
GENERATING COMPOSITE
BEHAVIOR OF EMBEDDED

SOFTWARE COMPONENTS BASED
ON UML BEHAVIORAL MODEL

AND PROCESS ALGEBRA

2010.11.16
Jinhyun Kim

Korea University

UML & FM 2010 in Shanghai

Contents
• Introduction

• Background

• TRoS and ACSR

• TRoS || ACSR for Embedded Software
Components

• Specifying Real-time Embedded Applications in
TRoS || ACSR

• Conclusions

Contents

• Introduction
• Background

• TRo1S and ACSR

• TRoS || ACSR for Embedded Software Components

• Specifying Real-time Embedded Applications in TRoS
|| ACSR

• Conclusions

PLC for NPP

STATEMATE Statecharts

• It is widely used to model not only HW but
also embedded SW,

• There are plenty of analyzing tools, such as
model checking, simulation, and test

Model of pCOS

Semaphore Model in SC

Semaphore in ACSR

Contents
• Introduction

•Background

•TRoS and ACSR
• TRoS || ACSR for Embedded Software Components

• Specifying Real-time Embedded Applications in TRoS
|| ACSR

• Conclusions

TRoS

• TRoS = Statecharts + Timed Actions

• The timed action specifies timed behaviors
constrained by the prioritized use of
resources.

• It can be transformed directly from ACSR
in easy way by rules we have defined.

Timed Action

•A���������	
��
������������������ ::=���������	
��
������������������ {S}n���������	
��
������������������ |���������	
��
������������������ <���������	
��
������������������ S���������	
��
������������������ >n���������	
��
������������������

•S::=���������	
��
������������������ ε���������	
��
������������������ |���������	
��
������������������ (r,ve),S

Example

Transformation of SC
into TROS

Annotation

Transformation

ACSR

• A formal specification for real-time systems

• The actions of ACSR consists of two kinds
of actions: timed actions and event actions.

Sematnics

The non-
prioritized relation
of ACSR

Preemption Relations
there are three cases for α ≺ β:

1) α and β are events with the same label and β has a
higher priority;
2) α and β are actions and β uses a subset of
resources with the following two conditions: all
resources in β have at least the same priority as in β
and at least one at a higher priority than in α, and
every resources in α that is not in β must have a zero
priority;
3) β is a τ event with a non-zero priority while α is a
timed action;

Contents
• Introduction

• Background

• TRo1S and ACSR

• TRoS || ACSR for Embedded
Software Components

• Specifying Real-time Embedded Applications in TRoS ||
ACSR

• Conclusions

TRoS || ACSR

• it represents a composition of two
behavioral systems in TRoS and ACSR
respectively.

An Simple Example

Semantics

• The behavior of TRoS || ACSR is defined in
the same way defining ACSR,

• First, the non-priority relations of their
composite behavior are defined,

• Then, the non-prioritized behaviors are
prioritized based on preemption relations

Synchronization Event
for TRoS

E ::= ε | (e?, ve).E | (e!, ve).E

TRoS in TRoS || ACSR

• A TRoS is defined as a tuple (N,T,E,G,A), where

• N is a set of nodes,

• T is a set of transitions,

• E is a set of primitive event expressions,

• G is a set of guard expressions,

• A is a set of action expressions.

TRoS in TRoS || ACSR

• IB = E ∪ A : Broadcasting event
communicating within TRoS

• IS : Synchronization event between TRoS and
ACSR

A Behavior of TRoS

• A behavior of a system in TRoS is defined as a set
of possible of runs[HN96]. A run is a series of
statuses. A status is defined by the tuple sT

 =
(CB,CT,clk,I), where

• CB denotes a basic configuration,

• CT denotes a timed configuration,

• clk denotes the current time,

• I = IB ∪ IS .

A Run of TRoS

• A run of the system is a sequence cT =
sT

0 sT
1 ...sT

n, and we let ST be the set of
statuses.

ACSR in TRoS || ACSR

• A system of ACSR is represented in labeled
transition system TA = (SA,Act,→π,sA

0) [LPS07],
where

• SA is a set of states,

• Act includes event and timed actions,

• →π : prioritized transitions,

• sA
0 : Initial parallel processes (A configuration of

processes)

TRoS || ACSR

• A system of TRoS ∥ ACSR is defined in a labeled
transition system T = (S,Async,→σ,s0), where

• S = {(sT,sA) | sT ∈ ST and sA ∈ SA},

• Async = IS ∪{e | inv(e) ∈ Act}∪{ε},

• →σ : prioritized transition relation of TRoS ||
ACSR

• s0 : Initial configuration of TRoS || ACSR consisting
of default state nodes and initial processes.

TRoS || ACSR

• The event ε implies that no action takes place in
ACSR when a step in TRoS is executed.

• A behavior of TRoS ∥ ACSR is defined by a
sequence of c = s0β1s1...βnsn, such that si ∈ S, βi ∈
Act ∪ {ε}, and (si,βi+1,si+1) ∈→σ, for all 0 ≤ i < n.

