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Introduction

• Modern architectures: multicore, networks of processors, with on-chip 
network interconnects

• Many modern algorithms (multimedia) described also as streaming 
dataflow functional networks

• Compilation goal: adjust the application to the architecture (mapping)

Formal models and methods dedicated to this (contem porary) problem ?
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DataFlow Process Networks

•Original intent (first specification semantics, self-timed):
–Computation blocks  executed/performed as soon as they get enough input data

•But computers usually do not work that way (asynchronous circuits?), 

ck ck’

•But computers usually do not work that way (asynchronous circuits?), 
–so control in the form of activation clocks need to be introduced

� second, scheduled semantics
•Issues:

–ensure that data arrivals and computation activation do match
–optimize buffer sizes, optimize latencies, 

•One main property: Conflict Freeness

Intermediate stages, between self-timed/asynchronous and totally timed 
(strict order) � Logical time (several time threads partially related).



DataFlow Process Networks

•Many variants:
– Event Graphs (Petri Net subclass, 1- 1 channels for places)
– SDF extension (packet sizes for consumption/production, equalization issue)– SDF extension (packet sizes for consumption/production, equalization issue)
– BDF, CSDF (introducing control variants and switches)
– Kahn PNs (implicit sequential algorithms in computation nodes)
– Internal computations with similar features: nested loops, polyhedral models
– Use in HLS: Pico Express/Synfora, Tensilica
– Historically, several INRIA efforts  (cf. other talks)



Process Networks 

• Purely data-flow models (no control switches):  Event/Marked Graphs, SDF

Main issue: scheduling
� from self-timed to rigidly clocked (possibly multiclock)
� regular (ultimately k-periodic) ASAP runs
-> optimization according to various criteria

• Models allowing (conflict-free) control switches: BDF, CycloStaticDF, Kahn PN
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Additional issues: routing
� optimization: from ideal communication structures to specific  network topologies

Conflict–freeness
� Forbids choices based on input token availability.
� entails monotonicity (Kahn PNs), confluence (CCS), latency insensitivity
� all runs are just different ordering of the same partilly ordered trace 

���� Not true of general Petri Nets, Synchronous Languages (instantaneous preemption) 



Process Network based tools

• Ptolemy (UC Berkeley)
• Synfora Pico Express
• StreamIt
• AutoPilot
• SDF3
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• Compaan
• PN
• K-Passa (EPI Aoste)
• Gaspard2/Array-OL (EPI DaRT)

link with polyedra parallel compiling techniques ?? ?



Determinism ?  Conflict-freeness !

•It states that an enabled computation must eventually be performed

Counterexamples:
– Choice between input guards (channels) in CSP
– Absence testing in Esterel (abort  await S do P when T);  interrupts
– Petri Nets conflicts on a shared places (so not a channel)

•It provides:
– Confluence (in Process Algebras): diamond property, independence
– Monotonicity (in Kahn Proces Networks), compositional
– Endo/isosochrony
– Latency Insensitivity : elastic design, important for modular SoC design

•In essence, all potential behaviors are just differ ent schedules of 
same functional one, partially ordered

– Many theoretical results on static optimal scheduling and buffer sizing
(k-periodic modulo scheduling, max-plus algebra, N-synchronous models)



Ultimately k-periodoc scheduling
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Role of KREGs
• Data-flow streaming computations
• Interconnect networks with (predictible, static) routing
• Generated from nested loop programs , NoCs, Kahn networks

Issues
• liveness (absence of deadlocks)
• safety (finite buffering of interconnect channels)
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• safety (finite buffering of interconnect channels)
• transformations and optimality of routing and network topology

depend on:

• precise mathematical semantic formulation (firing rule)
• initial (and latter) token allocations
���� topic of this talk 



Nx

…in(Nx)

out(Nx) …

*

*

compute/execution node

0 (then?) (else?) 1

select nodec

Process network tradition

Main feature:
switching conditions c are 

new
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Nc

out(Nx) …*
copy node

0 (then?) (else?) 1

c merge node
interconnects

• explicitely computed (off-line)

• ultimately k-periodic

i.e., c  is of the form u.(v) ωωωω with u, v binary words 
indicating switching/routing directions,

• u initial/transient part

• v periodic/steady part

ex:  1100.(10000000)



Interconnect modeling and optimization

•On-Chip Networks

•Switching conditions of 
Select/Marge nodes can configure 

different communication paths, 

C2

SelectSelectSelectSelect node

different communication paths, 
possibly overlapping in time

•Predictable routing schemes 
(ultimately k-periodic) will match 

the temporal schedules obtained 
in classical Process Network 

scheduling theory

C1 C3

C4 MergeMergeMergeMerge node



C2

one possible routing configuration
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C2

another possible configuration
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Interconnect transformation illustrated

u0 u1 u0 u1

(0101)ω (01)ω (10)ω

(1010)ω
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v0 v1 v0 v1

(0110)ω (01)ω (10)ω

(1001)ω



Facts
• KREG traffic balance (token production = token cons umption)

can be checked by  abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
(construction sketch later)

