Synchronous Programming of
Device Drivers for
Global Resource Control in
Embedded Operating Systems

Nicolas BERTHIER

Supervisors: Florence MARANINCHI & Laurent MOUNIER

Synchrone Team

Synchron 2010

Synchronous Programming of
Device Drivers for
Global Resource Control in
Wireless Sensor Network Operating Systems

Nicolas BERTHIER

Supervisors: Florence MARANINCHI & Laurent MOUNIER

Synchrone Team

Synchron 2010

Context Wireless Sensor Networks

Context: Wireless Sensor Networks

° Components
° []
|-----] L et i » u-Controller (MCU)
o 9o - © P » Radio Transceiver(s)
! : ' \ » Sensors
' (N) ! Batt
. A ; » Battery
L] e ® .
. . . >
. o :): % .
: [:
’ .,’
S e S

2/28

Context Wireless Sensor Networks

Context: Wireless Sensor Networks

Components

p-Controller (MCU)

Radio Transceiver(s)

v

v

Sensors
Battery

v

v

Constraints, Problems

v

Slow Computations

v

Small Memory

v

Battery-Awareness

Context Example WSN Platform

Example WSN Hardware Platform

Wsn430

CPU

ROM

RAM

MCU

Timers

/28

Context Example WSN Platform

Example WSN Hardware Platform

Wsn430
ROM RAM |[-------. Timers
/O
CPU USARTO USART1
GPIO
MCU

28

Context Example WSN Platform

Example WSN Hardware Platform

Wsn430
ROM RAM |[-------. Timers
ou 2 USARTO || USART1
GPIO ([2c i sPI:UARTE||i SPI : UART :
MCU ... *

RN

b

28

Con

text Example WSN Platform

Example WSN Hardware Platform

Wsn430
ROM RAM |------.. Timers
/O

CPU USARTO I USARTL

GPIO |[|i 2cispiiuarTi|[i SPI: UART i

MCU * *
L
‘V‘V‘ \ 4 \ 4 \ 4 A\ 4 RS232

LEDs [|Humid. ||SID ||Radio Flash

28

Con

text Example WSN Platform

Example WSN Hardware Platform

Wsn430
ROM RAM |------.. Timers
/O

CPU USARTO I USARTL

GPIO |[|i 2cispiiuarTi|[i SPI: UART i

MCU * *
L,
‘V‘V‘ \ 4 \ 4 \ 4 A\ 4 RS232

LEDs [|Humid. ||SID ||Radio Flash

28

Example WSN Hardware Platform

Wsn430

........ Timers

Shared Resources (Hardware Modules, Buses. . .) T1

LEDs |[|Humid. [|SID [|Radio Flash

Context Example WSN Platform

Hardware Behavior: MCU Automaton
TI MSP430 Operating Modes

RST/NMI
Reset Active

» Discrete States
Time Exp\l':e[:iTOverlluw

WDTIFG =0

WDTIFG =1

RST/NMI is Reset Pin
WDT is Active

RST/NMI
NMI Active

WDT Active,
Security Key Violation

Active Mode
CPU Is Active

CPUOFF =1
SCGO Peripheral Modules Are Active

CPU Off, MCLK Off,
SMCLK On, ACLK On

CPU Off, MCLK Off, DCO
Off, ACLK Off

DC Generator Off

CPUOFF =1
SCGo

LPM3
CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

CPU Off, MCLK Off,
SMCLK On, ACLK On

LPM2
CPU Off, MCLK Off, SMCLK
DC Generator Off if DCO Off, DCO Off, ACLK On

not used in active mode

DC Generator Off

4/28

Context Example WSN Platform

Hardware Behavior: MCU Automaton
TI MSP430 Operating Modes

» Discrete States

WDTIFG =0

RST/NMI is Reset Pin
WDT is Active

» Power Consumption

RST/NMI
NMI Active

Active Mode
CPUOFF =1 CPU Is Active CPUOFF =1
5CG0=0 Peripheral Modules Are Active