Non-prioritized Relation
of TRoS || ACSR

A Status of TRoS || ACSR

Rule : TauAct

Ready Run

Wait

Ready Run

interrupt
or system call

SS is over/
return

Wait for SSsystem service provided

Interrupt
or system call

||

TRoS ACSR

Rule : TauAct

Ready Run

Wait

Ready Run

interrupt
or system call

SS is over/
return

Wait for SSsystem service provided

Interrupt
or system call

||

TRoS ACSR

Rule : ACSREventAct

Ready Run

Wait

Ready Run

interrupt
or system call

SS is over/
return

Wait for SSsystem service provided

Interrupt
or system call

||

TRoS ACSR

Rule : TRoSEventAct

Ready Run

Wait

Ready Run

interrupt
or system call

SS is over/
return

Wait for SSsystem service provided

Interrupt
or system call

||

TRoS ACSR

Rule : TimedAction

Ready Run

Wait

Ready Run

interrupt
or system call

SS is over/
return

Wait for SSsystem service provided

Interrupt
or system call

||

TRoS ACSR

Rule : EventComm

Ready Run

Wait

Ready Run

interrupt
or system call

SS is over/
return

Wait for SSsystem service provided

Interrupt
or system call

||

TRoS ACSR

Preemption Relation
• Definition (Preemption Relation for TRoS || ACSR) Given two

actions α and β, we say that β preempts α, denoted by (α ≺
β), if one of the following cases hold:

1. Both α and β are events in DE, where α = (a,p),β = (a,p′), and p<p′
2. Both α and β are actions in DR, where

(ρ(β) ⊆ ρ(α))∧

(∀(r,p) ∈ α(((r,p′) ∈ β ⇒ p ≤ p′)∧((r,p′) ̸= β ⇒ p = 0)))∧

(∃(r,p′) ∈ β∃(r,p) ∈ α.p < p′)
3. α∈DR and β∈DE, with β=(τ,p) and p>0

4. α=ε and β∈DE, with β=(τ,p) and p>0

5. α∈DR and β=ε.

Prioritized Transition System

Definition) The labeled transition “→σ”
is defined as follows: s →σ sʹ′ if and only
if 1) s→ sʹ′ is an unprioritized transition
and 2) there is no unprioritized
transition system s → sʹ′ʹ′ such that α ≺
β.

α

β

Contents
• Introduction

• Background

• TRo1S and ACSR

• TRoS || ACSR for Embedded Software Components

• Specifying Real-time Embedded
Applications in TRoS || ACSR

• Conclusions

Specifying RTOS Services

• Scheduling

• Synchronization

• Communication

• Time management

Semaphore in ACSR

Message Queue

Time Manager

Example of TRoS || ACSR

Task1 Task2

Task3

MBox

A TRoS || ACSR Model

A TRoS || ACSR Model

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

A TRoS || ACSR Model

Current
Time: 0

Contents

• Introduction

• Background

• TRo1S and ACSR

• TRoS || ACSR for Embedded Software Components

• Specifying Real-time Embedded Applications in TRoS
|| ACSR

•Conclusions

Conclusions

• We define here

• the semantics of a composition of TRoS
|| ACSR representing application software
and RTOS respectively

Conclusions

• TRoS

• extends Statecharts in terms of time and
resource constraints by annotation
methods.

• presents a way to gain a timed and
resource-constrained behavioral model
from Statecharts in easy way.

Conclusions

• ACSR

• useful to capture RTOS in easy way

• provides explicit notion of timely
prioritized use of resource

• able to verified with FM verification tools

Conclusions

• TRoS || ACSR

• defines a composition of two different
systems representing application software
and platform software, i.e., RTOS.

Conclusions

• This work contributes to

• independently designing application
software and platform software with
their appropriate formal specification
languages,

• analyzing their composite behaviors
based on our behavioral semantics of
TRoS || ACSR.

References
[GG02] Abdoulaye Gamati ́e and Thierry Gautier. Syn- chronous Modeling of Modular Avionics
Archi- tectures using the SIGNAL Language. Research Report RR-4678, INRIA, 2002.

[KKLC10a] Jin Hyun Kim, Inhye Kang, Insup Lee, and Jin- Young Choi. Timed and resource-
oriented state- charts for embedded software. Accepted to IEEE Transactions on Industrial
Informatics, 2010.

[HN96] David Harel and Amnon Naamad.	

 The STATEMATE semantics of statecharts. ACM
Trans. Softw. Eng. Methodol., 5(4):293–333, 1996.

[LBGG94] Insup Lee, P. Br’emond-Gr’egoire, and R. Ger- ber. A process algebraic approach to
the specifi- cation and analysis of resource-bound real-time systems. Proceedings of the IEEE
Special Is- sue on Real-Time Systems, pages 158–171, Jan 1994.

[LPS07] Insup Lee, Anna Philippou, and Oleg Sokolosky. Resources in process algebra. Journal of
Logic and Algebraic Programming, 72(1):98 – 122, 2007. Algebraic Process Calculi: The First
Twenty Five Years and Beyond. II.

[SLC06] O. Sokolsky, I. Lee, and D. Clarke. Schedulabil- ity analysis of AADL models. Parallel
and Dis- tributed Processing Symposium, International, 0:164, 2006.

Thanks

Case Study

 Avionics Systems
 based on ARINC 653

Position Indicator in TRoS

ARINC 653
Semaphore in ACSR

Verification

