Supporting the Design of Safety
Critical Systems Using AADL

T. Correa, L. B. Becker, J.-M. Farines,
J.-P. Bodeveix, M. Filali, F. Vernadat

IRIT LAAS UFSC

Agenda

Introduction
Proposed Approach
Verification Process

Conclusions

Introduction

 Most computer systems are embedded (95%),
and many of these are critical

 AADL is a textual and graphical language used
to design and analyze the software and
hardware architecture of systems
— functional interfaces to components (such as data
inputs and outputs)

— performance-critical aspects of components (such
as timing)

Goal

* Present a design-process for critical embedded
systems to supports the safe design of the
system's architecture using MDE's principles

* Propose an approach that supports model
checking over AADL models

 How to deal with timing properties? (ongoing
study with the hardware team TRACES: wcet
analysis)

Our Proposal

* Use of AADL as a unique formalism for:
* Hw and Sw people,

* synchronous and asynchronous aspects
* |[n the AADL model, perform a sequence of

model enrichments, which finishes when the
model is suitable for verification

* Experimentation on a case study: parking
problem

Proposed Approach

|t starts with the definition of the functional
and non-functional requirements of the
system...

* Constraint: Platform may be a priori given

e ..itis concluded with the final model
verification, which uses as input the AADL
model updated with the precise timing
information.

1. Requirements Definition

L

2. Functional Modeling + Simulation

Y.

Proposed

3. Environment Description

AADL process

[4A. Sw Architecture Modeling]

[4B. Hw Architecture Modeling]

—)[5. Sw/Hw Mapping]<—

l

7. Timing Verification]<

Successive Refinements

* the resulting system architecture goes through

several verification steps in order to assure its
correctness

* [tis performed a sequence of model

transformations, which starts with an AADL
model and finishes with an automaton model
that can be verified

* |nitially the design is synchronous it ends
asynchronous (physical architecture)

3A. Software Architecture Modeling

—)[Al. Select System or Thread]
A

no

refinement? >[A2.1. Abstract behavior spec]

[[A2.2. Architecture Refinement]J

v
A3. Verification

yes

verification?

Verification Process

LTL
property

Automaton
model

FIACRE is the pivot language of the TOPCASED project
FIACRE is a process algebra: message and shared memory.
TINA: verification engine (Petri net based)

AADL execution model « helps » in fighting combinatorial explosion

Need of property patterns
Need of better support for communication abstraction

Properties

e Use of temporal logic: LTL enriched with
events: SE-LTL. In fact, LTL and CTL are not
enough: use of Modal Mu calculus: reason
over atemporal properties (not temporised)

* Need of an intuitive logic to reason over the
system and its environment. Requests are
state and or event based.

* Need of patterns to avoid new (usually
complex) formulas and reuse existing ones.

Conclusions

Design methodology for software-hardware
systems.

It is not a top down or bottom up approach.

Use of AADL as a unique language to address
software and hardware issues.

AADL execution model helps for fighting against
combinatorial explosion.

Use of logics to express the properties. Need for a
logic to express the interaction between the
system and its environment. Need of patterns.

3A. Software Architecture Modeling

4{ Al. Select System or Thread]

|

A2.2. Architecture Refinement

-

—

\-

>[A3. Verification

no

success?

no

more
verification

A2.2. Architecture Refinement

-

1. Identify modes

|
|
yes |
|

\’

A
PRGN

2. ldentify threads

~
_-7 new ~(
e

. ~
~ refinement?_~
~ -’

|

3. Map functions to threads

]

4. Add connections

|

5. Assign modes to threads

3A. Software Architecture Modeling

[Al. Select System or Thread]
A

no

refinement?

[[A2.2. Architecture Refinement]J

1. Requirement$ Definition

|

E.....................................-{ 2. Environment bescrlptlon

Hw Architecture

Sw Architecture Mode//i'rg:

A 4

~

3. Operation Modes Definition

B1. Architecture Modelling

4 np’rnilprl)

5. (4. Behaviorsplec (Abstract or]

l

N

B2. Architecture Mapping

l

\ 5. Verification

/

v

B3. Architecture Simulation

6.

Real-Time Progerties Definition]<—
1

J

I

ect behavior

7. Timing Veskifreation

