
Synchronous Programming of
Device Drivers for

Global Resource Control in
Embedded Operating Systems

Nicolas Berthier

Supervisors: Florence Maraninchi & Laurent Mounier

Synchrone Team

Synchron 2010

Synchronous Programming of
Device Drivers for

Global Resource Control in
Wireless Sensor Network Operating Systems

Nicolas Berthier

Supervisors: Florence Maraninchi & Laurent Mounier

Synchrone Team

Synchron 2010

Context Wireless Sensor Networks

Context: Wireless Sensor Networks

Components

I µ-Controller (MCU)

I Radio Transceiver(s)

I Sensors

I Battery

I . . .

Constraints, Problems

I Slow Computations

I Small Memory

I Battery-Awareness

I . . .

2 / 28

Context Wireless Sensor Networks

Context: Wireless Sensor Networks

Components

I µ-Controller (MCU)

I Radio Transceiver(s)

I Sensors

I Battery

I . . .

Constraints, Problems

I Slow Computations

I Small Memory

I Battery-Awareness

I . . .

2 / 28

Context Example WSN Platform

Example WSN Hardware Platform
Wsn430

MCU

CPU

ROM RAM Timers

3 / 28

Shared Resources (Hardware Modules, Buses. . .)

Context Example WSN Platform

Example WSN Hardware Platform
Wsn430

MCU

CPU

ROM RAM Timers

I/O

GPIO

USART0 USART1

3 / 28

Shared Resources (Hardware Modules, Buses. . .)

Context Example WSN Platform

Example WSN Hardware Platform
Wsn430

MCU

CPU

ROM RAM Timers

I/O

GPIO

USART0 USART1

SPI UARTUARTSPII2C

3 / 28

Shared Resources (Hardware Modules, Buses. . .)

Context Example WSN Platform

Example WSN Hardware Platform
Wsn430

MCU

CPU

ROM RAM Timers

I/O

GPIO

USART0 USART1

SPI UARTUARTSPII2C

RS232

LEDs FlashRadioSIDHumid.

3 / 28

Shared Resources (Hardware Modules, Buses. . .)

Context Example WSN Platform

Example WSN Hardware Platform
Wsn430

MCU

CPU

ROM RAM Timers

I/O

GPIO

USART0 USART1

SPI UARTUARTSPII2C

RS232

LEDs FlashRadioSIDHumid.

3 / 28

Shared Resources (Hardware Modules, Buses. . .)

Context Example WSN Platform

Example WSN Hardware Platform
Wsn430

MCU

CPU

ROM RAM Timers

I/O

GPIO

USART0 USART1

SPI UARTUARTSPII2C

RS232

LEDs FlashRadioSIDHumid.

3 / 28

Shared Resources (Hardware Modules, Buses. . .)

Context Example WSN Platform

Hardware Behavior: MCU Automaton
TI MSP430 Operating Modes

Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

I Discrete States

I Power Consumption

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

4 / 28

Context Example WSN Platform

Hardware Behavior: MCU Automaton
TI MSP430 Operating Modes

Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

I Discrete States

I Power Consumption

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

4 / 28

Context Example WSN Platform

Hardware Behavior: Radio Automaton
Chipcon CC1100 Simplified Control State Diagram

 CC1100

 SWRS038C Page 23 of 96

Transmit mode Receive mode

IDLE

Manual freq.
synth. calibration

RX FIFO
overflow

TX FIFO
underflow

Frequency
synthesizer on

SFSTXON

SRX or wake-on-radio (WOR)
STX

STX

STX or RXOFF_MODE=10

RXOFF_MODE = 00

SFTX

SRX or TXOFF_MODE = 11

SIDLE

SCAL

SFRX

IDLE

TXOFF_MODE = 00

SFSTXON or RXOFF_MODE = 01

SRX or STX or SFSTXON or wake-on-radio (WOR)

Sleep
SPWD or wake-on-radio (WOR)

Crystal
oscillator off

SXOFF

CSn = 0

CSn = 0

TXOFF_MODE = 01

Frequency
synthesizer startup,
optional calibration,

settling

Optional freq.
synth. calibration

Default state when the radio is not
receiving or transmitting. Typ.
current consumption: 1.6 mA.

Lowest power mode. Most
register values are retained.
Current consumption typ
400 nA, or typ 900 nA when
wake-on-radio (WOR) is
enabled.

All register values are
retained. Typ. current
consumption; 0.16 mA.

Used for calibrating frequency
synthesizer upfront (entering
receive or transmit mode can
then be done quicker).
Transitional state. Typ. current
consumption: 8.2 mA.