315
270
225
180
135

90

45

LPMO
CPU Off, MCLK Off,
SMCLK On, ACLK On

CPU Off, MCLK Off, DCO
Off, ACLK Off W Vec=3V

B Vcc=22V

ICC/pA @ 1 MHz

CPUOFF =1
SCo DC Generator Off

LPM3
CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

CPU Off, MCLK Off,
SMCLK On, ACLK On

AM LPMO LPM2 LPM3 LPM4
Operating Modes

LPM2
CPU Off, MCLK Off, SMCLK
DC Generator Off if DCO Off, DCO Off, ACLK On

not used in active mode

DC Generator Off

4/28

Context Example WSN Platform

Hardware Behavior: Radio Automaton
Chipcon CC1100 Simplified Control State Diagram

Lowest power mode. Most
SIDLE SPWD or wake-on-fadio (WOR) register values are retained
Current consumption typ
400 nA, or typ 900 nA when
wake-on-radio (WOR) is
enabled,

Defaul state when the radio is not
receiving or transmitting. Typ. osn o
current consumption: 1.6 mA.

Used for calibrating frequency
synthesizer upfront (entering
receive or transmit mode can
then be done quicker).
Transitional state. Typ. current
consumption: 8.2 mA.

Al register values are
retained. Typ. current
consumption; 0.16 mA.

Frequency

synthesizer startup,

optional calibration,
setiling

Frequency synthesizer is tumed on, can optionally be
calibrated, and then settles to the correct frequency.
Transitional state. Typ. current consumption: 8.2 mA.

Frequency synthesizer is on,
ready to start transmitting,
Transmission starts very
quickly after receiving the STX
‘command strobe. Typ. current
consumption: 8.2 mA.

Frequency
synthesizer on,

SRX o wake-on-radio (WOR)

SFSTXON or RXOFF_MODE =01

Typ. current consumption: Typ. current

13,5 mA at -6 dBm output, consumption:

16.9 A ot 0 4B ot Transmit mode Recelve mode) SORSUIRLON o
30.7 mA at +10 dBm output. input signal) to 15.4mA

(weak input signal).

ITXOFF_MoDE = 00
Optional transitional state. Typ.
In FIFO-based modes, current consumption: 8.2mA.
transmission is tumed off and
this state entered if the TX
FIFO becomes emply in the
middle of a packet. Typ.
current consumption: 1.6 mA.

In FIFO-based modes,
reception is tumed off and tt
state entered if the RX FIFO
overflows. Typ. current
consumption: 1.6 mA.

TXFIFO
underflow

Optional freq.
synth. calibration,

RX FIFO
overflow

5/28

Context Example WSN Platform

Hardware Behavior: Radio Automaton
Chipcon CC1100 Simplified Control State Diagram

Lowest power mode. Most
SIbLE SPWD or wake.on-fado (WOR) register values are retained

enbe dono ke . i s sl e ans i\ Grlar o) AT S
Transitional state. Typ. current WoR) consumption; 0.16 mA.

‘consumption: 8.2 mA.

Frequency

synthesizer startup,

optional calibration,
setiling

Frequency synthesizer is tumed on, can optionally be
calibrated, and then settles to the correct frequency.
Transitional state. Typ. current consumption: 8.2 mA.

Frequency synthesizer is on,
ready to start transmitting,
Transmission starts very
quickly after receiving the STX
‘command strobe. Typ. current
consumption: 8.2 mA.

Frequency
synthesizer on,

SRX o wake-on-radio (WOR)

SFSTXON or RXOFF_MODE =01

Typ. current consumption: Typ. current

13,5 mA at -6 dBm output, consumption:

16.9 A ot 0 4B ot Transmit mode Recelve mode) SORSUIRLON o
30.7 mA at +10 dBm output. input signal) to 15.4mA

(weak input signal).

| TXOFF_MODE = 00 RXOFF_MODE =00

Optional transitional state. Typ.
i
RX FIFO
overflow

In FIFO-based modes, current consumption: 8.2mA.
transmission is tumed off and
this state entered if the TX
FIFO becomes emply in the
middle of a packet. Typ.
current consumption: 1.6 mA.

