
AADS+: AADL Simulation including 
the Behavioral Annex

Fifth IEEE International workshop UML and AADL
24th March 2010, Oxford, UK

Roberto Varona Gómez
Eugenio Villar
{roberto, evillar}@teisa.unican.es
University of Cantabria, Santander, Spain



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

This work has been partially supported by the 
Spanish Ministry of Industry, Tourism and Trade through 

the ITEA 05015 SPICES Project and the TEC2008-
04107 project.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Index

� State of the Art
� AADS
� Translation of the behavioral annex
� Case Study
� Conclusions
� References



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

State of the Art
Several authors have considered the behavioral annex in their research on 

AADL:
� P. Dissaux et al. [9] present a proposal for a behavioral annex to the 

AADL standard. They explain how to implement the behavioral annex 
with the Stood tool, a graphical AADL editor that can import and export 
AADL textual specifications.

� R. Bedin et al. [10] evaluate the behavioral annex through a flight 
software design in the ArchiDyn project. They require new 
synchronization primitives for AADL runtime and support using edition
and analysis tools for the behavioral annex.

� J. P. Bodeveix et al. [11] propose an AADL behavioral annex and a 
technique to perform compositional real-time verification of AADL 
models through the use of a method which translates environmental 
constraints into behavior.

� B. Berthomieu et al. describe in [12] a formal verification tool chain for 
AADL with its behavioral annex available in the Topcased environment. 
They translate the AADL model to Fiacre and verify the behavior with a 
Time Petri Net Analyzer (Tina).



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

State of the Art

� C. Ponsard et al. explore in [13] the interplay of requirements and 
architecture in a model-based perspective by defining a mapping and a 
constructive process taking into account specificities of embedded 
systems, especially the importance of non functional requirements. To 
generate the behavioral part of a system they first generate a finite state 
machine and then an AADL mode-transition.

� To allow simulation M. Yassin Chkouri et al. propose in [14] a 
translation from AADL models into BIP models. They take into account 
behavior specifications allowing state variables, initialization, states and 
transitions sections to be defined and translating them into BIP.

� DUALLY [15] is an automated framework that allows architectural 
language interoperability through automated model transformation
techniques. I. Malavolta et al. analyze the feasibility of integrating AADL 
and OSATE in DUALLY. They map AADL behavioral annex sections of 
states, composite states and transitions.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

State of the Art

� After analyzing the state of the art, a behavioral annex to the AADL 
standard appears to be necessary, which could be included in an AADL 
model in order to express the behavior of the components.

� However, no approach uses SystemC [16], which is the recognized 
standard for modeling HW/SW platforms, with its great potential for 
integration of processors, buses, memories and specific platform HW. 
Our solution makes HW/SW co-design easier because of the use of 
SystemC.

� SCoPE [17-18] is a C++ library that extends the standard language 
SystemC without modifying it. It simulates C/C++ SW code based on 
two different operating system interfaces (POSIX [19-20] and 
MicroC/OS). Moreover, it co-simulates these pieces of SW code with 
HW described in SystemC.

� We have improved AADS to take into account the most important 
issues of the AADL behavioral annex (states, transitions, sending and 
receiving messages, etc.). AADS+ supports AADL behavioral annex 
simulation in SystemC, thus enabling the HW platform to be modeled 
and permitting HW/SW codesign. The AADL model is based on POSIX, 
so it supports many different RTOSs.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

AADS
� AADS is written in Java and it was developed as a plug-in of Eclipse for 

Windows.
� AADL enables the specification of both the architecture and functionality 

of an embedded real-time system. AADS translates both, it parses the 
AADL model so the functionality is translated to an equivalent POSIX
model and the architecture is represented in XML.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

AADS

ECLIPSE
OSATEGraphical editor

TOPCASED
Textual editor

AADL Model

Instantiated
XML

Instantiated
XML

AADS

AADL 
XML

AADL 
XML

Configuration 
parameters 

Performance 
analysis

SCoPE

Simulation

Refinement

POSIX/C++ 
Files

POSIX/C++ 
Files

C/C++ 
Code

C/C++ 
Code

XML 
File

XML 
File



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

AADS



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Translation of the behavioral annex
The transition system (an extended automaton) using optional sections:
� State variables. The state variables section declares typed identifiers. 