Frequency synthesizer is turned on, can optionally be
calibrated, and then settles to the correct frequency.
Transitional state. Typ. current consumption: 8.2 mA. Frequency synthesizer is on,

ready to start transmitting.
Transmission starts very
quickly after receiving the STX
command strobe.Typ. current
consumption: 8.2 mA.

Typ. current consumption:
13.5 mA at -6 dBm output,
16.9 mA at 0 dBm output,
30.7 mA at +10 dBm output.

Typ. current
consumption:
from 14.4 mA (strong
input signal) to 15.4mA
(weak input signal).

Optional transitional state. Typ.
current consumption: 8.2mA.In FIFO-based modes,

transmission is turned off and
this state entered if the TX
FIFO becomes empty in the
middle of a packet. Typ.
current consumption: 1.6 mA.

In FIFO-based modes,
reception is turned off and this
state entered if the RX FIFO
overflows. Typ. current
consumption: 1.6 mA.

Figure 5: Simplified State Diagram, with Typical Current Consumption at 1.2 kBaud Data Rate

and MDMCFG2.DEM_DCFILT_OFF=1 (current optimized). Freq. Band = 868 MHz

5 / 28

+ ADC + MCU + Flash Memory + . . .

Control of Global Power Consumption?

Context Example WSN Platform

Hardware Behavior: Radio Automaton
Chipcon CC1100 Simplified Control State Diagram

 CC1100

 SWRS038C Page 23 of 96

Transmit mode Receive mode

IDLE

Manual freq.
synth. calibration

RX FIFO
overflow

TX FIFO
underflow

Frequency
synthesizer on

SFSTXON

SRX or wake-on-radio (WOR)
STX

STX

STX or RXOFF_MODE=10

RXOFF_MODE = 00

SFTX

SRX or TXOFF_MODE = 11

SIDLE

SCAL

SFRX

IDLE

TXOFF_MODE = 00

SFSTXON or RXOFF_MODE = 01

SRX or STX or SFSTXON or wake-on-radio (WOR)

Sleep
SPWD or wake-on-radio (WOR)

Crystal
oscillator off

SXOFF

CSn = 0

CSn = 0

TXOFF_MODE = 01

Frequency
synthesizer startup,
optional calibration,

settling

Optional freq.
synth. calibration

Default state when the radio is not
receiving or transmitting. Typ.
current consumption: 1.6 mA.

Lowest power mode. Most
register values are retained.
Current consumption typ
400 nA, or typ 900 nA when
wake-on-radio (WOR) is
enabled.

All register values are
retained. Typ. current
consumption; 0.16 mA.

Used for calibrating frequency
synthesizer upfront (entering
receive or transmit mode can
then be done quicker).
Transitional state. Typ. current
consumption: 8.2 mA.

Frequency synthesizer is turned on, can optionally be
calibrated, and then settles to the correct frequency.
Transitional state. Typ. current consumption: 8.2 mA. Frequency synthesizer is on,

ready to start transmitting.
Transmission starts very
quickly after receiving the STX
command strobe.Typ. current
consumption: 8.2 mA.

Typ. current consumption:
13.5 mA at -6 dBm output,
16.9 mA at 0 dBm output,
30.7 mA at +10 dBm output.

Typ. current
consumption:
from 14.4 mA (strong
input signal) to 15.4mA
(weak input signal).

Optional transitional state. Typ.
current consumption: 8.2mA.In FIFO-based modes,

transmission is turned off and
this state entered if the TX
FIFO becomes empty in the
middle of a packet. Typ.
current consumption: 1.6 mA.

In FIFO-based modes,
reception is turned off and this
state entered if the RX FIFO
overflows. Typ. current
consumption: 1.6 mA.

Figure 5: Simplified State Diagram, with Typical Current Consumption at 1.2 kBaud Data Rate

and MDMCFG2.DEM_DCFILT_OFF=1 (current optimized). Freq. Band = 868 MHz

5 / 28

+ ADC + MCU + Flash Memory + . . .

Control of Global Power Consumption?

Context Example WSN Platform

Hardware Behavior: Radio Automaton
Chipcon CC1100 Simplified Control State Diagram

 CC1100

 SWRS038C Page 23 of 96

Transmit mode Receive mode

IDLE

Manual freq.
synth. calibration

RX FIFO
overflow

TX FIFO
underflow

Frequency
synthesizer on

SFSTXON

SRX or wake-on-radio (WOR)
STX

STX

STX or RXOFF_MODE=10

RXOFF_MODE = 00

SFTX

SRX or TXOFF_MODE = 11

SIDLE

SCAL

SFRX

IDLE

TXOFF_MODE = 00

SFSTXON or RXOFF_MODE = 01

SRX or STX or SFSTXON or wake-on-radio (WOR)

Sleep
SPWD or wake-on-radio (WOR)

Crystal
oscillator off

SXOFF

CSn = 0

CSn = 0

TXOFF_MODE = 01

Frequency
synthesizer startup,
optional calibration,

settling

Optional freq.
synth. calibration

Default state when the radio is not
receiving or transmitting. Typ.
current consumption: 1.6 mA.

