Testing Solutions with UML/SysML
Matthew Hause, Jon Holt
Agenda

- Safety Critical Systems and Testing
- SysML and Testing
- Rail Case Study
- Automotive Case Study
- Conclusion
Safety Critical Systems and Testing

■ The Problem

 - We are running out of time.
 - Systems are becoming more complex.
 - Time to market is decreasing.
 - Most important, safety critical systems must be properly tested.

■ The Solution

 - SysML and Model Based Systems Engineering (MBSE)
 - SysML supports modelling of the requirements, behaviour, structure, etc.
 - Can aid the verification, validation, and simulation of software, firmware and mechanical systems.
 - SysML can provide a practical solution of integrating testing into an MBSE approach.
SysML Requirements Flow Down

- Requirements are integrated into the model
- Supports requirements hierarchies
- Verify, Satisfy, Derive, Trace and Refine relationships

Cruise Control System

REQ_CCS_01

The CCS must allow a driver to enable the vehicle to maintain a desired speed.

REQ_CCS_05

Once the CCS is engaged, to activate cruise control the driver can 'set' the desired speed. Once this is set the CCS shall take over control of the throttle.

REQ_CCS_06

When cruise control is engaged, the driver must be able to increment or decrement the desired speed.

REQ_CCS_06a

When cruise control is engaged, the driver must be able to increment the desired speed in increments of 1 MPH.

The CCS must allow a driver to enable the vehicle to maintain a desired speed.

Once the CCS is engaged, to activate cruise control the driver can 'set' the desired speed. Once this is set the CCS shall take over control of the throttle.

When cruise control is engaged, the driver must be able to increment or decrement the desired speed.

When cruise control is engaged, the driver must be able to increment the desired speed in increments of 1 MPH.
Physical and Logical Structural Modelling

- Parts shown by diamond notation, or by Parts Compartment
- Compartments show properties of the block
- Attributes are inherited from the parent
Internal Block Diagram

Shows parts (structural children) …

… and ports (interaction points on blocks and parts)

- Supports integration of behavior and structure

Port types

- **Standard Ports**
 - Specify a set of operations and/or signals
 - Typed by a UML interface

- **Flow Ports**
 - Specify what can flow in or out of block/part
 - Typed by a flow specification
State Modelling

- Models Complex state-based behaviour of system elements
- Atomic, composite and concurrent states
- Conditional behaviour

Cruise Control System

- **Power On**
 - Idle
 - Engage/Do Initialisation Tests
 - [test fail]/
 - Fault
 - do : Log Error
do : Disengage
 - Power On/

- Engaged
 - Resume([Set Speed <> 0] & (Brake Not Engaged))
 - Suspended
 - do : Suspend
 - Accelerating
 - Set Speed/
 - [Set Speed Reached]/
 - Suspended
 - do : Resume

- Operating
 - do : Maintain Speed
 - Decrement Reqd Speed

- Suspended operation also called when brake applied or when throttle applied for >20 sec
Activity Modelling

- Allows low level behavioural modelling of the system.

SysML Additions

- «streaming» activities consume inputs after initialization
- «continuous» flows
- Probabilities
- Interruptible regions
Sequence Diagrams

- Represents the interaction between collaborating parts of a system
- Supports conditional behaviour, loops, parallel, etc.
- Interactions can be messages, operations, etc.
- Can be used to define test cases

```
Maintain Speed
Description

loop while CC System operational
  EMU message arrives
  load gear profile
  calibrate profile and speeds
  if reqd speed not = actual speed
    calculate reqd throttle position
    send message to EMU
  end if
  update CC display
end loop

 referenced diagram specifies message sequences internall to Cruise Control IO to update the display
```

```
loop while CC System operational
  handle EMU message
    load gear profile( current gear )
    calibrate
    if reqd speed not = actual speed
      calculate reqd throttle position
      send message to EMU
      Set Throttle
      update display
    end if
end loop
```
Parametric Diagram

- Defines parametric relationships between properties
- Constraint can be shown in compartment or in attached note
Allocations

- Allocation of activity invocation to parts shown in allocatedFrom compartment.
- Allocation of activity object nodes to Item flows shown via call-outs.
Rail Case Study
Radio Block Control (RBC) Validation Scenario

- The RBC is responsible for continuous speed supervision and movement authority of the train. Safety Integrity Level 4 Product.
- Eurobalise determines the Train Location and sends it to the RBC.
Traditional RBC Validation

- Use case requirements model defined in Artisan
 - Analysis and design models used sequence and state diagrams
- Flowcharts constructed from the model that capture all possible execution paths
 - Sequence diagrams (SD) generated for all valid paths.
 - Python scripts generated from the SD
 - Scripts exercised SUT
 - Not flexible when model changes
Automated RBC Validation

- Eliminates manual work
 - Excel files created automatically. Used as evidence.
- Reduces human errors
 - Originally the files were hand-coded
- Decreases the number of files used.
- Enforces design standards.
RBC Tool Integration

- VB DLL reader imports from the model.
- .NET application manages imported information
- Provides execution paths
- Automatically produces documentation

- Decreased validation costs by 75%!
Automotive Case Study
Automotive Platform Independent System Test

- Test cases derived from use cases and modelled in sequence diagrams.
- White box test cases can be derived from activity diagrams.
- Test cases automatically generated through a code generator and based on the model.
- Executed on the test rig.
 - Results captured.
 - Documentation generated.
Testbench Overview

- Provides a configurable remote test of the car thru the I/F
- Interface to RTOS and AppUT through pre-defined test interface
- Allows mapping of the test to the equipment to be used separately
Testbench Tool Interaction

- Dependencies show mapping between variables in test descriptions and parameters and signals performed using name matching.
- Library holds drivers for each platform.
Automotive Tool Integration and Workflow
Description of Automotive Model-based Testing

- Shows how test scripts are abstracted in MBD
- Scripts cross all levels; the models contain these perspectives.
Standards for Model-based Testing
UML 2.0 Testing Profile (U2TP) Test Architecture

- Created in 2005 for modelling tests
- Both case studies use this approach
- Can make use of the SysML testcase stereotype.
Test Case and Test Objective

- Test context contains an arbiter and a scheduler (Previous slide)
- Test case can be an operation or a behaviour
- Test results can be pass, fail, error or inconclusive
- Tests generally run using a sequence diagram
- Automating test runs not included in U2TP, as it is tool dependent
Conclusion

- Test plans can and should be modelled
- A model based approach provides the logical progression from:
 - Test Plan (and models) to,
 - Test Suite(s) (and models) to,
 - Test Case(s) (and models) to,
 - Test Scripts (and models)
- Building models to test models and systems is more natural
- ROI has been proven – in this instance saving 75% on testing
Discussion and Comments