
An MDE-based Process for the Design,
Implementation and Validation of Safety-Critical
Systems

Julien Delange, Laurent Pautet, TelecomParisTech,
Jérôme Hugues, ISAE/DMIA

Dionisio de Niz, SEI/CMU

About the SAE AADL

• AADL model :
� A hierarchy from top-most (system) to top-down (subprograms, ..)

• AADL components:
� Component definition : model of a software or hardware element,

notion of type/interface, one or several implementations organized in
package. A component implementation may have subcomponents.

� Component interactions : features (part of the interface) +
connections (access to data, to subprograms, ports, …)

� Component properties: valued attributes to model non-functional
property (priority, WCET, memory consumption, …)

• AADLv2 defines both textual and graphical representations
• UML/MARTE defines guidelines for modeling AADL

page 2

Root
System

Sub
System

Proces
s

Processo
r

Thread Data…

…

AADLv2 Radar example

page 3

Antenna

Monitor

Radar

LEON2

Radar_sw

MotorRAM

VME

PACKAGE radar
PUBLIC

PROCESS processing
-- …
END processing;
DEVICE antenna
-- …
END antenna;

END RADAR;

AADL and subprograms

• Default AADLv2 properties / AADL runtime allows one to
bind user code to AADL model
� This code is then executed e.g. when a thread is dispatched

• Nothing prevents inclusion of models as “source code”, e.g.
SDL, Scade, Simulink or Esterel

• Issue: how to perform this consistently ? page 4

subprogram Receiver_Spg
features

receiver_out : out parameter Target_Distance;
receiver_in : in parameter Target_Distance;

properties
Source_Language => Ada95; -- defined in AADL_Project
Source_Name => "radar.receiver";

end Receiver_Spg;

AADL and other modeling notations

• AADL is an interesting framework to model architectures
� Capture key aspects of design: hardware/software
� Expression of some non functional properties: priority, resource

consumption, latency, jitter, …
� Enables: scheduling analysis, resource dimensioning, behavior

analysis, mapping for formal methods, fault analysis, …

• Functional modeling notations (e.g. Simulink, SCADE, ..)
describes precisely how the system should behave
� Provides a high-level behavioral/computational view
� Needs to be mapped onto hardware/software elements

• Natural complement to build systems with models
� Without hand-written code

page 5

”Zero coding” paradigm

• Code generation from models is now a reality
� Proposed by many tools

• Functional models
� kcg: SCADE’s certified code generation
� Real-Time Workshop: Simulink’s code generation

• Architectural models
� Ocarina: AADL code generator for High-Integrity systems

• Foundations for a “zero coding” approach
� Model, then integrate code generated from each view

• Issue: which integration process ?
� Two approaches, driven by user demand

page 6

Application-driven process

• Functions may be defined first, then refined to be bound to
an existing architecture”

page 7

Architecture-driven process

• Reverse option: architecture is defined first, then a skeleton
of the functional model is deduced, then implemented

page 8

subprogram spg_scade
features
input: in parameter integer {Source_Name => "add_input";};
output: out parameter integer {Source_Name => "add_output";};
properties

source_name => "inc";
source_language => Scade;
source_location => "/path/to/scade-code/";

end spg_scade;

How to bind to AADL models ?

• In both cases, we rely on standard AADLv2 patterns
� Source_Language <-> SCADE or Simulink
� Source_Name <-> SCADE node or Simulink block
� Source_Location <-> SCADE/Simulink generated code

• Smooth integration of AADL and other functional modeling
� Providing only required information
� While remaining 100% automatic

page 9

From AADL + X tocode

• Ocarina is an AADL-to-code generator
� See http://aadl.telecom-paristech.fr
� Joint work Telecom ParisTech, ENIS, ISAE

• Handles all code integration aspects
� How to map AADL concepts to source code artefacts (POSIX threads,

Ada tasks, mutexes, ...)
� Handle portability concerns to several platforms, from bare to native

• + some knowledge on how a SCADE or Simulink models is
mapped onto C code
� So that integration is done by the code generator
� No manual intervention required

• Supports “zero coding” approach page 10

Code generation patterns

• Each functional framework relies on same foundations
� Synchronous: discrete computation cycles
� Asynchronous: function calls

• SCADE/Simulink/Esterel: a 3-step process
� Fetch in parameters from AADL subprograms
� Call the reaction function to compute output values
� Send the output as out parameters of the AADL subprogram

• Architectural blocks are mapped onto programming
language equivalent constructs
� Ocarina relies on stringent coding guidelines to meet requirements

for High-Integrity systems, validated though test harness by ESA,
Thales, SEI, and their partners

page 11

Conclusion

• System are heterogeneous, so are models
• AADL clearly separates architecture from functional models

� Allows reference from the architecture to function blocks

• Our contribution: integration of AADL and SCADE or Simulink
in two processes to perform full generation of systems

• Advantages
� “Zero coding” paradigm to ease integration work
� Quality of code generated for both functions and architecture
� Opens the path towards qualification/certification of complex embedded

systems at model-level

page 12