In FIFO-based modes,
reception is tumed off and tt
state entered if the RX FIFO
overflows. Typ. current
consumption: 1.6 mA.

TXFIFO
underflow

Optional freq.
synth. calibration,

5/28

Context Example WSN Platform

Hardware Behavior: Radio Automaton
Chipcon CC1100 Simplified Control State Diagram

Lowest power mode. Most
SIbLE SPWD or wake.on-fado (WOR) register values are retained

then be done quicker). synth. calibration/ ey or ST or SFSTXON or weke-on-radio (WOR) \ OSCillator off } T&ined: 1 yp. uiren’
Transitional state. Typ. current (WoR) consumption; 0.16 mA.

‘consumption: 8.2 mA.

Control of Global Power Consumption?

'SFSTXON or RXOFF_MODE =01

Typ. current consumption: Typ. current
138mAat-6 dBmoutput, (gt moge STXor RXOFF_MODE Receive mode) consumption:

16.9 mA at 0 dBm output, from 14.4 mA (strong
30.7 mA at +10 dBm output. SRX or TXOFF._MODE = 11 input signal) to 15.4mA

(weak input signal).
ITXOFF_MoDE = 00 RXOFF_MODE =00

Optional transitonl state. Typ.
In FIFO-based modes,
reception is turned off and tt
RXFro) state entered i the RX FIFO
overflows. Typ. current

In FIFO-based modes, current consumption: 8.2mA.
consumption: 1.6 mA.

transmission is tumed off and

this state entered if the TX TXFIFO
FIFO becomes emply in the underflow
middle of a packet. Typ.

current consumption: 1.6 mA.

Optional freq.
synth. calibration,

SFRX

5/28

Programming WSNs: Usual Practice

Applications

Operating System Support / Abstractions
» Multitasking
» System Services

» Hardware Device Drivers

6/28

Programming WSNs: Usual Practice

Applications
Operating System Support / Abstractions
» Multitasking
» System Services (Network Stack, File Systems. . .)

» Hardware Device Drivers

6/28

Programming WSNs: Usual Practice

Applications
Operating System Support / Abstractions
» Multitasking
» System Services (Network Stack, File Systems. . .)

» Hardware Device Drivers

Operating Systems Programming for WSNs

Application(s)
Operating System Services

S R SR I Y _J _____ - > Device Drivers designed Locally
AL _l/ \,a. -

'r 1 : :_ D2 | L n :
At i
| Hardware Platform |

6/28

Programming WSNs: Usual Practice

Applications
Operating System Support / Abstractions
» Multitasking
» System Services (Network Stack, File Systems. ..)

» Hardware Device Drivers

Operating Systems Programming for WSNs

Application(s)
Operating System Services

“d-g-b-A-t-d-g----4- > Device Drivers designed Locally
‘) \ (L _[33_ _:)) » Ad hoc Solutions for

e dol Lo _l{' SOt -, Resource Management &
Lo L _D2_ 1 v Dy Power-Awareness

Vi k|

1\
\

"

)
]] | {
| Hardware Platform

Programming WSNs: Usual Practice

Applications
Operating System Support / Abstractions
» Multitasking
» System Services (Network Stack, File Systems. ..)

» Hardware Device Drivers

Operating Systems Programming for WSNs

Application(s)
Operating System Services

o e . 5 S P P - > Device Drivers designed Locally
‘) \ (L _3_ i)) » Ad hoc Solutions for
A \,a_ - Resource Management &

r 1 1

LD D, D, Power-Awareness

i i L'f'l'&'

(] / AL (V] = Decentralized Knowledge!
Hardware Platform |

Context Problems

Problems

Recap

7/28

Context Problems

Problems

Recap

» Shared Resources

7/28

Context Problems

Problems

Recap
» Shared Resources

» Power Management

7/28

Context Problems

Problems

Recap
» Shared Resources

» Power Management

» Need for Global Control!