• Regularity of switching patterns allows to detect cyclicity, to fold 
back into finite (quasi) -Marked Graphs

new
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back into finite (quasi) -Marked Graphs

• Two notions of equivalences can be defined, one equates the 
external token flows, one takes into consideration the internal traffic 
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for 
the first equivalence 

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG 
graph crosses a compute node (not essential restrictions, just make the presentation simpler)



Counter-example: production/consumption mismatch

(011)ω (011)ω

0 01 1
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(01)ω (01)ω
00 11

Tokens accumulate in the “1” channels (to-third production, one half consumption)



SDF abstraction

s

u1u0

u v1v0

v

s

p

p-k k p

p-k k
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• Keep the EventGraph parts unchanged (computation/transportation nodes)
• Replace merge/select nodes by weighted nodes averaging consumption production 

on the period of the switching pattern s

u v1v0

p = |s| 
k = |s|1



Facts
• KREG traffic balance (token production = token cons umption)

can be checked by  abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
expanding computation node occurrences. 
Works by collecting exhaustively every executions in a single model. Not 
only structural, depends heavily on the initial markings). 

new
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only structural, depends heavily on the initial markings). 



Tracing the flow of successive tokens

N1 N2 Nz
… source copy (only outgoing channels)

p
p

∀∀∀∀q,∀∀∀∀m, ∃∃∃∃!p,∃∃∃∃!n : p(n) causes/becomes q(m)

nth token occurrence
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N’1 N’2 N’z
…

target copy (only incoming channels)

q

builds a dependency graph:  p(n) > q(m)

(infinite, acyclic)

then an unfolded Marked graph with

Ni
(n) � Nj

(m) iff p(n) > q(m) for p in Ni
●, q in ●Nj

(and additionally Ni
(n) � Ni

(n+1) )mth token occurrence



Facts
• KREG traffic balance (token production = token cons umption)

can be checked by  abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
• Regularity of switching patterns allows to detect cyclicity, to fold 

back into finite (quasi)-Marked Graphs

new
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• Two notions of equivalences can be defined, one equates the 
external token flows, one takes into consideration the internal traffic 
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for 
the first equivalence 

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG 
graph crosses a compute node (not essential restrictions, just make the presentation simpler)



Resulting quasi-marked graph

Initial acyclic MG
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periodic « single-cycle » MG

1.(0) ω 1.(0) ω1.(0) ω



Facts
• KREG traffic balance (token production = token cons umption)

can be checked by  abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
• Regularity of switching patterns allows to detect cyclicity, to fold 

back into finite (quasi)-Marked Graphs

new
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• Two notions of equivalences can be defined, one equates the 
external token flows, one takes into consideration the internal traffic 
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for 
the first equivalence 

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG 
graph crosses a compute node (not essential restrictions, just make the presentation simpler)



Interconnect transformation illustrated

u0 u1 u0 u1

(0101)ω (01)ω (10)ω

(1010)ω
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v0 v1 v0 v1

(0110)ω (01)ω (10)ω

(1001)ω



Two equivalences

• First one directly based on isomorphism of expanded Event Graphs

• Second uses a more refined dependency graph, with:

p(n) >> q(m)       if     ∃r,i,j,    p(n) > r(i)    ∧ q(m) > r(i+j) 
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(sequentiality of token traffic in intermediate channels, so that data precedence 
and interleavings are preserved)



Facts
• KREG traffic balance (token production = token cons umption)

can be checked by  abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
• Regularity of switching patterns allows to detect cyclicity, to fold 

back into finite (quasi)-Marked Graphs

new
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• Two notions of equivalences can be defined, one equates the 
external token flows, one takes into consideration the internal traffic 
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for 
the first equivalence (so a network can be transformed in any equivalent 
one in a finite number of steps)



Algebraic rules and axiomatisation

• We shall define transformations which preserve functionality but not the 
timing (similar to retiming/recycling)

• The main goal is to figure the proper auxiliary transformations on 
switching patterns which will realize the same data transport (through a 
different link topology)

• Normal forms can be defined (but large, by expansion)
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• Normal forms can be defined (but large, by expansion)

• We first introduce transformations on switching patterns  (On / When) 
and their properties

• We then introduce the transformations on Merge/Select patterns



Normal forms (point-to-point links)

C1

C1 C2 C_n

1s1

1s2

2s1

2s2

ns1

ns2

1m1 2m1 n-1m

1b1 2b1
nb1

1b

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗ ∗∗∗∗
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C_n

