Fifth IEEE International workshop UML and AADL

Comparison of six ways to extend the scope of *Cheddar* to *AADL v2* with *Osate*

Mickaël Kerboeuf, Alain Plantec, Frank Singhoff LISyC - University of Brest

> Arnaud Schach, Pierre Dissaux Ellidiss Technologies

Outline

- Motivation
 - Integration of legacy systems
- Principles
 - Using an external data interoperability component
 - Avoiding the synchronization of metamodels
- Technical context
 - Cheddar & Platypus
 - Scope extension to AADL V2
 - Osate
- Interoperability component
 - Global design
 - Cheddar XML Translator
 - Conclusions and perspectives

Motivation

Integration of legacy systems

- Legacy systems
 - Widely used by different communities
 - Built upon different metamodels
 - Metamodels built with different metamodeling tools
- Integration
 - Led by a common language

Principles

Using an external data interoperability component

- Data interoperability
 - Relies on the common language
- External component
 - To keep the legacy systems unchanged

Principles

Avoiding the synchronization of metamodels

- Reusing both metamodels in a common metamodeling environment
 - Enables efficient model transformations
 - Implies
 - A tedious and error-prone translation of one metamodel
 - To check the equivalence between the 2 versions
 - To synchronize the 2 versions

Technical context Cheddar

- A tool for the performance analysis of real-time applications.
 - Provides a set of standard real-time schedulers and analysis tools.
 - Can be extended with specific schedulers and analysis tools thanks to its dedicated programming language.
 - Cheddar specifications can be serialized to a specific XML format.
 - Cheddar also handles AADL v1 specifications.

В

Technical context Cheddar and Platypus

- **Some parts of Cheddar are generated by** *Platypus* :
 - A software engineering tool fully integrated inside Squeak
 - Allows metamodel specification and transformation rules definition.
 - Provides a modeling and metamodeling language (Express).
- Specialized version of Platypus dedicated to Cheddar:
 - Involves the metamodel of Cheddar.
 - Allows to extend Cheddar with new schedulers and analysis tools.

Technical context Scope extention to AADL V2

- Cheddar handles AADL v1 specifications thanks to the Ocarina API it integrates.
- **To extend the scope of Cheddar to AADL v2 specifications:**
 - Cheddar can be *reengineered* using the new version of the Ocarina API
 - AADL v2 specifications can be *externally* translated into Cheddar XML
- We investigate the second solution
 - The external component can reuse the frontend of *Osate v2*:
 - **I**t avoids the reengineering of Cheddar
 - **I**t offers a natural interface to Cheddar for regular Osate users.

Technical context Osate

- Osate v2:
 - Based on EMF; includes a metamodel of AADL
 - Provides a toolset to parse and print AADL specifications
 - Provides a platform for system integration to develop AADL tools
 - Handles AADL v2 specifications

U

Interoperability component Global design

External view of *Dairy*:

□ White-box view of *Dairy*:

ม ธ

- Manual Cheddar XML Printer
 - Principle: browsing the AADL instances to manually generate strings of Cheddar XML
 - Enables to quickly develop prototypes.
 - Does not enable to capitalize on the translation rules.

- Java generation by Platypus and XSLT
 - Principle:
 - using Platypus-Cheddar to generate java classes for each entities of the Cheddar metamodel.
 - browsing the AADL instances to create Java instances
 - using a java-serialization tool
 - defining translation rules to Cheddar XML with XSLT
 - This approach enables to capitalize on the translation rules.

- Specific Cheddar-Java generation by Platypus
 - Principle: modifying Platypus-Cheddar so that it could generate Cheddar specific Java classes including direct serialization into Cheddar XML.
 - Requires a modification of Platypus-Cheddar.

- **EMF** translator and XML printer:
 - Principle:
 - transforming the AADL instances into instances of a Cheddar metamodel in EMF (can be performed using ATL or QVT)
 - generating Cheddar XML from these instances (can be performed using tools like EMFText)
 - Require to synchronize two versions of the same metamodel (with EMF and with Express).

- EMF translator and XMI translator
 - Principle: variant of the previous solution:
 - standard XMI serialization applied to Cheddar instances
 - **transformation into Cheddar XML using XSLT.**

- STEP printer:
 - Principle:
 - translation of the EMF instances into STEP instances of the Express Cheddar metamodel.
 - automatic generation of Cheddar XML.
 - Platypus-Cheddar must be updated to produce Cheddar XML from STEP instances.

U

Approach	Metamodel transformation	Update of Platypus	Reused tools	Generated tools	Impact of metamodel update
1	no	no	none	none	high
2	no	no	XSLT	XML serializer	middle
3	no	yes	none	XML serializer	low
4	yes	no	none	translator and/or printer	low
5	yes	no	XSLT	translator and/or XMI serializer	low
6	no	yes	Platypus	none	low

- 1, 2: do not require any modification of Platypus; enable to quickly develop prototypes.
- **3**, 6: minimize the impact of the metamodels' updates
 - 4, 5: likely to be automated at the cost of a complete transformation of the Cheddar metamodel

Conclusions and perspectives

- We plan to develop a first prototype with the first approach.
- We will study in depth the impact of approaches 3 and 6 on Platypus-Cheddar.
- **Typical tool chain including Dairy:**
 - AADL model built with:
 - OSATE, Ocarina, Topcased
 - or with any other tool using AADL as a pivot language (*e.g.* MARTE/UML via AAXL transformation implemented with ATL)
 - Transformation into Cheddar for validation.