7/28

QOutline

@ Preliminary Remarks

Proposal

Implementation

Summary

8/28

QOutline

@ Preliminary Remarks
o Communicating Boolean Mealy Machines
o From Automata to Device Drivers

9/28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

10/28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

a a/b 3 a.b a.b/b
- A1B1
QaY , Tao 3 22 -
< a.b a.b/b,c
Sa a.b/b

10/28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

a a/b 3 a.b a.b/b
_ = A1B1
SOOEROE'Y =
< a.b a.b/b,c
Sa a.b/b

A1BO AOB1

= a.b/c
b b/c b _ah/?
@ @ a.b AOBO -g 55

a
Sb ~ a.

10/28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Synchronous Product

10/28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

node SE (a: bool) returns (c: bool);
var inB0O, inB1l, inAO, inAl, m_A0O, m_BO, A0, BO, b: bool;
let

inAl = not m_AQ; inA0 = m_AO0; b = a and inAl,;

inB1 not m_BO; inBO = m_BO; c = b and inB1;
A0 = not a and inAO or a and inAl; m_A0 true —> pre AOQ;

BO = not b and inBO or b and inBl; m_BO true —> pre BO;
tel;

10/28

Preliminary Remarks Communicating Boolean Mealy Machines

Communicating Boolean Mealy Machines

Reactive Kernel

bool M1, M2, INIT; // state variables
void init () { INIT =1; } // initialization

10/28

Communicating Boolean Mealy Machines

Reactive Kernel

bool M1, M2, INIT; // state variables
void init () { INIT =1; } // initialization

void run_step (bool a) {
bool L1, L2, L3, L4, L5, L6;

L2 = INIT | ML; L5 = INIT | M2;

L4 = L5 & a; Ll = L2 & L4;
L6 = L5 & 7a; L3 = L2 & "L4;
main_O_c (L1);

ML = L3 | LI; M2 = L6 | L4;

INIT = 0;

10/28

Preliminary Remarks From Automata to Device Drivers

From Automata to Device Drivers

él datasheet

inty [irqaa

intca / irdca

intep / irqcp

A

Peripheral
Device

cmdy() Sequencial code sending command x to the device

goto X Software request
irg; Hardware request / signal
int; Internal device event (e.g. end of transmission, etc.)

11/28

From Automata to Device Drivers

Preliminary Remarks

From Automata to Device Drivers

él datasheet

inty

intca / irqca

intep / irqcp

A

Peripheral
Device

/ irqaa

Software
) Device Driver
I1qaa Automaton

goto B / cmdy()

goto B / ecmdps()

goto C / emd.()

cmdy() Sequencial code sending command x to the device
goto X Software request

irg; Hardware request / signal

int; Internal device event (e.g. end of transmission, etc.)

11/28

QOutline

@ Proposal

o Overview

o Structure
o Adaptation Layer
o Control Layer
o Device Driver Machines
o Controller

o Further Possibilities
o Best Low-Power Mode
o Other Possibilities

12/28

Proposal Overview

Principles of the Solution

(Para-)Virtualization Concept

> Interception and Control of Software Operations
> Global Resource Control = Centralized Knowledge

» May Forbid (or Enforce) Operations

13/28

Proposal Overview

Principles of the Solution

(Para-)Virtualization Concept

> Interception and Control of Software Operations
> Global Resource Control = Centralized Knowledge

» May Forbid (or Enforce) Operations

{Software Requests)

Dy || D || D3| C : = ¢ Global
7....3 f (..... X.' Properties
Hardware Platform Hardware Events

13/28

Proposal Overview

Overview
'\ MCU \, '\ Timer(s) 1----- ! Interconnects \,
o T S e M h
Hardware Platform \ Radio Transceiver fro \ Flash Memory_,

