
K-periodically Routed (extended)
Marked/Event Graphs

10/12/2010 Synchron seminar 1

Anthony Coadou
Julien Boucaron

Robert de Simone
Benoît Ferrero

Introduction

• Modern architectures: multicore, networks of processors, with on-chip
network interconnects

• Many modern algorithms (multimedia) described also as streaming
dataflow functional networks

• Compilation goal: adjust the application to the architecture (mapping)

Formal models and methods dedicated to this (contem porary) problem ?

10/12/2010 2

Formal models and methods dedicated to this (contem porary) problem ?

10/12/2010 3

10/12/2010 4

DataFlow Process Networks

•Original intent (first specification semantics, self-timed):
–Computation blocks executed/performed as soon as they get enough input data

•But computers usually do not work that way (asynchronous circuits?),

ck ck’

•But computers usually do not work that way (asynchronous circuits?),
–so control in the form of activation clocks need to be introduced

� second, scheduled semantics
•Issues:

–ensure that data arrivals and computation activation do match
–optimize buffer sizes, optimize latencies,

•One main property: Conflict Freeness

Intermediate stages, between self-timed/asynchronous and totally timed
(strict order) � Logical time (several time threads partially related).

DataFlow Process Networks

•Many variants:
– Event Graphs (Petri Net subclass, 1- 1 channels for places)
– SDF extension (packet sizes for consumption/production, equalization issue)– SDF extension (packet sizes for consumption/production, equalization issue)
– BDF, CSDF (introducing control variants and switches)
– Kahn PNs (implicit sequential algorithms in computation nodes)
– Internal computations with similar features: nested loops, polyhedral models
– Use in HLS: Pico Express/Synfora, Tensilica
– Historically, several INRIA efforts (cf. other talks)

Process Networks

• Purely data-flow models (no control switches): Event/Marked Graphs, SDF

Main issue: scheduling
� from self-timed to rigidly clocked (possibly multiclock)
� regular (ultimately k-periodic) ASAP runs
-> optimization according to various criteria

• Models allowing (conflict-free) control switches: BDF, CycloStaticDF, Kahn PN

10/12/2010 7

Additional issues: routing
� optimization: from ideal communication structures to specific network topologies

Conflict–freeness
� Forbids choices based on input token availability.
� entails monotonicity (Kahn PNs), confluence (CCS), latency insensitivity
� all runs are just different ordering of the same partilly ordered trace

���� Not true of general Petri Nets, Synchronous Languages (instantaneous preemption)

Process Network based tools

• Ptolemy (UC Berkeley)
• Synfora Pico Express
• StreamIt
• AutoPilot
• SDF3

10/12/2010 8

• Compaan
• PN
• K-Passa (EPI Aoste)
• Gaspard2/Array-OL (EPI DaRT)

link with polyedra parallel compiling techniques ?? ?

Determinism ? Conflict-freeness !

•It states that an enabled computation must eventually be performed

Counterexamples:
– Choice between input guards (channels) in CSP
– Absence testing in Esterel (abort await S do P when T); interrupts
– Petri Nets conflicts on a shared places (so not a channel)

•It provides:
– Confluence (in Process Algebras): diamond property, independence
– Monotonicity (in Kahn Proces Networks), compositional
– Endo/isosochrony
– Latency Insensitivity : elastic design, important for modular SoC design

•In essence, all potential behaviors are just differ ent schedules of
same functional one, partially ordered

– Many theoretical results on static optimal scheduling and buffer sizing
(k-periodic modulo scheduling, max-plus algebra, N-synchronous models)

Ultimately k-periodoc scheduling

f
1111

33331111

2222,1

1111,1

1111,11111
bf

ef
111111111111

(10101)(10101)(10101)(10101)
(1(1(1(10101010110)10)10)10)

(01011)(01011)(01011)(01011)

(1(1(1(11010101010)10)10)10)

[0[0[0[00000111100000000]]]]

g
1111,1

ef

(11010)(11010)(11010)(11010)

(01101)(01101)(01101)(01101)

Role of KREGs
• Data-flow streaming computations
• Interconnect networks with (predictible, static) routing
• Generated from nested loop programs , NoCs, Kahn networks

Issues
• liveness (absence of deadlocks)
• safety (finite buffering of interconnect channels)

10/12/2010 11

• safety (finite buffering of interconnect channels)
• transformations and optimality of routing and network topology

depend on:

• precise mathematical semantic formulation (firing rule)
• initial (and latter) token allocations
���� topic of this talk

Nx

…in(Nx)

out(Nx) …

*

*

compute/execution node

0 (then?) (else?) 1

select nodec

Process network tradition

Main feature:
switching conditions c are

new

10/12/2010 12

Nc

out(Nx) …*
copy node

0 (then?) (else?) 1

c merge node
interconnects

• explicitely computed (off-line)

• ultimately k-periodic

i.e., c is of the form u.(v) ωωωω with u, v binary words
indicating switching/routing directions,

• u initial/transient part

• v periodic/steady part

ex: 1100.(10000000)

