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PLC for NPP



STATEMATE Statecharts

• It is widely used to model not only HW but 
also embedded SW,

• There are plenty of analyzing tools, such as 
model checking, simulation, and test



Model of pCOS



Semaphore Model in SC



Semaphore in ACSR
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TRoS

• TRoS = Statecharts + Timed Actions

• The timed action specifies timed behaviors 
constrained by the prioritized use of 
resources. 

• It can be transformed directly from ACSR 
in easy way by rules we have defined. 



Timed Action
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Example





Transformation of SC 
into TROS



Annotation



Transformation





ACSR

• A formal specification for real-time systems

• The actions of ACSR consists of two kinds 
of actions: timed actions and event actions. 



Sematnics

The non-
prioritized relation 
of ACSR



Preemption Relations
there are three cases for α ≺ β: 

1) α and β are events with the same label and β has a 
higher priority; 
2) α and β are actions and β uses a subset of 
resources with the following two conditions: all 
resources in β have at least the same priority as in β 
and at least one at a higher priority than in α, and 
every resources in α that is not in β must have a zero 
priority; 
3) β is a τ event with a non-zero priority while α is a 
timed action;
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TRoS || ACSR

• it represents a composition of  two 
behavioral systems in TRoS and ACSR 
respectively.



An Simple Example



Semantics

• The behavior of TRoS || ACSR is defined in 
the same way defining ACSR,

• First, the non-priority relations of their 
composite behavior are defined, 

• Then, the non-prioritized behaviors are 
prioritized based on preemption relations 



Synchronization Event 
for TRoS

E ::= ε | (e?, ve).E | (e!, ve).E



TRoS in TRoS || ACSR

• A TRoS is defined as a tuple (N,T,E,G,A), where

• N is a set of nodes,

• T is a set of transitions,

• E is a set of primitive event expressions, 

• G is a set of guard expressions, 

• A is a set of action expressions.   



TRoS in TRoS || ACSR

•  IB = E ∪ A : Broadcasting event 
communicating within TRoS 

• IS : Synchronization event between TRoS and 
ACSR



A Behavior of TRoS

• A behavior of a system in TRoS is defined as a set 
of possible of runs[HN96].  A run is a series of 
statuses. A status is defined by the tuple sT

 = 
(CB,CT,clk,I), where 

• CB denotes a basic configuration, 

• CT denotes a timed configuration, 

• clk denotes the current time, 

• I = IB ∪ IS . 



A Run of  TRoS

• A run of the system is a sequence cT = 
sT

0 sT
1 ...sT

n, and we let ST be the set of 
statuses.



ACSR in TRoS || ACSR

• A system of ACSR is represented in labeled 
transition system TA = (SA,Act,→π,sA

0 ) [LPS07], 
where

• SA is a set of states,

• Act includes event and timed actions,

• →π : prioritized transitions,

• sA
0 : Initial parallel processes ( A configuration of 

processes)



TRoS || ACSR

• A system of TRoS ∥ ACSR is defined in a labeled 
transition system T = (S,Async,→σ,s0), where 

• S = {(sT,sA) | sT ∈ ST and sA ∈ SA}, 

• Async = IS ∪{e | inv(e) ∈ Act}∪{ε}, 

• →σ : prioritized transition relation of TRoS || 
ACSR

• s0 : Initial configuration of TRoS || ACSR consisting 
of default state nodes and initial processes.



TRoS || ACSR

• The event ε implies that no action takes place in 
ACSR when a step in TRoS is executed. 

• A behavior of TRoS ∥ ACSR is defined by a 
sequence of c = s0β1s1...βnsn, such that si ∈ S, βi ∈ 
Act ∪ {ε}, and (si,βi+1,si+1) ∈→σ, for all 0 ≤ i < n.



Non-prioritized Relation 
of TRoS || ACSR



A Status of  TRoS || ACSR



Rule : TauAct
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Rule : TimedAction
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Rule : EventComm
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Preemption Relation
• Definition (Preemption Relation for TRoS || ACSR) Given two 

actions α and β, we say that β preempts α, denoted by (α ≺ 
β), if one of the following cases hold:

1. Both α and β are events in DE, where α = (a,p),β = (a,p′), and p<p′
2. Both α and β are actions in DR, where 

(ρ(β) ⊆ ρ(α))∧ 

(∀(r,p) ∈ α(((r,p′) ∈ β ⇒ p ≤ p′)∧((r,p′) ̸= β ⇒ p = 0)))∧ 

(∃(r,p′) ∈ β∃(r,p) ∈ α.p < p′)
3. α∈DR and β∈DE, with β=(τ,p) and p>0 

4. α=ε and β∈DE, with β=(τ,p) and p>0 

5. α∈DR and β=ε.



Prioritized Transition System

Definition)  The labeled transition “→σ” 
is defined as follows: s →σ sʹ′ if and only 
if 1) s→ sʹ′ is an unprioritized transition 
and 2) there is no unprioritized 
transition system s → sʹ′ʹ′ such that α ≺ 
β.

α 

β 
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Specifying RTOS Services

• Scheduling

• Synchronization

• Communication

• Time management



Semaphore in ACSR



Message Queue



Time Manager



Example of TRoS || ACSR

Task1 Task2

Task3

MBox



A TRoS || ACSR Model
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Conclusions

• We define here 

• the semantics of a composition of  TRoS 
|| ACSR representing application software 
and RTOS respectively



Conclusions

• TRoS

• extends Statecharts in terms of time and 
resource constraints by annotation 
methods.

• presents a way to gain a timed and 
resource-constrained behavioral model 
from Statecharts in easy way. 



Conclusions

• ACSR

• useful to capture RTOS in easy way 

• provides explicit notion of timely 
prioritized use of resource 

• able to verified with FM verification tools



Conclusions

• TRoS || ACSR

• defines a composition of two different 
systems representing application software 
and platform software, i.e., RTOS.



Conclusions

• This work contributes to 

• independently designing application 
software and platform software with 
their appropriate formal specification 
languages,

• analyzing their composite behaviors 
based on our behavioral semantics of 
TRoS || ACSR.
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 based on ARINC 653 



Position Indicator in TRoS



ARINC 653 
Semaphore in ACSR



Verification