14 /28

Proposal Overview

Overview

Operating System Task(s)
" Application(s& o .
+ Network stac ! OS Scheduler !
+ !
U uipu f'

Device Drivers

'\ MCU \, '\ Timer(s) 1----- ! Interconnects \,
mPococoocoo oo N i
Hardware Platform \ Radio Transceiver 1+ Flash Memory _

14 /28

Proposal Overview

Overview

Operating System Task(s)

+ Application(sa -------------- e e e — - - <
+ Network stac
+ ... | !

i Adaptation Layer

Control Layer Resource Models & Controller

Hardware Platform N - Y

14 /28

Proposal Structure

Structure: Adaptation Layer
Modified part of the Operating System

» Simplified Device Drivers

15/28

Proposal Structure

Structure: Adaptation Layer
Modified part of the Operating System

» Simplified Device Drivers

Interacts with the Control Layer

» Emitting software requests to the Control Layer

15/28

Proposal Structure

Structure: Adaptation Layer
Modified part of the Operating System

» Simplified Device Drivers

Interacts with the Control Layer

» Emitting software requests to the Control Layer

> Receiving output events from the Control Layer
» Notifications (Hardware Events, Acknowledgments)

15/28

Proposal Structure

Structure: Adaptation Layer
Modified part of the Operating System

» Simplified Device Drivers

Interacts with the Control Layer

» Emitting software requests to the Control Layer
» Using on_sw()

» Receiving output events from the Control Layer

» Notifications (Hardware Events, Acknowledgments)
turn_adc_on ()
if (on_sw (adc_on) = ack,)
return success;
timer_wait (some time); // Consider we can
turn_adc_on (); // try again later

15/28

Proposal Structure

Structure: Adaptation Layer
Modified part of the Operating System

» Simplified Device Drivers

Interacts with the Control Layer

» Emitting software requests to the Control Layer
» Using on_sw()

» Receiving output events from the Control Layer

» Notifications (Hardware Events, Acknowledgments)
turn_adc_on ()
if (on_sw (adc_on) = ack,)
return success;
timer_wait (some time); // Consider we can
turn_adc_on (); // try again later
» Callbacks (Virtual IRQs)

15/28

Proposal Structure

Overview

Operating System

+ Application(sa -------------- e e e — - - <
+ Network stac !

+ ... X !
i Adaptation Layer :

Control Layer

-— -

Hardware Platform

- —— e -

16/28

Proposal Structure

Structure: Control Layer

software requests (from the adaptation layer)

» Receives soﬁwaredcallbacks

&

» software requests
> hardware requests

(IRQs)

» Emits notifications

» Manages the Peripheral Z

Devices hardware events from interrupt controller

—> "function call” - % push / pop request

17/28

Proposal Structure

Structure: Control Layer

software requests (from the adaptation layer)

» Receives A _ ___ software callbacks
&Event Manageinent
» software requests on.sw()
> hardware requests
(|RQS) reac
» Emits notifications
on_itf) a
> Manages the Peripheral Z A
Devices \;\ hardware events from interrupt controller
—> "function call” - % push / pop request

Event Management Part

» Handle request queues

17/28

Proposal Structure

Structure: Control Layer

software requests (from the adaptation layer)

» Receives A _ ___ software callbacks
&Event Manageent [
» software requests on.sw() Reactive Part
> hardware requests
(lRQS) Controller
....Resource |
» Emits notifications Automata
on_itf) /5(/g(
. R ional
> Manages the Perlpheral Z esource Operational Code
Devices \’; hardware events from interrupt controller
—> "function call” - % push / pop request
Event Management Part Reactive Part

» Device Drivers Machines
» Reactive Kernel

» Handle request queues

» Executes the Reactive Part
» Resource Operational Code

17/28

Proposal Structure

Principles of the Solution

(Para-)Virtualization Concept

> Interception and Control of Software Operations
> Global Resource Control = Centralized Knowledge

» May Forbid (or Enforce) Operations

18/28

Principles of the Solution (cont’d)

(Para-)Virtualization Concept

> Interception and Control of Software Operations
» Global Resource Control = Centralized Knowledge

» May Forbid (or Enforce) Operations

Key Elements (Boolean Mealy Machines)

» Resource Automata

» Inputs: Software Requests. ..
» Outputs: Low-Level Code, Notifications. ..