Lowest power mode. Most
register values are retained.
Current consumption typ
400 nA, or typ 900 nA when
wake-on-radio (WOR) is
enabled.

All register values are
retained. Typ. current
consumption; 0.16 mA.

Used for calibrating frequency
synthesizer upfront (entering
receive or transmit mode can
then be done quicker).
Transitional state. Typ. current
consumption: 8.2 mA.

Frequency synthesizer is turned on, can optionally be
calibrated, and then settles to the correct frequency.
Transitional state. Typ. current consumption: 8.2 mA. Frequency synthesizer is on,

ready to start transmitting.
Transmission starts very
quickly after receiving the STX
command strobe.Typ. current
consumption: 8.2 mA.

Typ. current consumption:
13.5 mA at -6 dBm output,
16.9 mA at 0 dBm output,
30.7 mA at +10 dBm output.

Typ. current
consumption:
from 14.4 mA (strong
input signal) to 15.4mA
(weak input signal).

Optional transitional state. Typ.
current consumption: 8.2mA.In FIFO-based modes,

transmission is turned off and
this state entered if the TX
FIFO becomes empty in the
middle of a packet. Typ.
current consumption: 1.6 mA.

In FIFO-based modes,
reception is turned off and this
state entered if the RX FIFO
overflows. Typ. current
consumption: 1.6 mA.

Figure 5: Simplified State Diagram, with Typical Current Consumption at 1.2 kBaud Data Rate

and MDMCFG2.DEM_DCFILT_OFF=1 (current optimized). Freq. Band = 868 MHz

5 / 28

+ ADC + MCU + Flash Memory + . . .

Control of Global Power Consumption?

Context Programming Wireless Sensor Networks: Usual Practice

Programming WSNs: Usual Practice

Applications

Operating System Support / Abstractions

I Multitasking

I System Services

(Network Stack, File Systems. . .)

I Hardware Device Drivers

Operating Systems Programming for WSNs

Hardware Platform

D1 D2

D3

Dn

Operating System Services
Application(s)

I Device Drivers designed Locally

I Ad hoc Solutions for
Resource Management &
Power-Awareness

⇒ Decentralized Knowledge!

6 / 28

Context Programming Wireless Sensor Networks: Usual Practice

Programming WSNs: Usual Practice

Applications

Operating System Support / Abstractions

I Multitasking

I System Services (Network Stack, File Systems. . .)

I Hardware Device Drivers

Operating Systems Programming for WSNs

Hardware Platform

D1 D2

D3

Dn

Operating System Services
Application(s)

I Device Drivers designed Locally

I Ad hoc Solutions for
Resource Management &
Power-Awareness

⇒ Decentralized Knowledge!

6 / 28

Context Programming Wireless Sensor Networks: Usual Practice

Programming WSNs: Usual Practice

Applications

Operating System Support / Abstractions

I Multitasking

I System Services (Network Stack, File Systems. . .)

I Hardware Device Drivers

Operating Systems Programming for WSNs

Hardware Platform

D1 D2

D3

Dn

Operating System Services
Application(s)

I Device Drivers designed Locally

I Ad hoc Solutions for
Resource Management &
Power-Awareness

⇒ Decentralized Knowledge!

6 / 28

Context Programming Wireless Sensor Networks: Usual Practice

Programming WSNs: Usual Practice

Applications

Operating System Support / Abstractions

I Multitasking

I System Services (Network Stack, File Systems. . .)

I Hardware Device Drivers

Operating Systems Programming for WSNs

Hardware Platform

D1 D2

D3

Dn

Operating System Services
Application(s)

I Device Drivers designed Locally

I Ad hoc Solutions for
Resource Management &
Power-Awareness

⇒ Decentralized Knowledge!

6 / 28

Context Programming Wireless Sensor Networks: Usual Practice

Programming WSNs: Usual Practice

Applications

Operating System Support / Abstractions

I Multitasking

I System Services (Network Stack, File Systems. . .)

