Formal Modeling for UML/MARTE
Concurrency Resources

Authors:
P. Peñil H. Posadas E. Villar
Index

• Motivation
• Design Flow
• UML/MARTE Methodology
• Conclusions
• Future Work
Motivation
Motivation (1)

- MARTE provides semantics to UML
- Select a subset of MARTE
- Relate UML/MARTE to SystemC
- SystemC enables a link to Co-Design
Motivation (2)

- **Massive Concurrency**
 - Data Dependencies
 - Relations

- **Characteristic of the interactions**
 - Formal Semantics
 - Univocal Description

- **Models of Computation & Communication (MoCCs)**
 - Behaviors Semantics Heterogeneity
Contribution

- UML/MARTE Models
 - Structural Modeling
 - Behavioral Modeling

Abstraction

ForSyDe Formal Metamodell
Formal System Design

• ForSyDe formal metamodel
 – Process
 – Signals
 • Separation Communication-Computation
 – MoCC generic characteristics
 • Untimed MoCCs
 • Synchronous MoCCs
 • Timed MoCCs
Process ForSyDe

\[p(s_1...s_n) = s'_1...s'_m \]

\(\pi \) partition function \(S_n \)

\(\pi' \) partition function \(S'_m \)

\(g() \) next-state function

\(f_1()...f_j() \) output functions
Formal Notation

The partitions functions:

\[\pi (v_n, s_n) = \langle a_n (z) \rangle \quad \pi' (v'_m, s'_m) = \langle a'_m (z) \rangle \]

where \(a_n (z) \) is a subsignal of \(S_n \)

The function \(v_n \) gives the size of \(a_n (z) \):

\[v_n (z) = \gamma (\omega_q) \quad v'_m (z) = length (a'_m (z)) \]

\[v_n (0) = length (a_n (0)); \quad v_n (1) = length (a_n (1))... \]

The outputs are calculated:

\[f_\alpha ((a_1...a_n), \omega_q) = (a'_1...a'_m) \]

And the next internal state:

\[g ((a_1...a_n), \omega_q) = \omega_{q+1} \]
UML/MARTE
Methodology
Structural Modelling

System

<<ConcurrencyResource>>: models the concurrent computation

<<CommunicationMedia>>: models the communication
Communication Abstraction

ForSyDe
Signals

↑ abstraction

<<CommunicationMedia>>

No insert any change in the data sequence:

• No data losses or injections
• No data values changes
Behavioral Modeling

• Concurrent element described by a Finite State Machine
 – UML Finite State Machines
 • Explicit States
 • Modeling behavior State denoted by the label *do* by an UML Activity Diagram
 – UML Activity Diagram
 • Implicit States as a sequence of actions
Activity Diagram

- In each state
 - A set of inputs are received
 - These inputs are computed
 - The computation results are generated
 - The concurrency resource calculates its new internal state
Activity Diagram(2)

ConcurrencyResource

Receive_1, ..., Receive_N

multiplicity[p..q], multiplicity[r..s]

function_i

multiplicity[a..b], multiplicity[c..d]

Send_1, ..., Send_M

AcceptEventActions

\[\omega_j = \begin{cases}
 P_j \\
 D_j
\end{cases} \]

SendObjectAction
Activity Diagram(3)

- **AcceptEventAction**
 - Call to a specific method with a specific data-receiving behavior
 - A new datum is available

- **SendObjectAction**
 - Call to a specific method with a specific data-sending behavior
 - A new datum is generated
Computation Abstraction

- The data received; \(a_1 \ldots a_N\) ForSyDe subsignals
- The data send; \(a'_1 \ldots a'_N\) ForSyDe subsignals
- The function \(f_i\) action; \(f_\alpha\) ForSyDe function
- The Concurrency Resource State:
 - \(P_j\); segments of the behavioural modelling between two waiting states
 - \(D_j\); internal values that characterizes the state
- \(\{P_j, D_j\}; \omega_j\) ForSyDe state
- The function \(g()\) calculates the new \(\{P_{j+1}, D_{j+1}\}\)
Computation Abstraction(2)

- The multiplicity values are abstracted as:

\[
\begin{align*}
\nu_1(z) &= \gamma(\omega_j) = \begin{cases}
p \\
\ldots \\
q
\end{cases} \\
\nu_n(z) &= \gamma(\omega_j) = \begin{cases}
r \\
\ldots \\
s
\end{cases} \\
\text{length}(f_j(a_1 \ldots a_N), \omega_j) &= \\
\nu'_1(z) &= \text{length}(a'_1) = \begin{cases}
a \\
\ldots \\
b
\end{cases} \\
\nu'_M(z) &= \text{length}(a'_M) = \begin{cases}
c \\
\ldots \\
d
\end{cases}
\end{align*}
\]
Computation Abstraction (3)

- The advance of time is a totally ordered set of evaluation cycles (ec).
- In each ec “a process consumes inputs, computes its new internal state, and emits outputs”.
- The interpretation of a ec depends on the time domain capture in the models.
Example
Example(1)
Example(2)
data inputs \(a_{cm1}(z), a_{cm2}(z) \)

data outputs \(a'_{cm3}(z), a'_{cm4}(z) \)

\[
g(\omega_0, a_{cm1}) = \begin{cases}
\omega_1 \\
\omega_2
\end{cases}
\]

\[
g(\omega_1, (a_{cm1}, a_{cm2})) = \omega_0
\]
Example (4)

In the state ω_0:

$\nu_{a_{cm1}}(0) = \gamma(\omega_0) = 2$

$\nu_{a_{cm4}}(0) = \text{length}\left(\text{function1}\left(a_{cm1}(0), \omega_0\right)\right) = \text{length}\left(a'_{cm4}(0)\right) = 1$

In the state ω_1:

$\nu_{a_{cm1}}(1) = \gamma(\omega_1) = 1$

$\nu_{a_{cm2}}(0) = \gamma(\omega_1) = 3$

$\nu_{a_{cm3}}(0) = \text{length}\left(\text{function2}\left(a_{cm1}(1), a_{cm2}(0), \omega_1\right)\right) = \text{length}\left(a'_{cm3}(0)\right) = 1$

$\nu_{a_{cm4}}(1) = \text{length}\left(\text{function2}\left(a_{cm1}(1), a_{cm2}(0), \omega_1\right)\right) = \text{length}\left(a'_{cm4}(1)\right) = 2$
Conclusions

• The need of a formalism to UML/MARTE models that supports the generation of executable specifications (SystemC)
• ForSyDe can provides this formal support