
Expressing and enforcing user-defifififined
constraints of AADL models

Olivier Gilles TelecomParisTech, Jérôme Hugues, ISAE/DMIA

About the SAE AADL

• AADL model :
� A hierarchy from top-most (system) to top-down (subprograms, ..)

• AADL components:
� Component definition : model of a software or hardware element,

notion of type/interface, one or several implementations organized in
package. A component implementation may have subcomponents.

� Component interactions : features (part of the interface) +
connections (access to data, to subprograms, ports, …)

� Component properties: valued attributes to model non-functional
property (priority, WCET, memory consumption, …)

• AADLv2 defines both textual and graphical representations
• UML/MARTE defines guidelines for modeling AADL

page 2

Root System

Sub System Process Processor

Thread Data…

…

AADLv2 Radar example

page 3

Antenna

Monitor

Radar

LEON2

Radar_sw

MotorRAM

VME

PACKAGE radar
PUBLIC

PROCESS processing
-- …
END processing;
DEVICE antenna
-- …
END antenna;

END RADAR;

Modeling with AADL, what else ?

• AADL is an interesting framework to model and validate
complex systems: clear syntax, semantics, low overhead

• Increasing number of supporting tools for validation
� Scheduling analysis, resource dimensioning, behavior analysis,

mapping for formal methods, fault analysis, …
� More than 14 different projects around all kind of analysis

• But the model needs to be “ready”
� Rely on carefully chosen modeling patterns
� Needs to constrain the value of some properties

• And we need to validate that the model is ready

page 4

Generic Avionics Platform case study

• Real-world AADL model
can be large

• GAP models a 1980’
avionics platform

• 3 subsystems
� 14 processes, 30+ types
� 2000 lines of AADLv2

• How to check the model
is amenable to some
analysis, verification or
code generation ?

page 5

AADL annex documents

• Core AADL defines generic guidelines
• These guidelines are completed with domain-specific ones

� Data modeling annex: modeling user-define types (e.g. records,
arrays of records, integers, …) used by software elements

� Programming language annex: how to bind source code (Ada, C) or
other models (e.g. Simulink, SCADE) to AADL models

� ARINC653 annex: how to express IMA and ARINC653 concepts as
AADLv2 model entities

• Each guideline adds some requirements on the model
� Valid/forbidden combination of properties
� Validity of some combination of model entities (number of ports, kind

of bus to interconnect elements,
page 6

REAL, an AADL annex for expressing
constraints

• OCL is the OMG mechanism for expressing contraints on
models and meta-models following the MDA principles
� But evolves from mathematical grounds to complex expressions

� E.g. MOF!Class.allInstances()->collect(name)

� Not adapted to AADL, model’s lifecycle, tools (except UML profile)

• Our contribution: REAL
• A language to express requirements on a model

� Coupled to AADL model’s definition
� Based on mathematical grounds: set theory, expression
� Built as a dedicated annex

• Design goal is to have REAL usable for people unaware of
AADL meta-model, but knowledgeable of AADL concepts page 7

Request Enforcement & Analysis
Language: an example

• An AADLv2 legality rule
� Each process has at least one thread subcomponent

page 8

Request Enforcement & Analysis
Language: an example

• An AADLv2 legality rule
� Each process has at least one thread subcomponent

• Steps
� Theorem declaration

page 9

theorem no_empty_process

end no_empty_process;

Request Enforcement & Analysis
Language: an example

• An AADLv2 legality rule
� Each process has at least one thread subcomponent

• Steps
� Theorem declaration
� Scope of the theorem (process_set)

page 10

theorem no_empty_process

foreach p in process_setdo

end no_empty_process;

Request Enforcement & Analysis
Language: an example

• An AADLv2 legality rule
� Each process has at least one thread subcomponent

• Steps
� Theorem declaration
� Scope of the theorem (process_set)
� Intermediate computation sets (threads_in)

page 11

theorem no_empty_process

foreach p in process_setdo

threads_in:= {t in thread_set| is_subcomponent_of (t, p)};

end no_empty_process;