I Hardware Device Drivers

Operating Systems Programming for WSNs

Hardware Platform

D1 D2

D3

Dn

Operating System Services
Application(s)

I Device Drivers designed Locally

I Ad hoc Solutions for
Resource Management &
Power-Awareness

⇒ Decentralized Knowledge!

6 / 28

Context Problems

Problems

Recap

I Shared Resources

I Power Management

è Need for Global Control!

7 / 28

Context Problems

Problems

Recap

I Shared Resources

I Power Management

è Need for Global Control!

7 / 28

Context Problems

Problems

Recap

I Shared Resources

I Power Management

è Need for Global Control!

7 / 28

Context Problems

Problems

Recap

I Shared Resources

I Power Management

è Need for Global Control!

7 / 28

Outline

Outline

Preliminary Remarks

Proposal

Implementation

Summary

8 / 28

Preliminary Remarks

Outline

Context

Preliminary Remarks
Communicating Boolean Mealy Machines
From Automata to Device Drivers

Proposal

Implementation

Summary

9 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

A0A1

B0B1

Sb

aa a/b

a
Sa

b bb/c

b

10 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

A0A1

B0B1

Sb

aa a/b

a
Sa

b bb/c

b

a.b
a.b/ca.b

a.b
a.b

a.b/b

a.b/b
a.b/c
a.b/c

a.b
a.b/b

a.b a.ba.b
a.b

a.b/b,c

A1B0

A1B1

A0B1

A0B0

10 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

A0A1

B0B1

Sb

aa a/b

a
Sa

b bb/c

b

a.b
a.b/ca.b

a.b
a.b

a.b/b

a.b/b
a.b/c
a.b/c

a.b
a.b/b

a.b a.ba.b
a.b

a.b/b,c

A1B0

A1B1

A0B1

A0B0

10 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

A0A1

B0B1

Sb

aa a/b

a
Sa

b bb/c

b

A1B0

A1B1

A0B1

A0B0

a

a

a

a

a
a

a

a/c

10 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

A0A1

B0B1

Sb

aa a/b

a
Sa

b bb/c

b

A1B0

A1B1

A0B1

A0B0

a

a

a

a

a
a

a

a/c

node SE (a : b o o l) r e t u r n s (c : b o o l) ;
v a r inB0 , inB1 , inA0 , inA1 , m A0 , m B0 , A0 , B0 , b : b o o l ;
l e t

inA1 = not m A0 ; inA0 = m A0 ; b = a and inA1 ;
inB1 = not m B0 ; inB0 = m B0 ; c = b and inB1 ;
A0 = not a and inA0 o r a and inA1 ; m A0 = t r u e −> p r e A0 ;
B0 = not b and inB0 o r b and inB1 ; m B0 = t r u e −> p r e B0 ;

t e l ;

10 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Reactive Kernel

b o o l M1, M2, INIT ; // s t a t e v a r i a b l e s
v o i d i n i t () { INIT = 1 ; } // i n i t i a l i z a t i o n

10 / 28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Reactive Kernel

b o o l M1, M2, INIT ; // s t a t e v a r i a b l e s
v o i d i n i t () { INIT = 1 ; } // i n i t i a l i z a t i o n

v o i d r u n s t e p (b o o l a) {
b o o l L1 , L2 , L3 , L4 , L5 , L6 ;

L2 = INIT | M1; L5 = INIT | M2;
L4 = ˜L5 & a ; L1 = ˜L2 & L4 ;
L6 = L5 & ˜a ; L3 = L2 & ˜L4 ;

main O c (L1) ;
M1 = L3 | L1 ; M2 = L6 | L4 ;
INIT = 0 ;

}
10 / 28

Preliminary Remarks From Automata to Device Drivers

From Automata to Device Drivers

Device

Peripheral

datasheet

Sequencial code sending command x to the device

Internal device event (e.g. end of transmission, etc.)

cmdx ()

goto X

irqi

Software request

Hardware request / signal

intj

intcb / irqcb

A

B

inta / irqaa

cmdc ()

cmdb ()

cmdbb ()

C

intca / irqca

11 / 28

Preliminary Remarks From Automata to Device Drivers

From Automata to Device Drivers

Device

Peripheral

datasheet

Sequencial code sending command x to the device

Internal device event (e.g. end of transmission, etc.)

cmdx ()

goto X

irqi

Software request

Hardware request / signal

intj

intcb / irqcb

A

B

inta / irqaa

cmdc ()

cmdb ()

cmdbb ()

C

intca / irqca

Device Driver
Automaton

Software

irqaa

goto B / cmdb()

goto B / cmdbb()

irqca

B

C goto C / cmdc ()