Interconnect modeling and optimization

•On-Chip Networks

•Switching conditions of
Select/Marge nodes can configure

different communication paths,

C2

SelectSelectSelectSelect node

different communication paths,
possibly overlapping in time

•Predictable routing schemes
(ultimately k-periodic) will match

the temporal schedules obtained
in classical Process Network

scheduling theory

C1 C3

C4 MergeMergeMergeMerge node

C2

one possible routing configuration

1111

0000
0000

0000

0000

1111

1111

1111

C1 C3

C4

0000

0000

0000
0000

1111

1111

1111

1111

C2

another possible configuration
11111111

11111111
1111 1111

0000 0000

0000

0000

0000
0000

0000

C1 C3

C4

1111

0000

1111
1111 1111

11111111

0000

0000 0000
0000

0000

Interconnect transformation illustrated

u0 u1 u0 u1

(0101)ω (01)ω (10)ω

(1010)ω

10/12/2010 16

v0 v1 v0 v1

(0110)ω (01)ω (10)ω

(1001)ω

Facts
• KREG traffic balance (token production = token cons umption)

can be checked by abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
(construction sketch later)

• Regularity of switching patterns allows to detect cyclicity, to fold
back into finite (quasi) -Marked Graphs

new

10/12/2010 17

back into finite (quasi) -Marked Graphs

• Two notions of equivalences can be defined, one equates the
external token flows, one takes into consideration the internal traffic
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for
the first equivalence

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG
graph crosses a compute node (not essential restrictions, just make the presentation simpler)

Counter-example: production/consumption mismatch

(011)ω (011)ω

0 01 1

10/12/2010 18

(01)ω (01)ω
00 11

Tokens accumulate in the “1” channels (to-third production, one half consumption)

SDF abstraction

s

u1u0

u v1v0

v

s

p

p-k k p

p-k k

10/12/2010 19

• Keep the EventGraph parts unchanged (computation/transportation nodes)
• Replace merge/select nodes by weighted nodes averaging consumption production

on the period of the switching pattern s

u v1v0

p = |s|
k = |s|1

Facts
• KREG traffic balance (token production = token cons umption)

can be checked by abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
expanding computation node occurrences.
Works by collecting exhaustively every executions in a single model. Not
only structural, depends heavily on the initial markings).

new

10/12/2010 20

only structural, depends heavily on the initial markings).

Tracing the flow of successive tokens

N1 N2 Nz
… source copy (only outgoing channels)

p
p

∀∀∀∀q,∀∀∀∀m, ∃∃∃∃!p,∃∃∃∃!n : p(n) causes/becomes q(m)

nth token occurrence

10/12/2010 21

N’1 N’2 N’z
…

target copy (only incoming channels)

q

builds a dependency graph: p(n) > q(m)

(infinite, acyclic)

then an unfolded Marked graph with

Ni
(n) � Nj

(m) iff p(n) > q(m) for p in Ni
●, q in ●Nj

(and additionally Ni
(n) � Ni

(n+1))mth token occurrence

Facts
• KREG traffic balance (token production = token cons umption)

can be checked by abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
• Regularity of switching patterns allows to detect cyclicity, to fold

back into finite (quasi)-Marked Graphs

new

10/12/2010 22

• Two notions of equivalences can be defined, one equates the
external token flows, one takes into consideration the internal traffic
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for
the first equivalence

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG
graph crosses a compute node (not essential restrictions, just make the presentation simpler)

Resulting quasi-marked graph

Initial acyclic MG

10/12/2010 23

periodic « single-cycle » MG

1.(0) ω 1.(0) ω1.(0) ω

Facts
• KREG traffic balance (token production = token cons umption)

can be checked by abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
• Regularity of switching patterns allows to detect cyclicity, to fold

back into finite (quasi)-Marked Graphs

new

10/12/2010 24

• Two notions of equivalences can be defined, one equates the
external token flows, one takes into consideration the internal traffic
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for
the first equivalence

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG
graph crosses a compute node (not essential restrictions, just make the presentation simpler)

Interconnect transformation illustrated

u0 u1 u0 u1

(0101)ω (01)ω (10)ω

(1010)ω

10/12/2010 25

v0 v1 v0 v1

(0110)ω (01)ω (10)ω

(1001)ω

Two equivalences

• First one directly based on isomorphism of expanded Event Graphs

• Second uses a more refined dependency graph, with:

p(n) >> q(m) if ∃r,i,j, p(n) > r(i) ∧ q(m) > r(i+j)

10/12/2010 26

(sequentiality of token traffic in intermediate channels, so that data precedence
and interleavings are preserved)

Facts
• KREG traffic balance (token production = token cons umption)

can be checked by abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
• Regularity of switching patterns allows to detect cyclicity, to fold

back into finite (quasi)-Marked Graphs

new

10/12/2010 27

• Two notions of equivalences can be defined, one equates the
external token flows, one takes into consideration the internal traffic
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for
the first equivalence (so a network can be transformed in any equivalent
one in a finite number of steps)

Algebraic rules and axiomatisation

• We shall define transformations which preserve functionality but not the
timing (similar to retiming/recycling)