» Controller

18/28

Proposal Structure

Example of Uncontrollable Automaton

Timer

disable . enable /
timer_restart()

timer_init(enable / timer_start()
Disabled)¢ —>(Countin

disable / timer_stop()

disable . enable . irQiimer_expired /|
timer_expired

19/28

Proposal Structure

Example of Controllable Automaton

Timer
disable . enable . ok; /
ack:, timer_restart()
timer_init(enable . ok; /ack:, timer_start(

Disabled)¢ —>(Countin
disable . ok; /ack:, timer_stop(

disable . enable . irqiimerexpired /
timer_expired

19/28

Proposal Structure

Exclusion of Energy-greedy States: Example
Radio Transceiver || ADC

irend of calibration |
end_of_calibration

wake_up . ok, 6

sleep . ok, ack., wake_up

ack,, sleepl

calibrate . ok,

ack,, calibratel fifo_threshold /.

re ill_tx_buffer()
enter_tx . ok,
ack,, enter_tx|

radio_init(

irGux_done /€nd_of tx

enter_rx . ok,
ack,, enter_rx()

. irGend of packet |
exit_rx(), packet_received

irQon_packet - €Xit_rx . oky
ack,, exit_rx

irqon_packet / on_packet() '

iFQend-of -packet - 1Gfifo_threshold |
empty_rx_buffer

ade_init(adc_on . ok, /ack,, adc_on()

adc_off . ok, /ack,, adc_off()

20/28

Proposal Structure

Exclusion of Energy-greedy States: Example

Radio Transceiver || ADC || Controller

irQend_of calibration |
end_of_calibration

wake_up . ok,
Rt ack,, wake_up()
calibrate . ok, " P irg
i fifothreshold
ack:, calibrate refllrlutx'i)su?Fer()
enter_tx . ok,

ack,. _enter_tx

radio_init(

irGux_done /€nd_of tx

enter_rx . ok, /
ack,, enter_rx()

. irGend of packet |
exit_rx(), packet_received

irQon_packet - €Xit_rx . oky
ack,, exit_ rx()

irqon_packet / on_packet() '

iFQend-of -packet - 1Gfifo_threshold |
empty_rx_buffer

adc,init(i adc_on . ok, /ack,, adc_on()

adc_off . ok, /ack,, adc_off()

else, = calibrate + wake_up + sleep

else /ok,
[okr else, . adc_on /ok;, ok,
enter_tx + enter_rx . adc_on ok,

enter_tx + enter_rx .
adc_off /ok,

adc_off /ok,, ok,

else, [ok, -¢

(irqend_of packet + irQex_done) -
dc_ ok,

else, .

enter_tx +
enter_rx [ok,

('f Gend_of _packet
+ irGex_done
+ exitrx) .

adc_on /ok. exit_rx . adc_on /

(enter_tx + enter_rx) .
adc_off /ok:, ok,

20/28

Principles of the Solution (cont’d)

(Para-)Virtualization Concept

> Interception and Control of Software Operations
» Global Resource Control = Centralized Knowledge

» May Forbid (or Enforce) Operations

Key Elements (Boolean Mealy Machines)

» Resource Automata

» Inputs: Software Requests. ..
» Outputs: Low-Level Code, Notifications. ..