A

irqcb

11 / 28

Proposal

Outline

Context

Preliminary Remarks

Proposal
Overview
Structure

Adaptation Layer
Control Layer
Device Driver Machines
Controller

Further Possibilities
Best Low-Power Mode
Other Possibilities

Implementation

Summary
12 / 28

Proposal Overview

Principles of the Solution

(Para-)Virtualization Concept

I Interception and Control of Software Operations

I Global Resource Control ⇒ Centralized Knowledge

I May Forbid (or Enforce) Operations

13 / 28

Proposal Overview

Principles of the Solution

(Para-)Virtualization Concept

I Interception and Control of Software Operations

I Global Resource Control ⇒ Centralized Knowledge

I May Forbid (or Enforce) Operations

D1 ‖ D2 ‖ D3 ‖ C

Hardware Platform

Software Requests

Hardware Events

Acks
Global

Properties
|= φ

13 / 28

Proposal Overview

Overview

Hardware Platform
Flash MemoryRadio Transceiver

MCU Timer(s) Interconnects

14 / 28

Proposal Overview

Overview

Hardware Platform
Flash MemoryRadio Transceiver

MCU Timer(s) Interconnects

Operating System

+ Application(s)
+ Network stack
+ . . .

Task(s)

OS Scheduler

Device Drivers

14 / 28

Proposal Overview

Overview

Hardware Platform
Flash MemoryRadio Transceiver

MCU Timer(s) Interconnects

Operating System

+ Application(s)
+ Network stack
+ . . .

Task(s)

OS Scheduler

Control Layer

Adaptation Layer

Resource Models & Controller

14 / 28

Proposal Structure

Structure: Adaptation Layer

Modified part of the Operating System

I Simplified Device Drivers

Interacts with the Control Layer

I Emitting software requests to the Control Layer

I Using on sw()

I Receiving output events from the Control Layer
I Notifications (Hardware Events, Acknowledgments)

t u r n a d c o n ()
i f (on sw (adc on) = acka)

r e t u r n s u c c e s s ;
t i m e r w a i t (some time) ; // C o n s i d e r we can
t u r n a d c o n () ; // t r y a g a i n l a t e r

I Callbacks (Virtual IRQs)

15 / 28

Proposal Structure

Structure: Adaptation Layer

Modified part of the Operating System

I Simplified Device Drivers

Interacts with the Control Layer

I Emitting software requests to the Control Layer

I Using on sw()

I Receiving output events from the Control Layer
I Notifications (Hardware Events, Acknowledgments)

t u r n a d c o n ()
i f (on sw (adc on) = acka)

r e t u r n s u c c e s s ;
t i m e r w a i t (some time) ; // C o n s i d e r we can
t u r n a d c o n () ; // t r y a g a i n l a t e r

I Callbacks (Virtual IRQs)

15 / 28

Proposal Structure

Structure: Adaptation Layer

Modified part of the Operating System

I Simplified Device Drivers

Interacts with the Control Layer

I Emitting software requests to the Control Layer

I Using on sw()

I Receiving output events from the Control Layer
I Notifications (Hardware Events, Acknowledgments)

t u r n a d c o n ()
i f (on sw (adc on) = acka)

r e t u r n s u c c e s s ;
t i m e r w a i t (some time) ; // C o n s i d e r we can
t u r n a d c o n () ; // t r y a g a i n l a t e r

I Callbacks (Virtual IRQs)

15 / 28

Proposal Structure

Structure: Adaptation Layer

Modified part of the Operating System

I Simplified Device Drivers

Interacts with the Control Layer

I Emitting software requests to the Control Layer
I Using on sw()

I Receiving output events from the Control Layer
I Notifications (Hardware Events, Acknowledgments)

t u r n a d c o n ()
i f (on sw (adc on) = acka)

r e t u r n s u c c e s s ;
t i m e r w a i t (some time) ; // C o n s i d e r we can
t u r n a d c o n () ; // t r y a g a i n l a t e r

I Callbacks (Virtual IRQs)

15 / 28

Proposal Structure

Structure: Adaptation Layer

Modified part of the Operating System

I Simplified Device Drivers

Interacts with the Control Layer

I Emitting software requests to the Control Layer
I Using on sw()

I Receiving output events from the Control Layer
I Notifications (Hardware Events, Acknowledgments)

t u r n a d c o n ()
i f (on sw (adc on) = acka)

r e t u r n s u c c e s s ;
t i m e r w a i t (some time) ; // C o n s i d e r we can
t u r n a d c o n () ; // t r y a g a i n l a t e r

I Callbacks (Virtual IRQs)

15 / 28

Proposal Structure

Overview

Hardware Platform
Flash MemoryRadio Transceiver

MCU Timer(s) Interconnects

Operating System

+ Application(s)
+ Network stack
+ . . .

