The AADL Behavioural annex

J.-P. Bodeveix, P. Dissaud, P. Feiler, M. Filali

IRIT-CNRS ; Université de Toulouse, France
Ellidis Software France-UK
SEI CMU USA

Wednesday March 24th 2010
OXFORD
UML-AADL 2010
Panel

This work was partly supported by the French AESE project Topcased and by the region Midi-Pyrénées.
Introduction

Architecture languages \[\Rightarrow\] verification of dynamic aspects:
- composition, temporal properties,
- quantitative analysis: sizing, performance, energy,
- reliability.
Why a behavioural annex for AADL?

- AADL relies on the analysis of source text.
- AADL calls and flows do not depend on data.
- AADL behaviour is basically described by:
 - the AADL execution model
 - quantitative aspects like wcet.

The behavioural annex allows a refinement of these aspects.
The AADL data port protocol

The AADL behavioural annex:

- describes how the dispatch is triggered.
- gives access to the received and sent data
- describes what happens when control is gained
- says when control is relinquished
The behavioural annex

- Describe the internal behavior of component implementations as a state transition system with guards and actions.
- Extend the default run-time execution semantics that is specified by the core of the standard, such as thread dispatch protocols.
- Provide behavioral refinement for mode transitions.
- Introduce subprogram calls synchronization protocols.

These extensions are introduced through properties and annexes.
behavior_annex ::=
 [variables behavior_variable +]
 [states behavior_state +]
 [transitions behavior_transition +]

behavior_state_kind ::=
 [initial][complete][final]

execution_behavior_transition ::=
 [behavior_transition_transition_label :]
 source_state_identifier , source_state_identifier *
 -[[behavior_condition]]-
 destination_state_identifier [behavior_actions] ;
thread merger
features
 p1 : in event data port Basic_types::integer;
p2 : in event data port Basic_types::integer;
m : out event data port Basic_types::integer;
end merger;
thread implementation merger.twopersistentstates
annex behaviorSpecification {**
variables
 x1 : data Basic_types::integer;
x1 : data Basic_types::integer;
states
 s0 : initial complete state;
 comp : state;
next1, next2 : complete state;
transitions
 s0 -[on dispatch p1]-> next2 { x1 := p1 }
 s0 -[on dispatch p2]-> next1 { x2 := p2 }
 next1 -[on dispatch p1]-> comp { x1 := p1 }
 next2 -[on dispatch p2]-> comp { x2 := p2 }
 comp -[x1 < x2]-> next1 { m!(x1) }
 comp -[x2 <= x1]-> next2 { m!(x2) }
**};

J.-P. Bodeveix, P. Dissaud, P. Feiler, M. Filali
The AADL Behavioural annex
Synchronization protocols

- subprogram calls in AADL is synchronous.
- alternate synchronization protocols (HRT-HOOD):
 Server_Call_Protocol: type enumeration (ASER, HSER, LSER) applies to (provides subprogram access);
 - ASER: the caller is never blocked.
 - LSER: the caller waits for the acceptance of the request.
 - HSER: the caller waits for the completion of the request and gets results if any.
The behavioural annex is now part of the AADL standard.
Supported by the OSATE-TOPCASED project.
Verification support through the FIACRE language: pivot verification language of the TOPCASED project.
Used for case studies in industrial research projects.