C2

1sn-1
2sn-1

nsn

m1 n-1m1

1m2 2m2 n-1m2

1mn 2mn n-1mn

1b1 2b1
nb1

1b1 2b1
nb1

∗∗∗∗

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗
∗∗∗∗



on/when operators

(0.u) on v = 0.(u on v)
(1.u) on x.v = x.(u on v)

(u on v) is a subclock of u

(x.u) when (0.v) = u when v
(x.u) when (1.v) = x. (u when v)

clock filter
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(x.u) when (1.v) = x. (u when v)

when u subclock of v, returns the filter

((u on v) when u)  = v 
if u subclock v, then u = (v on (u when v))



on effects

(0.u) on v = 0.(u on v)
(1.u) on x.v = x.(u on v)

u

uinit = 001

     . . .

ustat = 01001

0 0 0 0 0 0 0 011 1 1 1
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u on v

0 0 0 0 0 0 0 011 1 1 1

v

0 0 0 0 0 0 0 001 1 1 0

1 1 10 0



when effects

(x.u) when (0.v) = u when v
(x.u) when (1.v) = x. (u when v)

v

uinit = 001

     . . .

ustat = 01001

0 0 0 0 0 0 0 011 1 1 1

most meaningful 
whenever u subclock of 
v
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u

0 0 0 0 0 0 0 011 1 1 1

u when v

x x x x x x x x01 1 1 0

1 1 10 0



Transitivity of Selects
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Transitivity of Merges
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Selects up across Merges
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A basic form

• Simplest, and disposable, when b=c (and 
initially empty inside)

• If throughputs match on the (hyper)-period, 
but order differ, may require buffering 

� then tokens are bypassed by others
• Buffering remains bounded and predictable 

if ever b and c fixed and known.
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if ever b and c fixed and known.

• General permutations may require a 
sequence (or a combinaison) of such 
elements

� Even & Pnueli Permutation Graphs (1971)
� Optimization of the physical realization of 

the permutation using basic forms.



Normal forms (point-to-point links)

C1

C1 C2 C_n

1s1

1s2

2s1

2s2

ns1

ns2

1m1 2m1 n-1m

1b1 2b1
nb1

1b

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗ ∗∗∗∗
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C_n

C2

1sn-1
2sn-1

nsn

m1 n-1m1

1m2 2m2 n-1m2

1mn 2mn n-1mn

1b1 2b1
nb1

1b1 2b1
nb1

∗∗∗∗

∗∗∗∗ ∗∗∗∗
∗∗∗∗

∗∗∗∗
∗∗∗∗



Facts
• KREG traffic balance (token production = token cons umption)

can be checked by  abstraction into SDF over a hyperperiod.
� Through this, safety can be checked

• KREG networks can be unfolded into infinite Marked Graphs
(construction sketch later)

• Regularity of switching patterns allows to detect cyclicity, to fold 
back into finite (quasi)-Marked Graphs
���� transient and steady phase can be expanded into MGs, remaining 

new
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���� transient and steady phase can be expanded into MGs, remaining 
issue is to glue them back together.

• Two notions of equivalences can be defined, one equates the 
external token flows, one takes into consideration the internal traffic 
interleavings in addition (second one is a congruence)

• Normal forms and complete axiomatisation can be defined for 
the first equivalence 

for this presentation we shall ignore copy nodes, and assume that every cycle in the original KRG 
graph crosses a compute node (not essential restrictions, just make the presentation simpler)



Remaining issues

• Smoothness
– Schedules with binary words as close as possible to the mean

throughput (mechanical words) are feasible.  Desirable ?
– Extension to smooth routings ? How to report that data following a same

route in burst mode may be beneficial ?

• Dependencies brought back to inputs: contracts ?

• Extension of the conflict-freeness property in the case of Esterel ?
– Start P when S
– Suspend P from S_begin to S_end
– Abort P when S
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!!Tha kn you
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Questions ?



Process Networks 

• Conflict–freeness
Usual important requirement. 
Forbids choice between alternative local computatio ns based on input 
token availability.
Consequences: monotonicity (Kahn PNs), confluence (CCS), latency 
insensitivity (once enable, a behavior will eventually be performed, w/ a 
natural fairness assumption)
Not true of general Petri Nets, Synchronous Languages (instantaneous 
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Not true of general Petri Nets, Synchronous Languages (instantaneous 
preemption) � explicit absence notification in distributed implementations

• Scheduling
Because of conflict-freeness, all computation traces are essentially the same 
partial-order under different timings. One specific ASAP representative. 
Rich theory of static regular scheduling  (k-periodic schedules) 

Self-timed ���� clocked


