
2008-04-05

Executing Esterel on Multicore Processors

Simon Yuan, Li Hsien Yoong, and Partha S Roop

2

BackgroundBackground

Architecture-specific compilation of Esterel
Reactive processors, custom Esterel processors,

multicores
Distribution on multicore processors

Limitations and problems encountered
Possible solutions

3

Current approach

Prototype implementation
POSIX threads on standard multicore desktops
Multicore Microblaze

Shared memory architecture
Distribution on cores done according to layout of Esterel
threads

Signal dependencies are resolved at run-time

4

The intermediate format – GRC

module HelloWorld:
input A, B, I;
output C;
procedure printHello()();
procedure printWorld()();
abort
 loop
 trap Restart in
 signal S in
 await A;
 call printHello()();
 emit S;
 ||
 await S;
 call printWorld()();
 present B then
 exit Restart
 else
 emit C
 end present
 end signal;
 halt
 end trap
 end loop
when I
end module

S0

S0 = 0

IS0 = 1

S1 = 1

S2 = 1 S3 = 1

1

1

0 S1

S1 = 0 S = 0

S2

A
1 1

printHello()

S = 1

S2 = 0

0

S3

0

S

1

printWorld()

B

2

C = 1

S3 = 0

S1 = 0 S1 = 1

S2 = 1 S3 = 1

1 1

2
0

1

0 1

1 0 0 1

P

P

P

0

1
2

S?

S!S!

∞

S!

∞

∞

P

CPU 1

CPU 2

5

Dynamic thread scheduling
S0

S0 = 0

IS0 = 1

S1 = 1

S2 = 1 S3 = 1

1

1

0 S1

S1 = 0 S = 0

S2

A
1 1

printHello()

S = 1

S2 = 0

0

S3

0

S

1

printWorld()

B

2

C = 1

S3 = 0

S1 = 0 S1 = 1

S2 = 1 S3 = 1

1 1

2
0

1

0 1

1 0 0 1

P

P

P

0

1
2

S?

S!S!

∞

S!

∞

∞

P

CPU 1

CPU 2

int term_0 = 0;
int term_1 = 0;
int term_2 = 0;
int lock_t2 = 0;
int esterel_module() {
 lock_t2 = 1;
 while (1) {
 term_1 = thread_1();
 term_2 = thread_2();
 term_0 = term_1 | term_2;
 if (term_0 != INFINITY)
 return term_0;
 }
}
int thread_1() {
 // ...
 if (lock_t2)
 return INIFINITY;
 else {
 // Inside guarded body
 }
 // ...
}
int thread_2() {
 // ..
 lock_t2 = 0;
 // ...
}

6

Code partitioning – implementation int esterel_module(int isSlaveCPU) {
 if (isSlaveCPU) {
 WAIT_FORK:
 wait_fork(pc); // Blocking
 goto *pc;
 }
 while (1) {
 // ...
 fork(&&CPU1);
 goto CPU0;
 CPU1:
 term_p1 = 0;
 do {
 term_1 = thread_1();
 term_2 = thread_2();
 term_p1 = term_1 | term_2;
 } while (term_p1 == INIFINITY);
 join(cpu1);
 goto WAIT_FORK;
 CPU0:
 term_p0 = 0;
 do {
 term_3 = thread_3();
 term_4 = thread_4();
 term_p0 = term_3 | term_4;
 } while (term_p0 == INIFINITY);
 join_all(); // Blocking
 // ...
 term_0 = term_p0 | term_p1;
 if (term_0 != INFINITY)
 return term_0;
 }
}

int main() {
 int cpu_id = get_proc_id();
 if (cpu_id == CPU0) {
 initiallize_cpu0();
 } else {
 initiallize_cpu1();
 esterel_module(1);
 }
 while (1) {
 sample_inputs();
 esterel_module(0);
 process_outputs();
 }
}

Implementation using POSIX
Threads and dual-core
Microblaze are both done
based on the same principle.