Types are data classifiers of the AADL model. AADS+ translates these 
state variables declaring variables with their corresponding type in the 
C++ source code of the thread or subprogram itself.

� Initialization. The state variables must be initialized in the initialization
section using a sequence of assignments. AADS+ translates this 
initialization initializing the variables with their corresponding value
where they were declared.

� States. The states section declares automaton states which can be 
qualified as initial, complete, return, urgent or composite. AADS+ uses 
this section to know which states have been defined.

� Transitions. The transitions section defines system transitions from a 
source state to a destination state. The transition can be guarded with 
events or Boolean conditions. An action part can be attached to the 
transition. It can perform subprogram calls, message sending or 
assignments. AADS+ translates the transitions section into switch and 
case statements to transit from one state to another. It starts in the 
initial state and moves to the next state when the guard of the transition 
is true. So the guard of the transition translated by AADS+ acts as a 
condition to execute the sentence/s of the state and to change the 
state. Sentence/s is the action of the transition translated by AADS+.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Translation of the behavioral annex
Depending on the content of the guard and the action of the transition, AADS+ 

translates them into the corresponding sentences of source code:
� Sending / receiving messages. Messages are sent / received through event or 

event data ports. If p is an input port: p? de-queues an event port variable, p?x
de-queues a datum on an event data port in the variable x. If p is an output port: 
p! calls Raise_Event on an event port, p!d writes data d in the event data port
and calls Raise_Event.

In the first case the guard of a transition is p1?x (where p1 is an in event data 
port) and the action of that transition is p2!(x+1) (where p2 is an out event data 
port). AADS+ translates this case, checking whether a variable arrives at the 
POSIX message queue associated with the port p1. Then the variable is sent 
through the POSIX message queue associated with the port p2, in this case 
after adding 1 to it.

In the second case the guard of a transition is p1? (p1 is an in event port) and 
the action of that transition is p2! (p2 is an out event port). AADS+ translates 
this case, checking whether the corresponding POSIX signal associated with 
the port p1 has been received. Then the corresponding POSIX signal 
associated with the port p2 is sent.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Translation of the behavioral annex
Subprograms. A behavior expressed by the annex can be attached to a subprogram 
implementation. The behavior can refer to the subprogram parameters and to 
variables. The automaton specifying the subprogram implementation has one or more 
return states indicating the return to the caller. While the AADL control flows define the 
call sequences produced by a subprogram, the annex enables the expression of 
dependencies between the control flows and state variables or parameters. A 
subprogram specification can express other calls or notification of events.
In the first case the guard of a transition is p1? (p1 is an in event port) and the action of 
that transition is subp! (subp is a subprogram). AADS+ translates this case checking 
whether the corresponding POSIX signal associated with the port p1 has been 
received. If the signal has been received then the corresponding previously defined 
subprogram is called.
Parameters can be passed to called subprograms. The action of that transition could 
be subp!(5->x,2->y) where x and y are two in parameters of the subprogram subp. 
Then AADS+ translates it into a call to the subprogram with those two parameters as 
subp(5,2).
Using the AADL behavioral annex, it is possible to indicate in the action of a transition
that the out parameter of a subprogram is the in parameter modified in some way. It 
could be po!(pi+1), where po is the out parameter and pi the in parameter. AADS+ 
translates it creating the source code in the subprogram that sums one to the in
parameter and assigns the result to the out parameter.
If guard of a transition is on pi (pi is an in parameter) and the action of that transition is 
a call to a standard function like std::cout!. To translate this transition AADS+ 
generates the C++ source code that checks whether the in parameter is true and, if it 
is, calls the standard function cout.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Translation of the behavioral annex
� Control structures. Control structures support conditional execution of 

alternative actions (if, else, end if), conditional repetition of actions (while), and 
application of actions over all elements of a data component array, port queue 
content, or integer range (for). The For structure represents an ordered iteration 
over all elements. Within the for structure the element can be referenced by 
element_variable_identifier, which acts as a local variable with the name scope 
of for structure.
In the case that the action of a transition contains a conditional structure of the 
type: if (logical value expression) behavior_actions [else behavior_actions] end 
if, AADS+ translates it producing the source code with the analogous if else
structure in C++, adapting the differences between them.
The same can be said about for and while structures of the type: for (element 
variable identifier in values) {behavior_actions} and while (logical value 
expression) {behavior_actions}. AADS+ translates them producing the source 
code with the analogous for and while structure in C++, adapting the differences 
between them.

