hsien Yoong

The University of Auckland

## Sequence of presentation

- What has been achieved:
  - Deterministic behaviour of centralized IEC 61499 systems

#### Current goal:

- Deterministic behaviour and predictable timing of distributed IEC 61499 systems
- Industrial application:
  - Video and tool demonstration

## What is the IEC 61499?

An open standard of the International Electrotechnical Commission (IEC)

Component-oriented approach for designing distributed industrial-process control systems to meet future requirements of intelligent automation

Model-based development for industrial control software

- Graphical *function blocks*
- Target-independent
- Supports reuse of IEC 61131
- System-level design of distributed systems

## An IEC 61499 example



- Model of a cruise control system
  - Each block encapsulates a sub-component
  - Clearly defined event/data flow between components

## An IEC 61499 example



clock

EC transition

EC state

accel

ACCEL

accelReleased

cruiseOff

accelPressed

clock

cruiseOff

cruiseOn(CRUISE)

speedSet

cruiseOn

Function blocks consist of input/output interface:

- Events
- Data
- Three types of function blocks:
  - Basic

throttleChg

- Composite
- Service interface

## Design artifacts in IEC 61499

- Hierarchy of design artifacts:
  - Function block encapsulates a functional unit of software
  - Resource independent unit of software made up of a network of function blocks
  - Device programmable controller that executes function blocks
  - System a collection of devices implementing the desired control function

## Some ambiguities...

- Execution semantics of function blocks is not fully defined in standard.
- Two main deficiencies:
  - Lack of any notion of time What is the lifetime of events? Are events simultaneous?
  - Lack of any notion of composition How do blocks communicate? Is there a (partial) order for block execution?
- Different solutions from different vendors:
  - Function Block Run-Time (FBRT)
  - 4DIAC Run-Time Environment (FORTE)
  - ISaGRAF

## Problem 1: Transition evaluation in an ECC



- Lifetime of events
  - El occurs, Cl and C2 are true.
  - Should transition to State4 be taken?
- Eventless transitions
  - El occurs, C2 is true, C1 and C3 are false.
  - Will State5 or State6 ever be reached?

# Problem 2: Composition of blocks in a network



- Race conditions FBI may be triggered by FB2 before it can complete its execution.
- Starvation FB3 may be left unattended while FB1 and FB2 monopolize the execution.

## Key issues addressed

- Formal model for function block systems
  - Globally asynchronous locally synchronous paradigm for distributed IEC 61499 systems

#### Software synthesis

- Automated generation of efficient code without run-time environment or middleware
- Abstract communication patterns for distribution
  - Specify communication semantics using known patterns

## Mapping function blocks to Esterel

| Function block element | Esterel feature                 |
|------------------------|---------------------------------|
| Function blocks        | Modules                         |
| Events                 | Pure interface signals          |
| Data                   | Value-only interface signals    |
| Internal variables     | Value-only local signals        |
| EC states              | Demarcated by pause statements  |
| Algorithms             | Instantaneous modules           |
| Transition conditions  | await statements                |
| Function block network | Parallel composition of modules |

## Handling transition evalutions





## Handling composition of function blocks





## Translating function blocks to Esterel



## GALS model for distributed systems

- IEC 61499 is a standard for distributed control systems.
  Concurrency arises from 2 sources:
  - Parallelism in the controlled environment (*logical* parallelism) disciplined synchronization
  - Distribution of the control systems (literal parallelism) communicate only when necessary
- GALS model for distributed IEC 61499 systems
  - Resources are synchronous islands.
  - Resources communicate with each other using communication function blocks.
- Communication function blocks encapsulate various communication patterns.

## Communication function blocks



## Example of a distributed system



#### Experimental results – speed



#### Experimental results – normalized speed



----

#### Experimental results – size

D



#### Experimental results – normalized size



D

## Towards a multi-rate framework

- Multi-rate framework is based on the synchronous approach. Consists of several clocks derived as a rational multiple of some base clock.
- Why multi-rate?
  - Multi-rate systems ensure determinism and facilitates verification of global behaviour.
  - Amenable to static timing analysis real-time systems.
  - When used with time-triggered networks, deterministic distributed real-time systems can be achieved.

#### Basic idea to ensure timing determinism

- Assume execution platform to be always fast enough:
  - Language provides semantics to express timing constraints of environment (reactivity).
  - Compiler ensures that timing constraints are met on platform (schedulability).
- Similar abstraction to synchronous approach, but for multi-rate systems, every module requires timingdeterministic I/O operations.

## Proposed approach for multi-rate software

Goals:

- Facilitate analysis of global behaviour, e.g., by simulation of formal verification.
- Implementable using a simple static priority preemptive scheduler.
- Efficient use of computing resources, while ensuring equivalence with single-task approach.

## Proposed approach for multi-rate software

#### Scheduling:

- Rate monotonic preemptive scheduling will be used.
- All task periods are multiples of the base period. The base period must be a common factor of all task periods.
- Timing constraints:

$$WCET(P_0) + other_0 < T_0$$

 $\sum_{i=0}^{n-1} \left[ N_i \times \left( \text{WCET}(P_i) + other_i \right) \right] + \text{WCET}(P_n) + other_n < T_n$ 

where 
$$N_i = \left[\frac{T_n}{T_i}\right]$$

## Proposed approach for multi-rate software

#### Issues:

- Determinism means producing the same output sequence for a given input sequence at specific instants of time.
- For synchronous programs, execution time may vary as long as: WCET(P) + other < T
- For multi-rate programs in a multi-tasking scheme, I/O operations must remain timing-deterministic even with variations in execution time.

## Slow-to-fast resource communication

- Illustration: assume T<sub>R</sub> = 2T<sub>r</sub>
- Case I: R computes slowly



Slow-to-fast resource communication

Case 2: R computes faster than usual



To maintain determinism, R must communicate to r at the beginning of the next fast cycle, where R starts its next slow cycle.

## Fast-to-slow resource communication

- Communication from the fast to slow resource can occur instantly after the completion of the fast resource.
- But, communication must not happen during the computation of the slow resource.



## Fast-to-slow resource communication

If the slow resource gets delayed by an intermediate resource, the original data from the fast resource must not get overwritten.



## General rule for communication

- From slow to fast: use delayed communication
- From fast to slow: sample and hold communication
- For modules of same speed: use delayed communication
- Implications for implementation:
  - Outputs must be scheduled as separate non-preemptible tasks.

## Extensions to distributed systems

- Similar determinism is achievable using time-triggered networks.
- TDMA cycle is divided into separate communication slots.
- Order of slots will be the same as priority derived using rate-monotonic scheduling.

## Industrial impact

- Glidepath (airport baggage handling system)
- Powerplants (greenhouse controller)
- Integration with nxtControl Studio (commercial IDE)
- Auckland UniServices (IDE editor, compiler, timing analyzer, and module checker for function blocks)