7

Limitations and problems S0

S0 = 0

IS0 = 1

S1 = 1

S2 = 1 S3 = 1

1

1

0 S1

S1 = 0 S = 0

S2

A
1 1

printHello()

S = 1

S2 = 0

0

S3

0

S

1

printBigWorld()

B

2

C = 1

S3 = 0

S1 = 0 S1 = 1

S2 = 1 S3 = 1

1 1

2
0

1

0 1

1 0 0 1

P

P

P

0

1
2

S?

S!S!

∞

S!

∞

∞

P

CPU 1

CPU 2

Parallelisation limited to
root level forks.
Difficult to balance the
load because of the
above limitation.
Signal locks and
unlocks are not atomic.

Mutex required

8

Some results

Except the LZSS example, executing on dual core
Microblaze gave little speed up if not worse.
What went wrong?

LZSS (64) LZSS (256) LZSS (1024) LZSS (4096)
0

50

100

150

200

250

300

ACRT
ACRT (DMB)

R
ea

ct
io

n
tim

e
(m

ill
io

n
cl

k
cy

c.
)

ABIC WW (Estbench) WW09 LiftController
0

500

1000

1500

2000

2500

3000

3500

ACRT
ACRT (DMB)

R
ea

ct
io

n
tim

e
(c

lk
 c

yc
.)

9

Some results

The table shows the percentage of time a core was idling
following a fork.
Clearly the load balancing algorithm isn't working too well...

Examples Max (%) Min (%) Avg (%)
ABIC 52 48 50
WW (Berry) 72 1 40
WW09 49 9 34
LiftController 96 94 94
LZSS 0 0 0

10

Solution One

A naïve answer to the problem:
Parallelize only suitable programs!

Use Esterel as a coordiation language to express control
and parallel tasks for data-dominated programs.

11

Solution Two

Implement signal locks using hardware mutex

Perform dynamic load balancing
Simple hardware design to speed this up.

12

Implementing a hardware mutex

Implement it as a peripheral on the Local Memory Bus
(LMB) for single cycle memory mapped access.
A look-up table will be used to implement counting
semaphors.
The table index is simply a unique ID to a lock variable.
The hardware interface consists of 3 memory-mapped
registers:one for writing initial value, one for unlocking, and
one for reading

if (lock) {
 term &= INFINITY;
} else {
 if (guardedSig)
 /* do something */ ;
}

ID Count
0x000009f8 2
0x00003c10 1
0x0000112c 0
0x00000934 1

if (readLock(&guardedSig)) {
 term &= INFINITY;
} else {
 if (guardedSig)
 /* do something */ ;
}

13

What does it take to do dynamic load balancing?

T1 T2 T3 T4 Head

T1 T2 T3 T4

Tail

T1 T2 T3T4

T3T1 T2T4

?

T1 T2 T3 T4

T0

T5 T6?

14

What does it take to do dynamic load balancing?

T1 T2 T3 T4

T0

T1 T2 T3 T4T0

T1 T2 T3T4T0

T1 T2T4T0

T1T4T0

T4T0

T0

T5 T6?

15

What does it take to do dynamic load balancing?

T1 T2 T3 T4

T0

T5 T6

T1 T2 T3 T4T0

T1 T2 T3T4T0

T1 T2T4T0 T5 T6

T1T4T0T2 T5 T6

T4T0T2 T5 T6

T0

T0

T0T2 T5 T6

T0T2 T5

T2

16

Flexible granularity

T1 T2 T3 T4

T0

T5 T6

T1 T2 T3T4

T1 T2 T3 T4

T1T4

T1T4

T0

T0

T0

T0

T0

T2; T5; T6

T4T0

17

Distributing load for multicore

T1 T2 T3 T4

T0

T5 T6

T1 T2 T3 T4T0

T1 T2T4T0

T4T0 T5 T6

T0T2 T5

T0

T0

T2

T5 T6

T2

18

Concluding remarks

Just a queue implemented in hardware for efficiency

With finer granularity, we can achieve better load balance,
but at the cost of more overhead from context switching

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

