Executing SyncCharts with Ptolemy

Christian Motika

Real-Time Systems and Embedded Systems Group
Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Germany

SYNCHRON Workshop 2010
Frejús, 29.11.2010
Overview

- KIELER
 - Overview
 - SyncCharts
- Ptolemy
 - Heterogenous Modeling
 - ModalModel and SR Domain
- KIELER leveraging Ptolemy
 - Simulation Approach
 - Transformations
 - Eclipse Integration
- Summary
What is KIELER?

- Kiel Integrated Environment for Layout Eclipse Rich Client
- Modeling platform and test bed
 - Improve pragmatics
- Open source and Eclipse based (plug-ins)
- General concepts:
 - Generic approaches
 - Symbiosis w/ Eclipse technologies (e.g., EMF, GMF, TMF, Xpand, Xtend)
 - Interfaces to other tools (Ptolemy, Papyrus)
SyncCharts

- Statechart dialect
- Mealy machine with
 - Parallelism, hierarchy, compound events, broadcast
- Graphical notation for the Esterel synchronous language
- Synchrony hypothesis
 - Discrete ticks
 - Computations take no time

Charles André, Computing SyncCharts Reactions, 2003
Abstract Syntax (EMF)
Overview

- KIELER
 - Overview
 - SyncCharts
- Ptolemy
 - Heterogenous Modeling
 - ModalModel and SR Domain
- KIELER leveraging Ptolemy
 - Simulation Approach
 - Transformations
 - Eclipse Integration
- Summary
Ptolemy

- “The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent systems.“

 Introduction to Ptolemy II, UC Berkeley

- Executable Models to describe behavior of reactive systems

- Ptolemy models are a set of interacting components → Actor-Oriented Design

- Constructed under a model of computation (MoC)
Model of Computation

- Defines interaction of system components
 - Semantics of a model
- Ptolemy Model can have more than one MoC
- MoC domains/directors:
 - Process Networks (PN)
 - Continuous Time (CT)
 - Finite State Machines (FSM)
 - Synchronous Reactive (SR)
 - ...

Christian Motika
Executing SyncCharts with Ptolemy
ModalModel Domain

- Entities not actors but states
- Execution: Strictly ordered sequence of state transitions
- Build-in expression language to evaluate guards
- Refinements (multiple)
- Reset and preemptive transitions
Synchronous Reactive Domain

- Zero-Delay blocks
- Instantaneous communication
- Feedback

- Fixed point \Leftrightarrow Stable state
- Values from flat lattice
- Determinism \Leftrightarrow Unique solution
Overview

- KIELER
 - Overview
 - SyncCharts
- Ptolemy
 - Heterogenous Modeling
 - ModalModel and SR Domain
- KIELER leveraging Ptolemy
 - Simulation Approach
 - Transformations
 - Eclipse Integration
- Summary
Ptolemy Simulation Engine

- Mapping SyncCharts to Ptolemy:
 - Mealy machine \leftrightarrow ModalModel
 - Orthogonality \leftrightarrow Concurrent Actors (inherent)
 - Hierarchy \leftrightarrow Compound Actors, state refinements
 - Compound events \leftrightarrow Expression language

- Interesting:
 - Implicit broadcast vs. explicit signal representation
 - Signal coherence (must/cannot analysis)
 - Transition priorities
 - Normal termination
Transformation Example: Parallelism and Signals

parallelism
Interface: L,

s1 \xrightarrow{L} s2
s3 \xrightarrow{\not L} s4

parallelism
Interface: L,

s1 \xrightarrow{L} s2
s3 \xrightarrow{\not L} s4

transitions_and_signals_918158662_region_1

Lo_COMBINE

transitions_and_signals_918158662_region_2

Lo

s3_71121165 s4_711121165

guard: Li_isPresent

Lo

s1_200530909 s2_200586098

output: Lo=1
Transformation Example: Hierarchy
Schematic Overview

SyncChart 2 Ptolemy
Xtend

Ptolemy Simulator
Data Producer
Data Observer

Execution Manager

M2M description

PtolemyMM
SyncChartsMM

SyncCharts Model
metamodels

model to simulate

produce
load & execute

commands, model inputs
simulation data, model outputs

Ptolemy Model

PtolemyMM
SyncChartsMM SyncChart Model

Christian Motika

Executing SyncCharts with Ptolemy
Architecture and User Interface

![Diagram of Architecture and User Interface]

- **Execution Manager Runtime**: Data Producer/Observer (Java Simulator), Data Producer/Observer (Generic Simulator), Data Observer (Ptolemy II), Data Observer (Environment Visualization), Data Observer (Model Feedback Visualization), Data Producer (Recorded Trace Player), Data Producer/Observer (TCP/IP Interface), External Appl.

![Screenshot of Execution Manager]

- **Execution Manager**:
 - Component Name/Key
 - Value
 - Type
 - Master
 - Synchronous Signal Resetter
 - Observer/Producer
 - Data Table
 - Observer/Producer
 - ABRO in Java
 - Observer/Producer
 - SyncCharts Ptolemy Simulator
 - Observer/Producer
 - SyncChart Editor
 - Observer/Producer
 - State Name
 - state
 - Observer/Producer
 - SimpleRailCtrl Ptolemy Simulator
 - Observer/Producer
 - Viewmanagement SyncCharts Visualizer
 - Observer
 - DataTable
 - Observer

Christian Motika
Executing SyncCharts with Ptolemy
19 / 23
KIELER KlePto Simulation Demo

LIVE DEMO
Summary

- KIELER
- Ptolemy
- KIELER leveraging Ptolemy
 - KlePto concept
 - Construct runnable Ptolemy models for EMF based models (Xtend)
 - Ptolemy integration in Eclipse
 - Infrastructure for interactive model execution
 - Also: Visualization, stepwise transformation, model checking, online debugging, regression tests, validation, ...
To Go Further

ANDRÉ, C.
Computing SyncCharts reactions.

MOTIKA, C., FUHRMANN, H., AND VON HANXLEDEN, R.
Semantics and execution of domain specific models.

UC BERKELEY, EECS DEPT.
Ptolemy webpage.
http://ptolemy.eecs.berkeley.edu/.

UNI KIEL, REAL-TIME AND EMBEDDED SYSTEMS GROUP.
KIELER webpage.
http://www.informatik.uni-kiel.de/en/rtsys/kieler/.
Thank you for your attention and participation!

Any questions or suggestions?