� Arrays. To declare collections of data which are considered to be ordered the 
notion of multiplicity is used. AADS+ translates multiplicity into a C++ array of 
data. The type of the array is the same in both AADL and C++.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study

� The proposed method implemented in AADS+ has been tested in a 
typical case study, the cruise control, to assure the feasibility of the 
translation. Cruise control is a system that automatically controls the 
velocity of a motor vehicle. The driver sets a speed and the system will 
take over the throttle to maintain it.

� The use of the AADL behavioral annex with AADS+ has been validated 
through the refinement of the original cruise control design. As the 
original model was developed without using the behavioral annex, the 
model lacked relevant behavioral information. The annex overcomes 
these problems and enables the development of a more detailed 
architecture.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study

� The figure shows an AADL model with its behavioral annex of a cruise 
control system, taken from the collection of AADL examples in the 
OSATE release, but modified to add some subcomponents. The system
component contains two processors, two memories and two devices
connected by a bus, and two SW subsystems. Each of the subsystems 
is bound to a separate processor and to a separate memory. Threads
communicate via data ports, event ports and event data ports. Some 
data access connections can be seen too. There are some 
subprograms within threads and within data subcomponents and the 
call sequences (local and remote) between them are shown. The 
parameter connections between subprograms are shown too. One 
subsystem has two processes, one with four threads and the other with 
one. The other subsystem contains one process, with two threads.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study

� The files produced by AADS+ are compiled with SCoPE to simulate the 
model. The results obtained in the simulation are used to refine the 
model of the cruise control as needed. 

� Example of the translation performed by AADS+ of the behavior 
specification of a thread: Messages are sent and received through 
event data ports. In this case the guard of a transition is Refspd_Mph?x
and the action of that transition is Filrefspd_Mph!(x+1) (Refspd_Mph / 
Filrefspd_Mph are in / out event data ports). AADS+ translates it 
checking whether a variable arrives at the POSIX message queue
associated with the port Refspd_Mph. Then the variable is sent through 
the POSIX message queue associated with the port Filrefspd_Mph, 
after adding 1 to it.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study
AADL POSIX / C++



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study

� Subprograms with their behavior specifications have been added to the 
AADL model of the cruise control to obtain the desired system 
performance. For example, to detect if a button has been pushed by the 
driver the corresponding behavior was added to a subprogram in 
Button_panel thread and refined through simulation.

� When the driver activates the cruise control, an event is sent to the 
Refspd thread that sends another event to the Instrumentpanel thread
to show the activation; this behavior has been implemented in the 
thread Refspd.

� The correct operation of the behavior specification created to know 
whether the Drivermodelogic is activated or disactivated was refined by 
simulating the model.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Case Study
� Refinement of the original cruise control model with behavior specifications

does not require a large number of AADL code lines, AADS+ does not produce 
so many C++ code lines as one might fear and the gain in expressiveness of 
the model’s behavior is great. Furthermore, the cost in terms of use of CPU, 
core energy/power, bus access time, etc is slight.



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Conclusions

� The paper presents the simulation of the AADL behavioral annex
using the AADS+ simulation tool. AADS+ supports the refinement of 
AADL models, including the behavioral annex, after translating those 
models, through performance analysis done with SCoPE.

� Future work includes incorporation of AADS+ features that appear in 
V2.0 of the AADL standard. Furthermore, the source code produced 
by AADS+ for the software components will be made compatible with
the ASSERT Ravenscar Computational Model (RCM).



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

References



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

References



Roberto Varona Gómez, Eugenio VillarAADS+: AADL Simulation including the Behavioral Annex

Thanks for your attention.