Request Enforcement & Analysis
Language: an example

• An AADLv2 legality rule
� Each process has at least one thread subcomponent

• Steps
� Theorem declaration
� Scope of the theorem (process_set)
� Intermediate computation sets (threads_in)
� Verification expression

page 12

theorem no_empty_process

foreach p in process_setdo

threads_in:= {t in thread_set| is_subcomponent_of (t, p)};

check (cardinal (threads_in) >= 1);

end no_empty_process;

REAL by the example

• RMA

page 13

-- Check weither the threads bound to each processors can be schedduled
-- with RMA (cf. Liu, Layland. "Scheduling Algorithms for Multi-programming
-- in hard-Real-Time Environment", JACM, 01/1973)

theorem RMA

foreach e in Processor_Set do

Proc_Set(e) := { x in Process_Set | Is_Bound_To (x, e) };

Threads := { x in Thread_Set | Is_Subcomponent_Of (x, Proc_Set) };

check (sum (get_property_value (Threads, "RTOS_properties::Utilization")) <=
(Cardinal (Threads) * (2 ** (1 / Cardinal (Threads))) -1));

end RMA;

Chaining theorems

• Some theorems may depend on some others
� E.g. Ravenscar system are RTA-compliant, PCP-compliant
� Expressed using “requires” clause

• Theorems depend on some settings
� E.g. apply only to one entity,

� Use AADL annex mechanism to affect one theorem to one AADL
component

• Theorems can be expressed to reflect constraints
� E.g. subprogram “foo” must be used by a thread periodic, of 5Hz

• The objective of REAL is to be used in higher settings, e.g.
evaluating model’s performance

page 14

Use case #1: data modeling annex

• Defines property sets and guidelines to model data types

• Requires consistent use of properties, e.g.

• 15 theorems to check various legality rules
page 15

data Target_Distance
properties

Data_Model::Data_Representation => integer;
end Target_Distance;

theorem check_data_scale
foreach d in data_set do

-- 1/ Check that the "Data_Scale" property is applied only to data
-- type whose representation is fixed
check ((not property_exists (d, "data_model::data_scale"))

or (property_exists (d, "data_model::data_representation")
and get_property_value (d, "data_model::data_representation") =

"fixed"));
end check_data_scale;

Use case #2: Ravenscar profile

• Set of patterns for deterministic concurrency
� Initially defined for Ada, expanded to RTSJ, UML and AADL

• Need to constraint architecture to accept only these patterns
� Periodic/sporadic task, mono processor, use of PCP, …
� 6 different rules

page 16

-- All *shared* components use the PCP concurency control protocol

theorem check_pcp

foreach d in Data_Set do

accessor_threads := {t in Thread_Set | Is_Accessing_To (t, d)};
check (Cardinal (accessor_threads) <= 1 or

(Property_Exists (d, "Concurrency_Control_Protocol") and
(Get_Property_Value (d, "Concurrency_Control_Protocol") =
"Priority_Ceiling")));

end check_pcp;

Use case #3: ARINC653 annex

• AADLv2 and ARINC653 annex support IMA concepts
� Notion of partitions, hierarchical scheduler ..
� Needs to constraint models to respect some invariants
� 10+ additional legality rules

• Integrated to the POK toolchain (see http://pok.gunnm.org)

page 17

-- Check configuration of partition scheduling
theorem scheduling_major_frame

foreach cpu in processor_set do
check ((property_exists(cpu, "POK::Major_Frame") and

((float (property (cpu, "POK::Major_Frame")) =
sum (property (cpu, "POK::Slots")))))

or
(float (property (cpu, "ARINC653::Module_Major_Frame")) =
sum (property (cpu, "ARINC653::Partition_Slots"))));

end scheduling_major_frame;

Conclusion

• REAL has been integrated to Ocarina and POK
� http://aadl.telecom-paristech.fr

• Ocarina is also integrated to OSATE, STOOD
� Available to major AADL modeling environments

• Implementation relies on AADL instance model
� Time and memory effective: most operations have the same

complexity as of the theorem to be proved

• Ongoing work
� Evaluate model’s metrics

� E.g. evaluate performance of models based on computations

� Weight, power consumption, specific policies ..

page 18