Task(s)

OS Scheduler

Control Layer

Adaptation Layer

Resource Models & Controller

16 / 28

Proposal Structure

Structure: Control Layer

I Receives
I software requests
I hardware requests

(IRQs)

I Emits notifications

I Manages the Peripheral
Devices

”function call” push / pop request

software callbacks
software requests (from the adaptation layer)

hardware events from interrupt controller

Event Management Part

I Handle request queues

I Executes the Reactive Part

Reactive Part

I Device Drivers Machines
I Reactive Kernel

I Resource Operational Code

17 / 28

Proposal Structure

Structure: Control Layer

I Receives
I software requests
I hardware requests

(IRQs)

I Emits notifications

I Manages the Peripheral
Devices

”function call” push / pop request

software callbacks
software requests (from the adaptation layer)

hardware events from interrupt controller

on it()

react()

on sw()
Event Management

Event Management Part

I Handle request queues

I Executes the Reactive Part

Reactive Part

I Device Drivers Machines
I Reactive Kernel

I Resource Operational Code

17 / 28

Proposal Structure

Structure: Control Layer

I Receives
I software requests
I hardware requests

(IRQs)

I Emits notifications

I Manages the Peripheral
Devices

”function call” push / pop request

software callbacks
software requests (from the adaptation layer)

hardware events from interrupt controller

on it()

react()

on sw()
Event Management

Resource Operational Code

Resource

Automata

Controller

/g()/g()/f()

Reactive Part

Event Management Part

I Handle request queues

I Executes the Reactive Part

Reactive Part

I Device Drivers Machines
I Reactive Kernel

I Resource Operational Code

17 / 28

Proposal Structure

Principles of the Solution

(Para-)Virtualization Concept

I Interception and Control of Software Operations

I Global Resource Control ⇒ Centralized Knowledge

I May Forbid (or Enforce) Operations

18 / 28

Proposal Structure

Principles of the Solution (cont’d)

(Para-)Virtualization Concept

I Interception and Control of Software Operations

I Global Resource Control ⇒ Centralized Knowledge

I May Forbid (or Enforce) Operations

Key Elements (Boolean Mealy Machines)

I Resource Automata
I Inputs: Software Requests. . .
I Outputs: Low-Level Code, Notifications. . .

I Controller

I Inputs: Software & Hardware Requests
I Outputs: Approval Signals

Enforcing Global Properties ; Designing the Controller

18 / 28

Proposal Structure

Example of Uncontrollable Automaton
Timer

disable / timer stop()

enable / timer start()timer init()

timer restart()

timer expired

disable . enable . irqtimer expired /

disable . enable /

Disabled Counting

19 / 28

Proposal Structure

Example of Controllable Automaton
Timer

enable . okt /ackt , timer start()

disable . okt /ackt , timer stop()

timer init()

ackt , timer restart()

timer expired

disable . enable . irqtimer expired /

disable . enable . okt /

Disabled Counting

19 / 28

Proposal Structure

Exclusion of Energy-greedy States: Example
Radio Transceiver ‖ ADC

calibrate . okr /
ackr , calibrate()

irqend of packet /
exit rx(), packet received

irqend of calibration /
end of calibration

enter rx . okr /

wake up . okr /
ackr , wake up()

ackr , enter rx()

radio init()

irqfifo threshold /

irqon packet . exit rx . okr /

empty rx buffer()
irqend of packet . irqfifo threshold /

refill tx buffer()

irqend of calibration

irqtx done /end of tx

sleep . okr /
ackr , sleep()

ackr , enter tx()
enter tx . okr /

ackr , exit rx()

irqon packet / on packet()

Idle

Calibrate

Sleep

Rx

Tx

Rx Packet

adc on . oka /acka, adc on()

adc off . oka /acka, adc off()

adc init()