• The main goal is to figure the proper auxiliary transformations on
switching patterns which will realize the same data transport (through a
different link topology)

• Normal forms can be defined (but large, by expansion)

10/12/2010 28

• Normal forms can be defined (but large, by expansion)

• We first introduce transformations on switching patterns (On / When)
and their properties

• We then introduce the transformations on Merge/Select patterns

Normal forms (point-to-point links)

C1

C1 C2 C_n

1s1

1s2

2s1

2s2

ns1

ns2

1m1 2m1 n-1m

1b1 2b1
nb1

1b

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗ ∗∗∗∗

10/12/2010 29

C_n

C2

1sn-1
2sn-1

nsn

m1 n-1m1

1m2 2m2 n-1m2

1mn 2mn n-1mn

1b1 2b1
nb1

1b1 2b1
nb1

∗∗∗∗

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗
∗∗∗∗

on/when operators

(0.u) on v = 0.(u on v)
(1.u) on x.v = x.(u on v)

(u on v) is a subclock of u

(x.u) when (0.v) = u when v
(x.u) when (1.v) = x. (u when v)

clock filter

10/12/2010 30

(x.u) when (1.v) = x. (u when v)

when u subclock of v, returns the filter

((u on v) when u) = v
if u subclock v, then u = (v on (u when v))

on effects

(0.u) on v = 0.(u on v)
(1.u) on x.v = x.(u on v)

u

uinit = 001

     . . .

ustat = 01001

0 0 0 0 0 0 0 011 1 1 1

10/12/2010 31

u on v

0 0 0 0 0 0 0 011 1 1 1

v

0 0 0 0 0 0 0 001 1 1 0

1 1 10 0

when effects

(x.u) when (0.v) = u when v
(x.u) when (1.v) = x. (u when v)

v

uinit = 001

     . . .

ustat = 01001

0 0 0 0 0 0 0 011 1 1 1

most meaningful
whenever u subclock of
v

10/12/2010 32

u

0 0 0 0 0 0 0 011 1 1 1

u when v

x x x x x x x x01 1 1 0

1 1 10 0

Transitivity of Selects

10/12/2010 33

Transitivity of Merges

10/12/2010 34

Selects up across Merges

10/12/2010 35

A basic form

• Simplest, and disposable, when b=c (and
initially empty inside)

• If throughputs match on the (hyper)-period,
but order differ, may require buffering

� then tokens are bypassed by others
• Buffering remains bounded and predictable

if ever b and c fixed and known.

10/12/2010 36

if ever b and c fixed and known.

• General permutations may require a
sequence (or a combinaison) of such
elements

� Even & Pnueli Permutation Graphs (1971)
� Optimization of the physical realization of

the permutation using basic forms.

Normal forms (point-to-point links)

C1

C1 C2 C_n

1s1

1s2

2s1

2s2

ns1

ns2

1m1 2m1 n-1m

1b1 2b1
nb1

1b

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗ ∗∗∗∗

10/12/2010 37

C_n

C2

1sn-1
2sn-1

nsn

m1 n-1m1

1m2 2m2 n-1m2

1mn 2mn n-1mn

1b1 2b1
nb1

1b1 2b1
nb1

∗∗∗∗

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗
∗∗∗∗

Facts
• KREG traffic balance (token production = token cons umption)

can be checked by abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
(construction sketch later)

• Regularity of switching patterns allows to detect cyclicity, to fold
back into finite (quasi)-Marked Graphs
���� transient and steady phase can be expanded into MGs, remaining

new

10/12/2010 38

���� transient and steady phase can be expanded into MGs, remaining
issue is to glue them back together.

• Two notions of equivalences can be defined, one equates the
external token flows, one takes into consideration the internal traffic
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for
the first equivalence

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG
graph crosses a compute node (not essential restrictions, just make the presentation simpler)

Remaining issues

• Smoothness
– Schedules with binary words as close as possible to the mean

throughput (mechanical words) are feasible. Desirable ?
– Extension to smooth routings ? How to report that data following a same

route in burst mode may be beneficial ?

• Dependencies brought back to inputs: contracts ?

• Extension of the conflict-freeness property in the case of Esterel ?
– Start P when S
– Suspend P from S_begin to S_end
– Abort P when S

10/12/2010 39

!!Tha kn you

10/12/2010 40

Questions ?

Process Networks

• Conflict–freeness
Usual important requirement.
Forbids choice between alternative local computatio ns based on input
token availability.
Consequences: monotonicity (Kahn PNs), confluence (CCS), latency
insensitivity (once enable, a behavior will eventually be performed, w/ a
natural fairness assumption)
Not true of general Petri Nets, Synchronous Languages (instantaneous

10/12/2010 41

Not true of general Petri Nets, Synchronous Languages (instantaneous
preemption) � explicit absence notification in distributed implementations

• Scheduling
Because of conflict-freeness, all computation traces are essentially the same
partial-order under different timings. One specific ASAP representative.
Rich theory of static regular scheduling (k-periodic schedules)

Self-timed ���� clocked