» Controller

21/28

Principles of the Solution (cont’d)

(Para-)Virtualization Concept

> Interception and Control of Software Operations
» Global Resource Control = Centralized Knowledge

» May Forbid (or Enforce) Operations

Key Elements (Boolean Mealy Machines)

» Resource Automata

» Inputs: Software Requests & Approval Signals
» Outputs: Low-Level Code, Notifications & Acknowledgments

» Controller

> Inputs: Software & Hardware Requests
» Outputs: Approval Signals

Enforcing Global Properties ~ Designing the Controller

21/28

Proposal

Further Possibilities

How to: Selecting the Best MCU Low-Power Mode

ICC/HA @ 1 MHz

CPU Off, MCLK Off,
SMCLK On, ACLK On

RSTINMI is Reset Pin
WDT is Active

Active Mode
PU Is Active
Peripheral Modules Are Active

Koff

DC Generator Off

SMCLK On, ACLK On

Off, DCO Off, ACLK On

DC Generator Offif DCO
not used in active mode

340

Off, DCO Off, ACLK On

DC Generator Off

315
270
225
180
135

9

45

@ Vcc=3V
W Vcc=22V

AM LPMO LPM2 LPM3 LPM4
Operating Modes

22/28

Pri

RSTINMI is Reset Pin
WDT is Active

Active Mode
PU Is Active
Peripheral Modules Are Active

CPU Off, MCLK Off,
SMCLK On, ACLK On

CPU Off, MCLK Off, DCO
Off, ACLK Off

DC Generator Off

M
CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

CPU Off, MCLK Off,
SMCLK On, ACLK On

DC Generator Offif DCO
not used in active mode

340

Off, DCO Off, ACLK On DC Generator Off

315
270
225
180
135

9

45

@ Vcc=3V
W Vcc=22V

ICC/HA @ 1 MHz

AM

LPM2 LPM3
Operating Modes

LPM4

osal

Further Possi

» Reducing Energy Consumption
» ...asusual...

22/28

Pri

osal

Further Possibilities

How to: Selecting the Best MCU Low-Power Mode

ICC/HA @ 1 MHz

woT
‘Time Expired, Overfiow

WDT Active,
Securiy Key Violation

CPU Off, MCLK Off,
SMCLK On, ACLK On

MI
Reset Active

WOTIFG =1

CPU Off, MCLK Off,
SMCLK On, ACLK On

DC Generator Offif DCO
not used in active mode

315
270
225
180
135

9

45

340

AM

LPMO

Peripheral Modules Are Active

Off, DCO Off, ACLK On

WOTIFG =0

RSTINMI is Reset Pin
WDT is Active

Active Mode
PU Is Active

LPM2 LPM3
Operating Modes

Off, DCO Off, ACLK On

RSTINMI
NMI Active

CPUOFF=1

DC Generator Off

@ Vcc=3V
W Vcc=22V

LPM4

» Reducing Energy Consumption
» ...asusual...
» Wake-up time

» Latency property

22/28

sal

Further Possibilities

How to: Selecting the Best MCU Low-Power Mode

woT

‘Time Expired, Overfiow WDTIFG =0

WOTIFG = 1
RSTINMI is Reset Pin

WDT is Active
NN
NMI Active

Active Mode
PU Is Active
Peripheral Modules Are Active

WDT Active,
Security Key Violation

CPUOFF=1

CPUOFF=1

CPU Off, MCLK Off, DCO
Off, ACLK Off

CPU Off, MCLK Off,
SMCLK On, ACLK On

DC Generator Off

Off, DCO Off, ACLK On

DC Generator Offif DCO DC Generator Off
not used in active mode

340

W Vcc=3V
W Vcc=22V

ICC/pA @ 1 MHz
e
@
3

AM LPMO LPM2 LPM3 LPM4
Operating Modes

Reducing Energy Consumption

>
> ...asusual. ..
» Wake-up time
» Latency property
» To be sure to wake up!

» Potential IRQs?