Off On

(enter tx + enter rx) .
adc off /okr , oka

exit rx . adc on /
okr , oka

(irqend of packet + irqtx done) .
adc on /oka

enter tx + enter rx .
adc off /oka

enter tx +
enter rx /okr

(irqend of packet
+ irqtx done

+ exit rx) .
adc on /okr

else /okr

elser /okr

enter tx + enter rx . adc on /oka

elser . adc on /okr , oka

elser = calibrate + wake up + sleep

elser . adc off /okr , oka

Free

Radio

Adc

20 / 28

Proposal Structure

Exclusion of Energy-greedy States: Example
Radio Transceiver ‖ ADC ‖ Controller

calibrate . okr /
ackr , calibrate()

irqend of packet /
exit rx(), packet received

irqend of calibration /
end of calibration

enter rx . okr /

wake up . okr /
ackr , wake up()

ackr , enter rx()

radio init()

irqfifo threshold /

irqon packet . exit rx . okr /

empty rx buffer()
irqend of packet . irqfifo threshold /

refill tx buffer()

irqend of calibration

irqtx done /end of tx

sleep . okr /
ackr , sleep()

ackr , enter tx()
enter tx . okr /

ackr , exit rx()

irqon packet / on packet()

Idle

Calibrate

Sleep

Rx

Tx

Rx Packet

adc on . oka /acka, adc on()

adc off . oka /acka, adc off()

adc init()

Off On

(enter tx + enter rx) .
adc off /okr , oka

exit rx . adc on /
okr , oka

(irqend of packet + irqtx done) .
adc on /oka

enter tx + enter rx .
adc off /oka

enter tx +
enter rx /okr

(irqend of packet
+ irqtx done

+ exit rx) .
adc on /okr

else /okr

elser /okr

enter tx + enter rx . adc on /oka

elser . adc on /okr , oka

elser = calibrate + wake up + sleep

elser . adc off /okr , oka

Free

Radio

Adc

20 / 28

Proposal Structure

Principles of the Solution (cont’d)

(Para-)Virtualization Concept

I Interception and Control of Software Operations

I Global Resource Control ⇒ Centralized Knowledge

I May Forbid (or Enforce) Operations

Key Elements (Boolean Mealy Machines)

I Resource Automata
I Inputs: Software Requests. . .
I Outputs: Low-Level Code, Notifications. . .

I Controller

I Inputs: Software & Hardware Requests
I Outputs: Approval Signals

Enforcing Global Properties ; Designing the Controller

21 / 28

Proposal Structure

Principles of the Solution (cont’d)

(Para-)Virtualization Concept

I Interception and Control of Software Operations

I Global Resource Control ⇒ Centralized Knowledge

I May Forbid (or Enforce) Operations

Key Elements (Boolean Mealy Machines)

I Resource Automata
I Inputs: Software Requests & Approval Signals
I Outputs: Low-Level Code, Notifications & Acknowledgments

I Controller
I Inputs: Software & Hardware Requests
I Outputs: Approval Signals

Enforcing Global Properties ; Designing the Controller

21 / 28

Proposal Further Possibilities

How to: Selecting the Best MCU Low-Power Mode
Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

I Reducing Energy Consumption
I . . . as usual. . .

I Wake-up time
I Latency property

I To be sure to wake up!
I Potential IRQs?

22 / 28

Proposal Further Possibilities

How to: Selecting the Best MCU Low-Power Mode
Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

I Reducing Energy Consumption
I . . . as usual. . .

I Wake-up time
I Latency property

I To be sure to wake up!
I Potential IRQs?

22 / 28

Proposal Further Possibilities

How to: Selecting the Best MCU Low-Power Mode
Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

I Reducing Energy Consumption
I . . . as usual. . .

I Wake-up time
I Latency property

I To be sure to wake up!
I Potential IRQs?

22 / 28

Proposal Further Possibilities

How to: Selecting the Best MCU Low-Power Mode
Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

I Reducing Energy Consumption
I . . . as usual. . .

I Wake-up time
I Latency property

I To be sure to wake up!
I Potential IRQs?

22 / 28

Proposal Further Possibilities

How to: Other Possibilities

I Mutual Exclusion of Accesses to Shared Resources
I Safety Property

I Controlling Guest Tasks / Resources
I ; Modification of the Guest Scheduler
I Allowing Direct Access to the Resources

I Booking Controller
I Slightly more complex (to use). . . fits in the model however

23 / 28

Proposal Further Possibilities

How to: Other Possibilities

I Mutual Exclusion of Accesses to Shared Resources
I Safety Property

I Controlling Guest Tasks / Resources
I ; Modification of the Guest Scheduler
I Allowing Direct Access to the Resources

I Booking Controller
I Slightly more complex (to use). . . fits in the model however

23 / 28

Proposal Further Possibilities

How to: Other Possibilities

I Mutual Exclusion of Accesses to Shared Resources
I Safety Property

I Controlling Guest Tasks / Resources
I ; Modification of the Guest Scheduler
I Allowing Direct Access to the Resources

I Booking Controller
I Slightly more complex (to use). . . fits in the model however

23 / 28

Implementation

Outline

Context

Preliminary Remarks

Proposal

Implementation

Summary

24 / 28

Implementation

Implementation

Proof of Concept

I Rough Implementation

I Resource Automata and Controller encoded in Lustre

I Multithreaded, Contiki

I Targetting Wsn430 Platform

Practicable?

