
Predictable Execution with IEC 61499

Li Hsien Yoong

The University of Auckland

Sequence of presentation

 What has been achieved:

 Deterministic behaviour of centralized IEC 61499 systems

 Current goal:

 Deterministic behaviour and predictable timing of distributed

IEC 61499 systems

 Industrial application:

 Video and tool demonstration

What is the IEC 61499?

 Model-based development for industrial control software

 Graphical – function blocks

 Target-independent

 Supports reuse of IEC 61131

 System-level design of distributed systems

Component-oriented approach for designing distributed

industrial-process control systems

to meet future requirements of intelligent automation

An open standard of the International

Electrotechnical Commission (IEC)

An IEC 61499 example

 Model of a cruise control system

 Each block encapsulates a sub-component

 Clearly defined event/data flow between components

An IEC 61499 example

 Function blocks consist of

input/output interface:

 Events

 Data

 Three types of function

blocks:

 Basic

 Composite

 Service interface

Event-data

association

EC action

EC state

EC transition

Design artifacts in IEC 61499

 Hierarchy of design artifacts:

 Function block – encapsulates a functional unit of software

 Resource – independent unit of software made up of a

network of function blocks

 Device – programmable controller that executes function

blocks

 System – a collection of devices implementing the desired

control function

Some ambiguities…

 Execution semantics of function blocks is not fully defined

in standard.

 Two main deficiencies:

 Lack of any notion of time – What is the lifetime of events? Are

events simultaneous?

 Lack of any notion of composition – How do blocks

communicate? Is there a (partial) order for block execution?

 Different solutions from different vendors:

 Function Block Run-Time (FBRT)

 4DIAC Run-Time Environment (FORTE)

 ISaGRAF

Problem 1: Transition evaluation in an ECC

 Lifetime of events

 E1 occurs, C1 and C2 are true.

 Should transition to State4 be

taken?

 Eventless transitions

 E1 occurs, C2 is true, C1 and C3

are false.

 Will State5 or State6 ever be

reached?

Problem 2: Composition of blocks in a

network

 Race conditions – FB1 may be triggered by FB2 before it

can complete its execution.

 Starvation – FB3 may be left unattended while FB1 and

FB2 monopolize the execution.

Key issues addressed

 Formal model for function block systems

 Globally asynchronous locally synchronous paradigm for

distributed IEC 61499 systems

 Software synthesis

 Automated generation of efficient code without run-time

environment or middleware

 Abstract communication patterns for distribution

 Specify communication semantics using known patterns

Mapping function blocks to Esterel

Function block element Esterel feature

Function blocks Modules

Events Pure interface signals

Data Value-only interface signals

Internal variables Value-only local signals

EC states Demarcated by pause statements

Algorithms Instantaneous modules

Transition conditions await statements

Function block network Parallel composition of modules

Handling transition evalutions
// State1

pause;

await

case immediate ?C1 do

// State2

pause;

await immediate E1 and ?C2;

// State4

pause;

case immediate E1 and ?C2 do

// State3

pause;

await

case immediate ?C1 do

// State5

pause;

case immediate ?C3 do

// State6

pause;

end await

end await

Handling composition of function blocks

await immediate EI3;

emit EO3;

pause;

await immediate EI1;

emit EO1; emit EO2;

pause;

S1

S2

await immediate S2; emit S1; emit EO2; pause;

||

await immediate S1; emit S2; pause;

await immediate pre(S2); emit S1; emit EO2; pause;

||

await immediate pre(S1); emit S2; pause;

Translating function blocks to Esterel

module CruiseControl:

input cclock, set, off, resume, quickAccel, quickDecel;

// other inputs ommitted

output speed, speedSet, throttleChg, regulOff;

// other outputs ommitted

signal s0 : value signed<[16]>, s1, s2, s3, s4, ... in

run CruiseManager [...]

||

run Throttle [...]

||

run SpeedGauge [...]

...

end signal

end module

GALS model for distributed systems

 IEC 61499 is a standard for distributed control systems.

Concurrency arises from 2 sources:

 Parallelism in the controlled environment (logical parallelism) –

disciplined synchronization

 Distribution of the control systems (literal parallelism) –

communicate only when necessary

 GALS model for distributed IEC 61499 systems

 Resources are synchronous islands.

 Resources communicate with each other using communication

function blocks.

 Communication function blocks encapsulate various

communication patterns.

Communication function blocks

Client-server

function blocks

Publish-subscribe

function blocks

Example of a distributed system

Experimental results – speed

Experimental results – normalized speed

Experimental results – size

Experimental results – normalized size

Towards a multi-rate framework

 Multi-rate framework is based on the synchronous

approach. Consists of several clocks derived as a rational

multiple of some base clock.

 Why multi-rate?

 Multi-rate systems ensure determinism and facilitates

verification of global behaviour.

 Amenable to static timing analysis – real-time systems.

 When used with time-triggered networks, deterministic

distributed real-time systems can be achieved.

Basic idea to ensure timing determinism

 Assume execution platform to be always fast enough:

 Language provides semantics to express timing constraints of

environment (reactivity).

 Compiler ensures that timing constraints are met on platform

(schedulability).

 Similar abstraction to synchronous approach, but for

multi-rate systems, every module requires timing-

deterministic I/O operations.

Proposed approach for multi-rate software

 Goals:

 Facilitate analysis of global behaviour, e.g., by simulation of

formal verification.

 Implementable using a simple static priority preemptive

scheduler.

 Efficient use of computing resources, while ensuring

equivalence with single-task approach.

Proposed approach for multi-rate software

 Scheduling:

 Rate monotonic preemptive scheduling will be used.

 All task periods are multiples of the base period. The base

period must be a common factor of all task periods.

 Timing constraints:

000)(WCET TotherP 

  
















i

n
i

nnn

n

i

iii

T

T
N

TotherPotherPN

 where

)WCET()(WCET
1

0

Proposed approach for multi-rate software

 Issues:

 Determinism means producing the same output sequence for a

given input sequence at specific instants of time.

 For synchronous programs, execution time may vary as long as:

 For multi-rate programs in a multi-tasking scheme, I/O

operations must remain timing-deterministic even with

variations in execution time.

TotherP )(WCET

Slow-to-fast resource communication

 Illustration: assume TR = 2Tr

 Case 1: R computes slowly

Slow-to-fast resource communication

 Case 2: R computes faster than usual

 To maintain determinism, R must communicate to r at the
beginning of the next fast cycle, where R starts its next
slow cycle.

Fast-to-slow resource communication

 Communication from the fast to slow resource can occur

instantly after the completion of the fast resource.

 But, communication must not happen during the

computation of the slow resource.

Fast-to-slow resource communication

 If the slow resource gets delayed by an intermediate

resource, the original data from the fast resource must

not get overwritten.

General rule for communication

 From slow to fast: use delayed communication

 From fast to slow: sample and hold communication

 For modules of same speed: use delayed communication

 Implications for implementation:

 Outputs must be scheduled as separate non-preemptible tasks.

Extensions to distributed systems

 Similar determinism is achievable using time-triggered

networks.

 TDMA cycle is divided into separate communication

slots.

 Order of slots will be the same as priority derived using

rate-monotonic scheduling.

Industrial impact

 Glidepath (airport baggage handling system)

 Powerplants (greenhouse controller)

 Integration with nxtControl Studio (commercial IDE)

 Auckland UniServices (IDE – editor, compiler, timing

analyzer, and module checker for function blocks)

