
QVT Based Model Transformation

from Sequence Diagram to CSP

Li Dan

Faculty of Science and Technology
University of Macau

Motivation

� UML sequence diagrams need to be verified and
analyzed formally. One of the choices is to translate to
CSP through model transformation.

� Graphical notation of QVT provides a concise, intuitive
way to specify model transformations.

� XSLT is the most common and powerful language for
XML transformation. We implement the QVT
transformation rules using XSLT for their automatic
execution.

Model Transformation

What is QVT

� MOF 2.0 Query, View, and Transformation language

� A standard for model transformation proposed by the
Object Management Group (OMG)

� QVT is composed of 3 sub-languages
�QVT-Operational
�QVT-Relations
�QVT-Core

� QVT Relations has a graphical notation.

QVT Overview

QVT Relations

� Bidirectional, declarative language

� A transformation is specified as a set of relations (rules)
between model elements of the source and the target
domains.

� A relation is a transformation declare constraints that
must be satisfied by the elements of the candidate
models.

� The kernel technique to implement QVT Relations is the
pattern matching.

Why QVT Graphical Notation

� UML people might expect to continue the graphical
tradition of class diagrams and favor a graphical notation

� Graphical specification is a higher-level view that is
easier to understand and communicate than the lexical
counterpart.

� Can be served as good software design documentations

A picture is worth a thousand words

XSLT

� Extensible Stylesheet Language for Transformations
(XSLT) is one of the W3C standards.

� Provide powerful capacity that enable the rule declaration,
transformation, navigation, and create of XML content.

� Widely used in developing web application

� Supported by many commercial and open source tools,
can be embedded in Java

� XSLT has strong support to complex pattern matching.

XMI / XSD

� XML Metadata Interchange (XMI)
�An OMG standard that specify how to produce XML

documents from MOF model.
�EMF XMI is an XMI implementation, supported by

many major modeling tools, such as MagicDraw and
Topcased

� XML Schema (XSD)
� used to define the syntactic structure of XML

documents
�XMI also gives rules to produce an XML Schema from

a MOF model

Our Transformation Approach

Get the best of both worlds:

� Define the transformation using QVT relations language
in graphical notation

� Implement the transformation using XSLT

Steps in the Approach (1)

1. Define metamodels for both SeqD and CSP. The SeqD
metamodel is in EMF XMI format.

2. Generate XSDs from SeqD and CSP metamodels

3. Specify the transformation relations (rules) using QVT
graphical notation

4. Implement these QVT transformation relations as XSLT
rule-based templates

Steps in the Approach (2)

5. Prepare the SeqD in CASE tools, and output it as an
EMF XMI file.

6. Validate the SeqD XMI against the SeqD XSD.

7. Perform the transformation by executing the XSLT
templates in an XSLT processor, output result as a
CSP model.

8. Validate the CSP model using the CSP XSD.

Overall Transformation Process

SeqD Metamodel (with XMI Support)

Semantics of SeqD

� Defined as an union of order relations on the set of
all the message sending and receiving actions.

� Every object lifeline has its own flow of control,
performs its sequence of actions along the lifeline.

� Objects are only synchronized on the sending and
receiving actions of same message.

CSP Metamodel

Concepts of SeqD and CSP

SeqD
� Interaction
� Lifeline
� InteractionOperand
� CombinedFragment

� opt, alt, loop, break

� Message
� MessageOccurrence

� sendEvent
� receiveEvent

CSP
� CSP
� Process
� SubProcess

� Prefix
� IFThenElse
� ExternalChoice
� SKIP/STOP

� Event
� Channel
� Parallel Composition

QVT Rules for SeqD to CSP Tansformation

� Interaction to CSP (Parallel Composition of Processes)
� Lifeline to Process
� InteractionOperand to SubProcess
� MessageOccurrence to Event
� CombinedFragment to IfThenElse
� Alt (without guard) to ExternalChoice
� Message to Channel

Rule : Interaction to CSP

Rule : Lifeline to Process

Rule : MessageOccurrence to Event

Rule :Alt (without guard) to ExternalChoice

Implement QVT Rules as XSLT

� A QVT rule is implemented as a pair of XSLT
templates: a matching-template and a constructing-
template.

� The source domain pattern of a QVT rule is
implemented as a matching-template to play the
searching task in the source model.

� The target domain pattern of a QVT rule is implemented
as a constructing-template to create the elements of
the pattern in the target model.

XSLT Templates for Rule InteractionToCSP

<xsl:template mode="InteractionToCSP"
match="//packagedElement[@xmi:type='uml:Collaboration']
/ownedBehavior[@xmi:type='uml:Interaction']">

<xsl:call-template name="InteractionToCSP">
<xsl:with-param name="sn" select="@name"/>

</xsl:call-template>
</xsl:template>

<xsl:template name="InteractionToCSP">
<xsl:param name="sn"/>
<xsl:element name="CSP">

<xsl:attribute name="name" select="$sn"/>
<xsl:apply-templates mode="MessageToChannel"/>
<xsl:apply-templates mode="LifelineToProcess"/>

</xsl:element>
</xsl:template>

An Example of SeqD

CSP Model Generated from the SeqD

<?xml version="1.0" encoding="UTF-8"?>
<CSP name="Example">

<Channel name="o1_o2_m1" from="O1" to="O2"/>
<Channel name="o2_o3_m2_create" from="O2" to="O3"/>
......

<Process name="O1" target="SKIP">
<Prefix name="O1-582" target="O1-603">

<Event name="m1" direction="!" passBy="o1_o2_m1"/>
</Prefix>
<IfThenElse name="O1-603">

<bExp>c1</bExp>
<then target="O1-603">

<IfThenElse name="O1-643">
<bExp>c2</bExp>
<then target="O1-603">

<Prefix name="O1-422" target="O1-603">
......

CSP Generated from the SeqD

channel o1_o2_m1, o2_o3_m2_create, o1_o2_m3, o2_o3_m4
channel o3_o2_m4_rt, o1_o2_m6, o2_o1_m1_rt

O1=o1_o2_m1!->O1-603
O1-603=if (c1) then O1-643 else O1-378
O1-643=if (c2) then o1_o2_m3!->O1-603 else o1_o2_m6!->O1-603
O1-378=o2_o1_m1_rt?->SKIP

O2 = o1_o2_m1?−>O2-603
O2-603 = if (c1) then (o2_o3_m2_create!−>O2-643) else O2-242
O2-643 = if (c2) then (o1_o2_m3?−>O2-684)

else (o1_o2_m6?−>O2-603)
O2-684 = if (c3) then (o2_o3_m4!−>o3_o2_m4_rt?−>O2-603)

else O2-603
O2-242 = o2_o1_m1_rt!−>SKIP

CSP Generated from the SeqD (con.)

O3=O3-603
O3-603=if (c1) then (o2_o3_m2_create?->O3-643) else SKIP
O3-643=if (c2) then O3-684 else O3-603
O3-684=if (c3) then (o2_o3_m4?->o3_o2_m4_rt!->O3-603)

else O3-603

O1-O2= O1 [|{|o1_o2_m1, o1_o2_m3, o1_o2_m6, o2_o1_m1_rt |}|] O2

CSP=O1-O2 [| {|o2_o3_m2_create, o2_o3_m4, o3_o2_m4_rt |} |] O3

�Thank You !