I Extra Memory Footprint: 1.5 to 2.5 KB

I Timing Overhead: One Reaction ≈ 1,600 CPU cycles

Comparable to Solutions using Decentralized Control

25 / 28

Implementation

Implementation

Proof of Concept

I Rough Implementation

I Resource Automata and Controller encoded in Lustre

I Multithreaded, Contiki

I Targetting Wsn430 Platform

Practicable?

I Extra Memory Footprint: 1.5 to 2.5 KB

I Timing Overhead: One Reaction ≈ 1,600 CPU cycles

Comparable to Solutions using Decentralized Control

25 / 28

Summary

Outline

Context

Preliminary Remarks

Proposal

Implementation

Summary

26 / 28

Summary

Summary

Global Resource Control

I Synchronous Programming. . . in Wireless Sensor Networks!

I Many Possible Extensions ; Powerful

I Para-Virtualizaton Concept ; Flexible Framework

Implementation

I Proof of Concept

I Practicable

I Device Drivers Revealed “easier” to Develop

27 / 28

Summary

Summary

Global Resource Control

I Synchronous Programming. . . in Wireless Sensor Networks!

I Many Possible Extensions ; Powerful

I Para-Virtualizaton Concept ; Flexible Framework

Implementation

I Proof of Concept

I Practicable

I Device Drivers Revealed “easier” to Develop

27 / 28

Summary

Summary

Global Resource Control

I Synchronous Programming. . . in Wireless Sensor Networks!

I Many Possible Extensions ; Powerful

I Para-Virtualizaton Concept ; Flexible Framework

Implementation

I Proof of Concept

I Practicable

I Device Drivers Revealed “easier” to Develop

27 / 28

Summary

Summary

Global Resource Control

I Synchronous Programming. . . in Wireless Sensor Networks!

I Many Possible Extensions ; Powerful

I Para-Virtualizaton Concept ; Flexible Framework

Implementation

I Proof of Concept

I Practicable

I Device Drivers Revealed “easier” to Develop

27 / 28

Summary

Perspectives

Evaluation

I Efficiency to Reduce Power Consumption?
Soon in the Senslab Testbed. . .

Automated Control

I Using Controller Synthesis

Synchronous Approach

I “More-Lustre” Solutions?

I Monitoring

I Other Domains (Real-Time. . .)

28 / 28

Summary

Perspectives

Evaluation

I Efficiency to Reduce Power Consumption?
Soon in the Senslab Testbed. . .

Automated Control

I Using Controller Synthesis

Synchronous Approach

I “More-Lustre” Solutions?

I Monitoring

I Other Domains (Real-Time. . .)

28 / 28

Summary

Perspectives

Evaluation

I Efficiency to Reduce Power Consumption?
Soon in the Senslab Testbed. . .

Automated Control

I Using Controller Synthesis

Synchronous Approach

I “More-Lustre” Solutions?

I Monitoring

I Other Domains (Real-Time. . .)

28 / 28

Thank you

Questions ?

29 / —

Example Execution

Outline

Example Execution

30 / —

Example Execution

Example Execution

���
���
���
���

�
�
�
�

������
������
������
������

��
��
��
��
��
��
��
��

��
��
��
��

������
������
������
������

��

Guest tasks execution

enter lpm()
adc on()

enter lpm()

irqtx done

time

adc off()
enter lpm()

enter tx()

tick.run step()

enter tx adc offadc on

irqtimer1 expired

enter tx

irqtimer2 expiredirqtimer1 expired

ackr acka ackr end of txtimer2 expiredackatimer1 expired timer1 expired

on sw(adc off)
on sw(enter tx)on sw(adc on)

TnetworkingTsensing

Radio

ADC

Ctrl

CL

Guest

callbackcallbackcallback callback

Idle

Off

Free

Idle

On

Adc

Tx

Off

Radio

Off

Idle

Free

Off

Free

Idle Idle

On

AdcAdc

On

Idle Idle

On

Adc

31 / —

	Titlepage
	Context
	Wireless Sensor Networks
	Example WSN Platform
	Programming Wireless Sensor Networks: Usual Practice
	Problems

	Outline
	Preliminary Remarks
	Communicating Boolean Mealy Machines
	From Automata to Device Drivers

	Proposal
	Overview
	Structure
	Further Possibilities

	Implementation
	Summary
	Appendix
	Example Execution

