
Predictable Execution with IEC 61499

Li Hsien Yoong

The University of Auckland

Sequence of presentation

 What has been achieved:

 Deterministic behaviour of centralized IEC 61499 systems

 Current goal:

 Deterministic behaviour and predictable timing of distributed

IEC 61499 systems

 Industrial application:

 Video and tool demonstration

What is the IEC 61499?

 Model-based development for industrial control software

 Graphical – function blocks

 Target-independent

 Supports reuse of IEC 61131

 System-level design of distributed systems

Component-oriented approach for designing distributed

industrial-process control systems

to meet future requirements of intelligent automation

An open standard of the International

Electrotechnical Commission (IEC)

An IEC 61499 example

 Model of a cruise control system

 Each block encapsulates a sub-component

 Clearly defined event/data flow between components

An IEC 61499 example

 Function blocks consist of

input/output interface:

 Events

 Data

 Three types of function

blocks:

 Basic

 Composite

 Service interface

Event-data

association

EC action

EC state

EC transition

Design artifacts in IEC 61499

 Hierarchy of design artifacts:

 Function block – encapsulates a functional unit of software

 Resource – independent unit of software made up of a

network of function blocks

 Device – programmable controller that executes function

blocks

 System – a collection of devices implementing the desired

control function

Some ambiguities…

 Execution semantics of function blocks is not fully defined

in standard.

 Two main deficiencies:

 Lack of any notion of time – What is the lifetime of events? Are

events simultaneous?

 Lack of any notion of composition – How do blocks

communicate? Is there a (partial) order for block execution?

 Different solutions from different vendors:

 Function Block Run-Time (FBRT)

 4DIAC Run-Time Environment (FORTE)

 ISaGRAF

Problem 1: Transition evaluation in an ECC

 Lifetime of events

 E1 occurs, C1 and C2 are true.

 Should transition to State4 be

taken?

 Eventless transitions

 E1 occurs, C2 is true, C1 and C3

are false.

 Will State5 or State6 ever be

reached?

Problem 2: Composition of blocks in a

network

 Race conditions – FB1 may be triggered by FB2 before it

can complete its execution.

 Starvation – FB3 may be left unattended while FB1 and

FB2 monopolize the execution.

Key issues addressed

 Formal model for function block systems

 Globally asynchronous locally synchronous paradigm for

distributed IEC 61499 systems

 Software synthesis

 Automated generation of efficient code without run-time

environment or middleware

 Abstract communication patterns for distribution

 Specify communication semantics using known patterns

Mapping function blocks to Esterel

Function block element Esterel feature

Function blocks Modules

Events Pure interface signals

Data Value-only interface signals

Internal variables Value-only local signals

EC states Demarcated by pause statements

Algorithms Instantaneous modules

Transition conditions await statements

Function block network Parallel composition of modules

Handling transition evalutions
// State1

pause;

await

case immediate ?C1 do

// State2

pause;

await immediate E1 and ?C2;

// State4

pause;

case immediate E1 and ?C2 do

// State3

pause;

await

case immediate ?C1 do

// State5

pause;

case immediate ?C3 do

// State6

pause;

end await

end await

Handling composition of function blocks

await immediate EI3;

emit EO3;

pause;

await immediate EI1;

emit EO1; emit EO2;

pause;

S1

S2

await immediate S2; emit S1; emit EO2; pause;

||

await immediate S1; emit S2; pause;

await immediate pre(S2); emit S1; emit EO2; pause;

||

await immediate pre(S1); emit S2; pause;

Translating function blocks to Esterel

module CruiseControl:

input cclock, set, off, resume, quickAccel, quickDecel;

// other inputs ommitted

output speed, speedSet, throttleChg, regulOff;

// other outputs ommitted

signal s0 : value signed<[16]>, s1, s2, s3, s4, ... in

run CruiseManager [...]

||

run Throttle [...]

||

run SpeedGauge [...]

...

end signal

end module

GALS model for distributed systems

 IEC 61499 is a standard for distributed control systems.

Concurrency arises from 2 sources:

 Parallelism in the controlled environment (logical parallelism) –

disciplined synchronization

 Distribution of the control systems (literal parallelism) –

communicate only when necessary

 GALS model for distributed IEC 61499 systems

 Resources are synchronous islands.

 Resources communicate with each other using communication

function blocks.

 Communication function blocks encapsulate various

communication patterns.

Communication function blocks

Client-server

function blocks

Publish-subscribe

function blocks

Example of a distributed system

Experimental results – speed

Experimental results – normalized speed

Experimental results – size

Experimental results – normalized size

Towards a multi-rate framework

 Multi-rate framework is based on the synchronous

approach. Consists of several clocks derived as a rational

multiple of some base clock.

 Why multi-rate?

 Multi-rate systems ensure determinism and facilitates

verification of global behaviour.

 Amenable to static timing analysis – real-time systems.

 When used with time-triggered networks, deterministic

distributed real-time systems can be achieved.

Basic idea to ensure timing determinism

 Assume execution platform to be always fast enough:

 Language provides semantics to express timing constraints of

environment (reactivity).

 Compiler ensures that timing constraints are met on platform

(schedulability).

 Similar abstraction to synchronous approach, but for

multi-rate systems, every module requires timing-

deterministic I/O operations.

Proposed approach for multi-rate software

 Goals:

 Facilitate analysis of global behaviour, e.g., by simulation of

formal verification.

 Implementable using a simple static priority preemptive

scheduler.

 Efficient use of computing resources, while ensuring

equivalence with single-task approach.

Proposed approach for multi-rate software

 Scheduling:

 Rate monotonic preemptive scheduling will be used.

 All task periods are multiples of the base period. The base

period must be a common factor of all task periods.

 Timing constraints:

000)(WCET TotherP

i

n
i

nnn

n

i

iii

T

T
N

TotherPotherPN

 where

)WCET()(WCET
1

0

Proposed approach for multi-rate software

 Issues:

 Determinism means producing the same output sequence for a

given input sequence at specific instants of time.

 For synchronous programs, execution time may vary as long as:

 For multi-rate programs in a multi-tasking scheme, I/O

operations must remain timing-deterministic even with

variations in execution time.

TotherP)(WCET

Slow-to-fast resource communication

 Illustration: assume TR = 2Tr

 Case 1: R computes slowly

Slow-to-fast resource communication

 Case 2: R computes faster than usual

 To maintain determinism, R must communicate to r at the
beginning of the next fast cycle, where R starts its next
slow cycle.

Fast-to-slow resource communication

 Communication from the fast to slow resource can occur

instantly after the completion of the fast resource.

 But, communication must not happen during the

computation of the slow resource.

Fast-to-slow resource communication

 If the slow resource gets delayed by an intermediate

resource, the original data from the fast resource must

not get overwritten.

General rule for communication

 From slow to fast: use delayed communication

 From fast to slow: sample and hold communication

 For modules of same speed: use delayed communication

 Implications for implementation:

 Outputs must be scheduled as separate non-preemptible tasks.

Extensions to distributed systems

 Similar determinism is achievable using time-triggered

networks.

 TDMA cycle is divided into separate communication

slots.

 Order of slots will be the same as priority derived using

rate-monotonic scheduling.

Industrial impact

 Glidepath (airport baggage handling system)

 Powerplants (greenhouse controller)

 Integration with nxtControl Studio (commercial IDE)

 Auckland UniServices (IDE – editor, compiler, timing

analyzer, and module checker for function blocks)