22/28

How to: Other Possibilities

» Mutual Exclusion of Accesses to Shared Resources
» Safety Property

23/28

How to: Other Possibilities

» Mutual Exclusion of Accesses to Shared Resources
» Safety Property

» Controlling Guest Tasks / Resources

» ~> Modification of the Guest Scheduler
» Allowing Direct Access to the Resources

23/28

How to: Other Possibilities

» Mutual Exclusion of Accesses to Shared Resources
» Safety Property

» Controlling Guest Tasks / Resources

» ~> Modification of the Guest Scheduler
» Allowing Direct Access to the Resources

> Booking Controller
» Slightly more complex (to use)... fits in the model however

23/28

QOutline

o Implementation

24 /28

Implementation

Implementation

Proof of Concept

> Rough Implementation

> Resource Automata and Controller encoded in LUSTRE
» Multithreaded, CONTIKI

> Targetting Wsn430 Platform

25 /28

Implementation

Implementation

Proof of Concept

v

Rough Implementation

Resource Automata and Controller encoded in LUSTRE

v

v

Multithreaded, CONTIKI
Targetting Wsn430 Platform

v

Practicable?

> Extra Memory Footprint: 1.5 to 2.5 KB
» Timing Overhead: One Reaction =~ 1,600 CPU cycles

Comparable to Solutions using Decentralized Control

25 /28

QOutline

© Summary

26/28

Summary

Summary

Global Resource Control

» Synchronous Programming. .. in Wireless Sensor Networks!

27/28

Summary

Global Resource Control

» Synchronous Programming. .. in Wireless Sensor Networks!

» Many Possible Extensions ~» Powerful

27 /28

Summary

Global Resource Control

» Synchronous Programming. .. in Wireless Sensor Networks!
» Many Possible Extensions ~» Powerful
» Para-Virtualizaton Concept ~> Flexible Framework

27/28

Summary

Global Resource Control

» Synchronous Programming. .. in Wireless Sensor Networks!
» Many Possible Extensions ~» Powerful
» Para-Virtualizaton Concept ~> Flexible Framework

Implementation
» Proof of Concept
» Practicable

» Device Drivers Revealed “easier’ to Develop

27/28

Perspectives

Evaluation

» Efficiency to Reduce Power Consumption?
Soon in the Senslab Testbed. . .

28/28

Perspectives

Evaluation

» Efficiency to Reduce Power Consumption?
Soon in the Senslab Testbed. . .

Automated Control

» Using Controller Synthesis

28/28

Perspectives

Evaluation
» Efficiency to Reduce Power Consumption?
Soon in the Senslab Testbed. . .
Automated Control

» Using Controller Synthesis

Synchronous Approach

» “More-Lustre” Solutions?
» Monitoring
» Other Domains (Real-Time. ..)

28/28

Thank you

Questions 7

20/ —

.
QOutline

o Example Execution

30/ —

Example Execution

Example Execution

~ [A7 1§ 7
~
\2 I. A2 I. A2 I.
callback callback callback n_sw(adc off) callback
on_sw(adc_on) on,sw(enter t)%]
! |
t/merHexplred ! aqka t/mergﬁexprred t/men _expired ‘ al k, ! aqka ‘ aqk, end,pf tx
§ ad om | ent%r tx adc/ ‘ofﬁent%r tx
CL
: \ |
: \ |
oc | O |-+ O -
: \ |
Radio- - 1 ddie> - Qdle)- -+ - i - t'n'ne
L 1 v *
| enter_| Ipm \ | enter Ipm enter_lpm()
| adc_on(| | adc_off \
irqtimer, _expired e"tef tx() irqex_done

irQtimer, _expired

’rqymery expired

l:l tick.run_step()

l:l m Guest tasks execution

31/—

	Titlepage
	Context
	Wireless Sensor Networks
	Example WSN Platform
	Programming Wireless Sensor Networks: Usual Practice
	Problems

	Outline
	Preliminary Remarks
	Communicating Boolean Mealy Machines
	From Automata to Device Drivers

	Proposal
	Overview
	Structure
	Further Possibilities

	Implementation
	Summary
	Appendix
	Example Execution

